add readme

This commit is contained in:
unknown 2020-05-29 12:00:10 +08:00
parent eef3c58b5e
commit e66b23b357
1 changed files with 31 additions and 26 deletions

View File

@ -1,39 +1,42 @@
Deeplab-V3 Example
# Deeplab-V3 Example
Description
## Description
This is an example of training DeepLabv3 with PASCAL VOC 2012 dataset in MindSpore.
Paper Rethinking Atrous Convolution for Semantic Image Segmentation
Liang-Chieh Chen, George Papandreou, Florian Schroff, Hartwig Adam
Requirements
Install MindSpore.
Download the VOC 2012 dataset for training.
For more information, please check the resources below
MindSpore tutorials
MindSpore API
## Requirements
- Install [MindSpore](https://www.mindspore.cn/install/en).
- Download the VOC 2012 dataset for training.
Notes: If you are running a fine-tuning or evaluation task, prepare the corresponding checkpoint file.
> Notes:
If you are running a fine-tuning or evaluation task, prepare the corresponding checkpoint file.
Running the Example
Training
Set options in config.py.
Run run_standalone_train.sh for non-distributed training.
sh scripts/run_standalone_train.sh DEVICE_ID EPOCH_SIZE DATA_DIR
Run run_distribute_train.sh for distributed training.
sh scripts/run_distribute_train.sh DEVICE_NUM EPOCH_SIZE DATA_DIR MINDSPORE_HCCL_CONFIG_PATH
Evaluation
## Running the Example
### Training
- Set options in config.py.
- Run `run_standalone_train.sh` for non-distributed training.
``` bash
sh scripts/run_standalone_train.sh DEVICE_ID EPOCH_SIZE DATA_DIR
```
- Run `run_distribute_train.sh` for distributed training.
``` bash
sh scripts/run_distribute_train.sh DEVICE_NUM EPOCH_SIZE DATA_DIR MINDSPORE_HCCL_CONFIG_PATH
```
### Evaluation
Set options in evaluation_config.py. Make sure the 'data_file' and 'finetune_ckpt' are set to your own path.
Run run_eval.sh for evaluation.
sh scripts/run_eval.sh DEVICE_ID DATA_DIR
- Run run_eval.sh for evaluation.
``` bash
sh scripts/run_eval.sh DEVICE_ID DATA_DIR
```
Options and Parameters
## Options and Parameters
It contains of parameters of Deeplab-V3 model and options for training, which is set in file config.py.
Options:
### Options:
```
config.py:
learning_rate Learning rate, default is 0.0014.
weight_decay Weight decay, default is 5e-5.
@ -49,10 +52,11 @@ config.py:
decoder_output_stride The ratio of input to output spatial resolution when employing decoder
to refine segmentation results, default is None.
image_pyramid Input scales for multi-scale feature extraction, default is None.
```
Parameters:
### Parameters:
```
Parameters for dataset and network:
distribute Run distribute, default is false.
epoch_size Epoch size, default is 6.
@ -61,4 +65,5 @@ Parameters for dataset and network:
checkpoint_url Checkpoint path, default is None.
enable_save_ckpt Enable save checkpoint, default is true.
save_checkpoint_steps Save checkpoint steps, default is 1000.
save_checkpoint_num Save checkpoint numbers, default is 1.
save_checkpoint_num Save checkpoint numbers, default is 1.
```