74 lines
2.7 KiB
Python
74 lines
2.7 KiB
Python
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
"""post process for 310 inference"""
|
|
import argparse
|
|
import numpy as np
|
|
from pycocotools.coco import COCO
|
|
|
|
from src.config import config
|
|
from src.util import coco_eval, bbox2result_1image, results2json
|
|
|
|
dst_width = 1280
|
|
dst_height = 768
|
|
|
|
parser = argparse.ArgumentParser(description="FasterRcnn inference")
|
|
parser.add_argument("--ann_file", type=str, required=True, help="ann file.")
|
|
parser.add_argument("--img_path", type=str, required=True, help="image file path.")
|
|
args = parser.parse_args()
|
|
|
|
def get_eval_result(ann_file):
|
|
""" get evaluation result of faster rcnn"""
|
|
max_num = 128
|
|
result_path = "./result_Files/"
|
|
|
|
outputs = []
|
|
|
|
dataset_coco = COCO(ann_file)
|
|
img_ids = dataset_coco.getImgIds()
|
|
|
|
for img_id in img_ids:
|
|
file_id = str(img_id).zfill(12)
|
|
|
|
bbox_result_file = result_path + file_id + "_0.bin"
|
|
label_result_file = result_path + file_id + "_1.bin"
|
|
mask_result_file = result_path + file_id + "_2.bin"
|
|
|
|
all_bbox = np.fromfile(bbox_result_file, dtype=np.float16).reshape(80000, 5)
|
|
all_label = np.fromfile(label_result_file, dtype=np.int32).reshape(80000, 1)
|
|
all_mask = np.fromfile(mask_result_file, dtype=np.bool_).reshape(80000, 1)
|
|
|
|
all_bbox_squee = np.squeeze(all_bbox)
|
|
all_label_squee = np.squeeze(all_label)
|
|
all_mask_squee = np.squeeze(all_mask)
|
|
|
|
all_bboxes_tmp_mask = all_bbox_squee[all_mask_squee, :]
|
|
all_labels_tmp_mask = all_label_squee[all_mask_squee]
|
|
|
|
if all_bboxes_tmp_mask.shape[0] > max_num:
|
|
inds = np.argsort(-all_bboxes_tmp_mask[:, -1])
|
|
inds = inds[:max_num]
|
|
all_bboxes_tmp_mask = all_bboxes_tmp_mask[inds]
|
|
all_labels_tmp_mask = all_labels_tmp_mask[inds]
|
|
|
|
outputs_tmp = bbox2result_1image(all_bboxes_tmp_mask, all_labels_tmp_mask, config.num_classes)
|
|
outputs.append(outputs_tmp)
|
|
|
|
eval_types = ["bbox"]
|
|
result_files = results2json(dataset_coco, outputs, "./results.pkl")
|
|
coco_eval(result_files, eval_types, dataset_coco, single_result=False)
|
|
|
|
if __name__ == '__main__':
|
|
get_eval_result(args.ann_file)
|