!13845 Update API documentation of MatrixDiag, ScatterND and NMSWithMask
From: @yuyiyang_3418 Reviewed-by: @liangchenghui,@wuxuejian Signed-off-by: @liangchenghui
This commit is contained in:
commit
e4be751742
|
@ -935,7 +935,7 @@ class MatrixDiag(Cell):
|
|||
``Ascend``
|
||||
|
||||
Examples:
|
||||
>>> x = Tensor(np.array([1, -1]), mstype.float32)
|
||||
>>> x = Tensor(np.array([1, -1]), mindspore.float32)
|
||||
>>> matrix_diag = nn.MatrixDiag()
|
||||
>>> output = matrix_diag(x)
|
||||
>>> print(output)
|
||||
|
|
|
@ -3558,15 +3558,25 @@ class ScatterNdUpdate(_ScatterNdOp):
|
|||
``Ascend`` ``CPU``
|
||||
|
||||
Examples:
|
||||
>>> np_x = np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]])
|
||||
>>> input_x = mindspore.Parameter(Tensor(np_x, mindspore.float32), name="x")
|
||||
>>> indices = Tensor(np.array([[0, 0], [1, 1]]), mindspore.int32)
|
||||
>>> updates = Tensor(np.array([1.0, 2.2]), mindspore.float32)
|
||||
>>> op = ops.ScatterNdUpdate()
|
||||
>>> output = op(input_x, indices, updates)
|
||||
>>> # Example 1: Scatter [9, 0, 7, 3] by indices [3, 4, 1, 8] in a 1-D tensor
|
||||
>>> op = ops.ScatterNd()
|
||||
>>> indices = Tensor(np.array([3, 4, 1, 8]), mindspore.int32)
|
||||
>>> updates = Tensor(np.array([8, 9, 7, 3]), mindspore.int32)
|
||||
>>> shape = (10, )
|
||||
>>> output = op(indices, updates, shape)
|
||||
>>> print(output)
|
||||
[[ 1. 0.3 3.6]
|
||||
[ 0.4 2.2 -3.2]]
|
||||
[0 7 0 8 9 0 0 0 3 0]
|
||||
|
||||
>>> # Example 2: Scatter [3.2, 1.1] by indices [[0, 1], [1, 1]] in a 2-D tensor
|
||||
>>> op = ops.ScatterNd()
|
||||
>>> indices = Tensor(np.array([[0, 1], [1, 1]]), mindspore.int32)
|
||||
>>> updates = Tensor(np.array([3.2, 1.1]), mindspore.float32)
|
||||
>>> shape = (3, 3)
|
||||
>>> output = op(indices, updates, shape)
|
||||
>>> print(output)
|
||||
[[0. 3.2 0. ]
|
||||
[0. 1.1 0. ]
|
||||
[0. 0. 0. ]]
|
||||
"""
|
||||
|
||||
@prim_attr_register
|
||||
|
|
|
@ -3791,15 +3791,16 @@ class NMSWithMask(PrimitiveWithInfer):
|
|||
``Ascend`` ``GPU``
|
||||
|
||||
Examples:
|
||||
>>> bbox = np.array([[0.4, 0.2, 0.4, 0.3, 0.1], [0.4, 0.3, 0.6, 0.8, 0.7]])
|
||||
>>> bbox = np.array([[100.0, 100.0, 50.0, 68.0, 0.63], [150.0, 75.0, 165.0, 115.0, 0.55],
|
||||
[12.0, 190.0, 288.0, 200.0, 0.9], [28.0, 130.0, 106.0, 172.0, 0.3]])
|
||||
>>> bbox[:, 2] += bbox[:, 0]
|
||||
>>> bbox[:, 3] += bbox[:, 1]
|
||||
>>> inputs = Tensor(bbox, mindspore.float32)
|
||||
>>> nms = ops.NMSWithMask(0.5)
|
||||
>>> nms = ops.NMSWithMask(0.1)
|
||||
>>> output_boxes, indices, mask = nms(inputs)
|
||||
>>> indices_np = indices.asnumpy()
|
||||
>>> print(indices_np[mask.asnumpy()])
|
||||
[0 1]
|
||||
[0 1 2]
|
||||
"""
|
||||
|
||||
@prim_attr_register
|
||||
|
|
Loading…
Reference in New Issue