add blockchain and fix a small problem in Ch2-5

This commit is contained in:
DanHaoPKU 2019-10-31 16:47:05 +08:00
parent eacc30a59a
commit 0cf7e20076
1 changed files with 2 additions and 2 deletions

View File

@ -27,7 +27,7 @@
将操作系统“功能可编程”、“资源虚拟化”的思想拓展到存储、安全、数据中心等具体领域,我们就得到了软件定义存储、软件定义安全、软件定义的数据中心等概念。进一步,随着操作系统由计算机软硬件之间的桥梁、人与计算机之间的桥梁拓展到云边端、人机物之间的桥梁,其定位将由单个计算机“管家”演化为支撑“软件定义一切”的运行平台。传统操作系统架构面向的是信息空间内孤立计算结点,这一沿用数十年的架构将面临如下两个方面的挑战:
\begin{itemize}
\item 从“精确控制”到“连接协调”的挑战。未来的人机物融合系统将是大规模、网络化的计算系统虽然每个节点上仍将运行传统的节点操作系统在节点内部通过对资源实施严格精确控制来达到资源虚拟化、功能可编程的目的但这种精确控制机制很难直接应用到网络层面。事实上这种简单放大的思路在30年前的Amobea等分布式操作系统实践中就已经证明很难奏效参见本书第一部分\ref{middleware}节)。根本原因在于网络化系统具有开放和复杂系统的特征,其所涉及的实体往往跨越多个管理域,系统边界也随时间演化而不断发生变化,很难构建静态不变的控制中心,或是明确稳定的自顶向下层次化结构。在这种场景下,更为妥当的方式将是 “连接协调”,即通过按需聚合和动态协同来打破不同节点之间的壁垒,统一管理并优化利用计算、数据甚至物理世界各种资源。从“精确控制”到“连接协调”的方式的这一转变,将从根本上动摇现有操作系统的架构,并催生新一代、运行于节点操作系统之上的网络操作系统。
\item 从“精确控制”到“连接协调”的挑战。未来的人机物融合系统将是大规模、网络化的计算系统虽然每个节点上仍将运行传统的节点操作系统在节点内部通过对资源实施严格精确控制来达到资源虚拟化、功能可编程的目的但这种精确控制机制很难直接应用到网络层面。事实上这种简单放大的思路在30年前的Amobea等分布式操作系统实践中就已经证明很难奏效参见本书第一部分\ref{middleware}节)。根本原因在于网络化系统具有开放和复杂系统的特征,其所涉及的实体往往跨越多个管理域,系统边界也随时间演化而不断发生变化,很难构建静态不变的控制中心,或是明确稳定的自顶向下层次化结构。在这种场景下,更为妥当的方式将是 “连接协调”,即通过按需聚合和动态协同来打破不同节点之间的壁垒,统一管理并优化利用计算、数据甚至物理世界各种资源。从“精确控制”到“连接协调”的方式的这一转变,将从根本上动摇现有操作系统的架构,并催生新一代、运行于节点操作系统之上的网络操作系统。在这一过程中,区块链、"云-端”融合、5G通信等新一代分布计算支撑技术将发挥重要的使能作用。例如在其所适合的场景下区块链可望实现信息共享从集中式架构到去中心化架构的变迁其应用将突破传统的金融领域沉淀为泛化运行平台的组成部分之一支持多种类型应用的能力有效提升。
\item 计算、通信、控制三元融合场景的挑战。今天广泛使用的Windows、Linux等操作系统在架构上深受首个现代意义上操作系统Unix的影响。它们运行于单一计算结点范围内内部大致可划分为资源管理、系统调用、人机接口等层次。这种架构针对信息空间内部的孤立计算结点设计很难支撑泛在化、智能化、网络化的新型应用场景。具体而言在计算维度上单一的本地计算将向云边端一体化计算、人机物协作计算、智能和机器学习计算等新型场景变迁在通信维度上5G等新型网络的出现使得网络时延和吞吐量得到极大改善可望触发移动和嵌入式操作系统的新一轮革命在控制维度上物联网、机器人等与物理世界紧密融合的计算设备涌现使得“功能可编程”将突破信息空间范畴需要在操作系统架构设计层面上考虑物理空间约束和对物理空间的影响。
\end{itemize}
\subsection{泛在资源的高效虚拟化和灵活调度}\label{os-scheduling}
@ -104,7 +104,7 @@
操作系统 “资源虚拟化”的能力来自于其对资源的抽象、封装和调度。传统操作系统针对信息空间内部的资源,已经建立了进程/线程、内存页/虚拟内存、文件等相对稳定的抽象实体。未来,在人机物融合系统中,如何表达和管理各类高度异构、动态变化的物理和社会资源,是操作系统领域的开放问题。其中一个核心问题是:在认知、物理和信息空间三者之间,如何刻画、检验、保持、校正多模型结构之间定性与定量一致性,进而实现具有“数字孪生”的物理和社会空间资源的调度和管理。此外,未来操作系统的编程接口不仅涉及到计算资源的“软件定义”,可能包括各种可传感物体对象、智能无人系统等各类物理资源,甚至向其他具有“数字孪生”特性的经济、社会和生产生活资源,其接口形式、接口实现机理等都是开放的问题。
\subsection{运行平台支持的软件持续演化技术}\label{os-research8}
适应和演化是未来人机物融合软件的基本特征,其实现机制牵涉到两个层面。首先,未来人机物融合软件的运行平台自身应当是可以是柔性设计、可以持续演化的。其次,操作系统和运行平台是能够支撑上层应用适应和演化的天然基础设施,但由于在线演化的需求是在“软件作为基础设施”过程中逐渐显现的,其实现机理也是目前操作系统和运行平台领域研究相对薄弱的环节,需要从运行状态把握、群体智能决策调整、宏观和微观演化效果评估等角度开展研究。相关研究内容已经在重大挑战性问题的5.1.3节中给出,本节不再赘述。
适应和演化是未来人机物融合软件的基本特征,其实现机制牵涉到两个层面。首先,未来人机物融合软件的运行平台自身应当是可以是柔性设计、可以持续演化的。其次,操作系统和运行平台是能够支撑上层应用适应和演化的天然基础设施,但由于在线演化的需求是在“软件作为基础设施”过程中逐渐显现的,其实现机理也是目前操作系统和运行平台领域研究相对薄弱的环节,需要从运行状态把握、群体智能决策调整、宏观和微观演化效果评估等角度开展研究。相关研究内容已经在\ref{os-evolution}节中给出,本节不再赘述。
\subsection{基于开源和众包的生态构建技术}\label{os-research9}
随着互联网的深入发展和广泛应用,操作系统和运行平台的研发出现了新的特点,其中开源和众包对操作系统的发展产生了深远影响。它们一方面改变了操作系统产业的商业模式,服务化成为趋势,操作系统厂商如苹果、微软纷纷从销售产品获利转型为提供服务获利的模式;另一方面促进了面向行业或应用场景需求的专用操作系统的发展,降低了操作系统研发定制的门槛,使得更多的厂商可以参与到操作系统生态链构建中来。但是,开源和众包模式的引入,也为操作系统的开发带来了一系列问题。例如,在使用开源资源时,如指导思想和方法不当,可能导致在产品中包含若干“黑盒子”,引入代码不可控、产品升级被动等风险;产品如过度依赖开源,发展途径就会被开源主导,创新的空间将被大幅约束;等等。如何在操作系统生态链构建过程中最大限度发挥开源和众包的长处,是需要深入研究的问题,相关的研究方向包括操作系统代码来源链的建模和分析、开源许可证的合规性及冲突分析、多来源缺陷数据的定性与定量统计分析等。