69 lines
2.1 KiB
Python
69 lines
2.1 KiB
Python
import numpy as np
|
|
import pytest
|
|
import mindspore.context as context
|
|
from mindspore import Tensor
|
|
from mindspore.common.parameter import Parameter
|
|
from mindspore.nn import Cell
|
|
import mindspore.ops.operations as P
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
|
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_arm_ascend_training
|
|
@pytest.mark.platform_x86_ascend_training
|
|
@pytest.mark.env_onecard
|
|
def test_if_by_if_basic():
|
|
class SubNet(Cell):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.mul = P.Mul()
|
|
self.add = P.Add()
|
|
a = np.full((1,), 5, dtype=np.float32)
|
|
self.a = Parameter(Tensor(a), name='a')
|
|
b = np.full((1,), 4, dtype=np.float32)
|
|
self.b = Parameter(Tensor(b), name='b')
|
|
|
|
def construct(self, x):
|
|
if self.a > self.b:
|
|
x = self.mul(x, 1)
|
|
while self.b < 6:
|
|
x = self.add(x, x)
|
|
self.b += 1
|
|
return x
|
|
|
|
class Net(Cell):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.subnet = SubNet()
|
|
self.relu = P.ReLU()
|
|
self.add = P.Add()
|
|
a = np.full((1,), 5, dtype=np.float32)
|
|
self.a = Parameter(Tensor(a), name='a')
|
|
b = np.full((1,), 4, dtype=np.float32)
|
|
self.b = Parameter(Tensor(b), name='b')
|
|
c = np.full((1,), 7, dtype=np.float32)
|
|
self.c = Parameter(Tensor(c), name='c')
|
|
|
|
def func(self, x):
|
|
for _ in range(0, 2):
|
|
x = self.add(x, 0)
|
|
return x
|
|
|
|
def construct(self, x):
|
|
if self.a > self.b:
|
|
x = self.subnet(x)
|
|
else:
|
|
x = self.relu(x)
|
|
if self.a < self.c:
|
|
x = self.func(x)
|
|
else:
|
|
x = self.add(x, 2)
|
|
return x
|
|
|
|
input_np = np.random.randn(2, 3, 4, 5).astype(np.float32)
|
|
net = Net()
|
|
out_ms = net(Tensor(input_np))
|
|
out_np = input_np * 4
|
|
assert np.allclose(out_ms.asnumpy(), out_np)
|