mindspore/model_zoo/official/cv/lenet_quant/train_quant.py

85 lines
3.7 KiB
Python

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
######################## train lenet example ########################
train lenet and get network model files(.ckpt) :
python train.py --data_path /YourDataPath
"""
import os
import argparse
import mindspore.nn as nn
from mindspore import context
from mindspore.train.serialization import load_checkpoint
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig
from mindspore.train import Model
from mindspore.nn.metrics import Accuracy
from mindspore.compression.quant import QuantizationAwareTraining
from mindspore.compression.quant.quant_utils import load_nonquant_param_into_quant_net
from mindspore.common import set_seed
from src.dataset import create_dataset
from src.config import mnist_cfg as cfg
from src.lenet_fusion import LeNet5 as LeNet5Fusion
from src.loss_monitor import LossMonitor
set_seed(1)
parser = argparse.ArgumentParser(description='MindSpore MNIST Example')
parser.add_argument('--device_target', type=str, default="Ascend",
choices=['Ascend', 'GPU'],
help='device where the code will be implemented (default: Ascend)')
parser.add_argument('--data_path', type=str, default="./MNIST_Data",
help='path where the dataset is saved')
parser.add_argument('--ckpt_path', type=str, default="",
help='if mode is test, must provide path where the trained ckpt file')
args = parser.parse_args()
if __name__ == "__main__":
context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target)
ds_train = create_dataset(os.path.join(args.data_path, "train"), cfg.batch_size, 1)
step_size = ds_train.get_dataset_size()
# define fusion network
network = LeNet5Fusion(cfg.num_classes)
# load quantization aware network checkpoint
param_dict = load_checkpoint(args.ckpt_path)
load_nonquant_param_into_quant_net(network, param_dict)
# convert fusion network to quantization aware network
quantizer = QuantizationAwareTraining(quant_delay=900,
bn_fold=False,
per_channel=[True, False],
symmetric=[True, False])
network = quantizer.quantize(network)
# define network loss
net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
# define network optimization
net_opt = nn.Momentum(network.trainable_params(), cfg.lr, cfg.momentum)
# call back and monitor
config_ckpt = CheckpointConfig(save_checkpoint_steps=cfg.epoch_size * step_size,
keep_checkpoint_max=cfg.keep_checkpoint_max)
ckpt_callback = ModelCheckpoint(prefix="checkpoint_lenet", config=config_ckpt)
# define model
model = Model(network, net_loss, net_opt, metrics={"Accuracy": Accuracy()})
print("============== Starting Training ==============")
model.train(cfg['epoch_size'], ds_train, callbacks=[ckpt_callback, LossMonitor()],
dataset_sink_mode=True)
print("============== End Training ==============")