!68971 [Document Consistency] modify format
Merge pull request !68971 from 俞涵/code_docs_mst
This commit is contained in:
commit
ece62d03e3
|
@ -16,5 +16,5 @@ mindspore.Tensor.register_hook
|
|||
返回:
|
||||
返回与该hook_fn函数对应的handle对象。可通过调用handle.remove()来删除添加的hook_fn函数。
|
||||
|
||||
异常:
|
||||
- **TypeError** - 如果 `hook_fn` 不是Python函数。
|
||||
异常:
|
||||
- **TypeError** - 如果 `hook_fn` 不是Python函数。
|
||||
|
|
|
@ -3,8 +3,7 @@ mindspore.recompute
|
|||
|
||||
.. py:function:: mindspore.recompute(block, *args, **kwargs)
|
||||
|
||||
该函数用于减少显存的使用,当运行选定的模块时,不再保存其中的前向计算的产生的激活值,我们将在反向传播时,
|
||||
重新计算前向的激活值。
|
||||
该函数用于减少显存的使用,当运行选定的模块时,不再保存其中的前向计算的产生的激活值,我们将在反向传播时,重新计算前向的激活值。
|
||||
|
||||
.. note::
|
||||
- 重计算函数只支持继承自Cell对象的模块,
|
||||
|
|
|
@ -279,11 +279,6 @@
|
|||
|
||||
`parameter_layout_dict` 表示一个参数的张量layout,这种张量layout是由分片策略和分布式算子信息推断出来的。
|
||||
|
||||
.. py:method:: pipeline_stage
|
||||
:property:
|
||||
|
||||
`pipeline_stage` 表示当前Cell所在的stage。
|
||||
|
||||
.. py:method:: parameters_and_names(name_prefix='', expand=True)
|
||||
|
||||
返回Cell中parameter的迭代器。
|
||||
|
@ -320,6 +315,11 @@
|
|||
返回:
|
||||
OrderedDict类型,返回参数字典。
|
||||
|
||||
.. py:method:: pipeline_stage
|
||||
:property:
|
||||
|
||||
`pipeline_stage` 表示当前Cell所在的stage。
|
||||
|
||||
.. py:method:: place(role, rank_id)
|
||||
|
||||
为该Cell中所有算子设置标签。此标签告诉MindSpore编译器此Cell在哪个进程上启动。
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
- **float** - <EFBFBD>̶<EFBFBD><EFBFBD><EFBFBD>ѧϰ<EFBFBD>ʡ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ڵ<EFBFBD><EFBFBD><EFBFBD><EFBFBD>㡣
|
||||
- **int** - <EFBFBD>̶<EFBFBD><EFBFBD><EFBFBD>ѧϰ<EFBFBD>ʡ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ڵ<EFBFBD><EFBFBD><EFBFBD><EFBFBD>㡣<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ͻᱻת<EFBFBD><EFBFBD>Ϊ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
||||
- **Tensor** - <EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>DZ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>һά<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ǹ̶<EFBFBD><EFBFBD><EFBFBD>ѧϰ<EFBFBD>ʡ<EFBFBD>һά<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ƕ<EFBFBD>̬<EFBFBD><EFBFBD>ѧϰ<EFBFBD>ʣ<EFBFBD><EFBFBD><EFBFBD>i<EFBFBD><EFBFBD><EFBFBD><EFBFBD>ȡ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>е<EFBFBD>i<EFBFBD><EFBFBD>ֵ<EFBFBD><EFBFBD>Ϊѧϰ<EFBFBD>ʡ<EFBFBD>
|
||||
- **Iterable** - <EFBFBD><EFBFBD>̬<EFBFBD><EFBFBD>ѧϰ<EFBFBD>ʡ<EFBFBD><EFBFBD><EFBFBD>i<EFBFBD><EFBFBD><EFBFBD><EFBFBD>ȡ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>i<EFBFBD><EFBFBD>ֵ<EFBFBD><EFBFBD>Ϊѧϰ<EFBFBD>ʡ<EFBFBD>
|
||||
- **LearningRateSchedule** - <EFBFBD><EFBFBD>̬<EFBFBD><EFBFBD>ѧϰ<EFBFBD>ʡ<EFBFBD><EFBFBD><EFBFBD>ѵ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>У<EFBFBD><EFBFBD>Ż<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʹ<EFBFBD>ò<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>mindspore.cn/docs/zh-CN/masterateSchedule <https://www.mindspore.cn/docs/zh-CN/r2.3/api_python/mindspore.nn.html#learningrateschedule%E7%B1%BB>`_ ʵ<><CAB5><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>㵱ǰѧϰ<D1A7>ʡ<EFBFBD>
|
||||
- **float** - 固定的学习率。必须大于等于零。
|
||||
- **int** - 固定的学习率。必须大于等于零。整数类型会被转换为浮点数。
|
||||
- **Tensor** - 可以是标量或一维向量。标量是固定的学习率。一维向量是动态的学习率,第i步将取向量中第i个值作为学习率。
|
||||
- **Iterable** - 动态的学习率。第i步将取迭代器第i个值作为学习率。
|
||||
- **LearningRateSchedule** - 动态的学习率。在训练过程中,优化器将使用步数(step)作为输入,调用 `LearningRateSchedule <https://www.mindspore.cn/docs/zh-CN/master/api_python/mindspore.nn.html#learningrateschedule%E7%B1%BB>`_ 实例来计算当前学习率。
|
|
@ -22,7 +22,7 @@ mindspore.ops.layer_norm
|
|||
- **bias** (Tensor, 可选) - 可学习的偏移值,shape为 `normalized_shape` ,默认值: ``None`` 。为 ``None`` 时,初始化为 ``0`` 。
|
||||
- **eps** (float, 可选) - 添加到分母中的值(:math:`\epsilon`),以确保数值稳定。默认值: ``1e-5`` 。
|
||||
|
||||
输出:
|
||||
返回:
|
||||
Tensor,归一化后的Tensor,shape和数据类型与 `input` 相同。
|
||||
|
||||
异常:
|
||||
|
|
|
@ -16,10 +16,10 @@ batch_mat_mul:
|
|||
|
||||
Inputs:
|
||||
- **x** (Tensor) - The first tensor to be multiplied. The shape of the tensor is :math:`(*B, N, C)`,
|
||||
where :math:`*B` represents the batch size which can be multidimensional, :math:`N` and :math:`C` are the
|
||||
size of the last two dimensions. If `transpose_a` is ``True`` , its shape must be :math:`(*B, C, N)`.
|
||||
where :math:`*B` represents the batch size which can be multidimensional, :math:`N` and :math:`C` are the
|
||||
size of the last two dimensions. If `transpose_a` is ``True`` , its shape must be :math:`(*B, C, N)`.
|
||||
- **y** (Tensor) - The second tensor to be multiplied. The shape of the tensor is :math:`(*B, C, M)`. If
|
||||
`transpose_b` is ``True`` , its shape must be :math:`(*B, M, C)`.
|
||||
`transpose_b` is ``True`` , its shape must be :math:`(*B, M, C)`.
|
||||
|
||||
Outputs:
|
||||
Tensor, the shape of the output tensor is :math:`(*B, N, M)`.
|
||||
|
|
|
@ -19,9 +19,9 @@ matmul:
|
|||
|
||||
Inputs:
|
||||
- **a** (Tensor) - The first tensor to be multiplied. The shape of the tensor is :math:`(N, C)`. If
|
||||
`transpose_a` is ``True`` , its shape must be :math:`(C, N)` after transpose.
|
||||
`transpose_a` is ``True`` , its shape must be :math:`(C, N)` after transpose.
|
||||
- **b** (Tensor) - The second tensor to be multiplied. The shape of the tensor is :math:`(C, M)`. If
|
||||
`transpose_b` is ``True`` , its shape must be :math:`(M, C)` after transpose.
|
||||
`transpose_b` is ``True`` , its shape must be :math:`(M, C)` after transpose.
|
||||
|
||||
Outputs:
|
||||
Tensor, the shape of the output tensor is :math:`(N, M)`.
|
||||
|
|
|
@ -9,7 +9,7 @@ ones:
|
|||
For argument `shape`, Tensor type input will be deprecated in the future version.
|
||||
|
||||
Args:
|
||||
shape (Union[tuple[int], List[int], int, Tensor]): The specified shape of output tensor. Only positive integer or
|
||||
shape (Union[tuple[int], list[int], int, Tensor]): The specified shape of output tensor. Only positive integer or
|
||||
tuple or Tensor containing positive integers are allowed. If it is a Tensor,
|
||||
it must be a 0-D or 1-D Tensor with int32 or int64 dtypes.
|
||||
dtype (:class:`mindspore.dtype`): The specified type of output tensor. If `dtype` is ``None`` ,
|
||||
|
|
|
@ -6,7 +6,7 @@ zeros:
|
|||
For argument `size`, Tensor type input will be deprecated in the future version.
|
||||
|
||||
Args:
|
||||
size (Union[tuple[int], List[int], int, Tensor]): The specified shape of output tensor. Only positive integer or
|
||||
size (Union[tuple[int], list[int], int, Tensor]): The specified shape of output tensor. Only positive integer or
|
||||
tuple or Tensor containing positive integers are allowed. If it is a Tensor,
|
||||
it must be a 0-D or 1-D Tensor with int32 or int64 dtypes.
|
||||
dtype (:class:`mindspore.dtype`, optional): The specified type of output tensor. If `dtype` is ``None`` ,
|
||||
|
|
|
@ -38,17 +38,18 @@ def recompute(block, *args, **kwargs):
|
|||
storing the intermediate activation computed in forward pass, we will recompute it in backward pass.
|
||||
|
||||
Note:
|
||||
- Recompute function only support block which inherited from Cell object.
|
||||
- This function interface now only support pynative mode. you can use Cell.recompute interface
|
||||
in graph mode.
|
||||
- When use recompute function, block object should not decorated by @jit.
|
||||
- Recompute function only support block which inherited from Cell object.
|
||||
- This function interface now only support pynative mode. you can use Cell.recompute interface
|
||||
in graph mode.
|
||||
- When use recompute function, block object should not decorated by @jit.
|
||||
|
||||
Args:
|
||||
block (Cell): Block to be recompute.
|
||||
args(tuple): Inputs for block object to run forward pass.
|
||||
kwargs(dict): Optional input for recompute function.
|
||||
|
||||
Returns: Same as return type of block.
|
||||
Returns:
|
||||
Same as return type of block.
|
||||
|
||||
Raises:
|
||||
TypeError: If `block` is not Cell object.
|
||||
|
|
|
@ -4445,7 +4445,7 @@ class Tensor(Tensor_, metaclass=_TensorMeta):
|
|||
For argument `size`, Tensor type input will be deprecated in the future version.
|
||||
|
||||
Args:
|
||||
size (Union[int, tuple, list]): An int, list or tuple of integers defining the output shape.
|
||||
size (Union[int, tuple, list, Tensor]): An int, list or tuple of integers defining the output shape.
|
||||
dtype (mindspore.dtype, optional): The desired dtype of the output tensor. If None, the returned tensor has
|
||||
thesame dtype as `self`. Default: ``None``.
|
||||
|
||||
|
@ -4478,7 +4478,7 @@ class Tensor(Tensor_, metaclass=_TensorMeta):
|
|||
For argument `size`, Tensor type input will be deprecated in the future version.
|
||||
|
||||
Args:
|
||||
size (Union[int, tuple, list]): An int, list or tuple of integers defining the output shape.
|
||||
size (Union[int, tuple, list, Tensor]): An int, list or tuple of integers defining the output shape.
|
||||
dtype (mindspore.dtype, optional): The desired dtype of the output tensor. If None, the returned
|
||||
tensor has the same dtype as `self`. Default: ``None``.
|
||||
|
||||
|
|
|
@ -49,7 +49,7 @@ class Embedding(Cell):
|
|||
of the index in `input`. Default ``False``.
|
||||
_weight (Tensor, optional): Used to initialize the weight of Embedding. If ``None``, the weight will be
|
||||
initialized from normal distribution :math:`{N}(\text{sigma=1.0}, \text{mean=0.0})`. Default ``None``.
|
||||
dtype (mindspore.dtype) : Dtype of Parameters. It is meaningless when `_weight` is not None.
|
||||
dtype (mindspore.dtype, optional) : Dtype of Parameters. It is meaningless when `_weight` is not None.
|
||||
Default: ``mindspore.float32``.
|
||||
|
||||
Inputs:
|
||||
|
@ -83,7 +83,6 @@ class Embedding(Cell):
|
|||
[ 0.00233847 -0.00596091 0.00536799]
|
||||
[-0.0024154 -0.01203444 0.00811537]
|
||||
[-0.0024154 -0.01203444 0.00811537]]
|
||||
|
||||
[[ 0.00233847 -0.00596091 0.00536799]
|
||||
[ 0.00233847 -0.00596091 0.00536799]
|
||||
[-0.0024154 -0.01203444 0.00811537]
|
||||
|
|
|
@ -3646,7 +3646,7 @@ def nanmedian(input, axis=-1, keepdims=False):
|
|||
|
||||
.. warning::
|
||||
`indices` does not necessarily contain the first occurrence of each median value found in the `input`,
|
||||
unless it is unique.
|
||||
unless it is unique.
|
||||
|
||||
Args:
|
||||
input (Tensor): The input tensor to calculate the median and indices.
|
||||
|
|
Loading…
Reference in New Issue