!11912 update submoudle akg, close graph kernel ascend ci testcases

From: @looop5
Reviewed-by: 
Signed-off-by:
This commit is contained in:
mindspore-ci-bot 2021-02-01 21:43:47 +08:00 committed by Gitee
commit df265b6d6b
18 changed files with 32 additions and 105 deletions

2
akg

@ -1 +1 @@
Subproject commit c63b2e6f7e7704f18b217e42c8c5c0b95e04b9fb
Subproject commit 60841fc11dcdc4ae31e669f3d9cd9f2fd7af59cd

View File

@ -1,4 +1,4 @@
# Copyright 2020 Huawei Technologies Co., Ltd
# Copyright 2020-2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
@ -103,8 +103,22 @@ def _auto_enable_graph_kernel(device_target, graph_kernel_mode):
cfg.optimizer == 'AdamWeightDecay'
def run_pretrain():
"""pre-train bert_clue"""
def _set_graph_kernel_context(device_target, enable_graph_kernel, is_auto_enable_graph_kernel):
if enable_graph_kernel == "true" or is_auto_enable_graph_kernel:
if device_target == 'GPU':
context.set_context(enable_graph_kernel=True)
else:
logger.warning('Graph kernel only supports GPU back-end now, run with graph kernel off.')
def _check_compute_type(device_target, is_auto_enable_graph_kernel):
if device_target == 'GPU' and bert_net_cfg.compute_type != mstype.float32 and not is_auto_enable_graph_kernel:
logger.warning('Gpu only support fp32 temporarily, run with fp32.')
bert_net_cfg.compute_type = mstype.float32
def argparse_init():
"""Argparse init."""
parser = argparse.ArgumentParser(description='bert pre_training')
parser.add_argument('--device_target', type=str, default='Ascend', choices=['Ascend', 'GPU'],
help='device where the code will be implemented. (Default: Ascend)')
@ -137,7 +151,12 @@ def run_pretrain():
parser.add_argument("--schema_dir", type=str, default="", help="Schema path, it is better to use absolute path")
parser.add_argument("--enable_graph_kernel", type=str, default="auto", choices=["auto", "true", "false"],
help="Accelerate by graph kernel, default is auto.")
return parser
def run_pretrain():
"""pre-train bert_clue"""
parser = argparse_init()
args_opt = parser.parse_args()
context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.device_target, device_id=args_opt.device_id)
context.set_context(reserve_class_name_in_scope=False)
@ -163,15 +182,8 @@ def run_pretrain():
device_num = 1
is_auto_enable_graph_kernel = _auto_enable_graph_kernel(args_opt.device_target, args_opt.enable_graph_kernel)
if args_opt.enable_graph_kernel == "true" or is_auto_enable_graph_kernel:
context.set_context(enable_graph_kernel=True)
if args_opt.device_target == 'GPU' and bert_net_cfg.compute_type != mstype.float32 and \
not is_auto_enable_graph_kernel:
logger.warning('Gpu only support fp32 temporarily, run with fp32.')
bert_net_cfg.compute_type = mstype.float32
_set_graph_kernel_context(args_opt.device_target, args_opt.enable_graph_kernel, is_auto_enable_graph_kernel)
_check_compute_type(args_opt.device_target, is_auto_enable_graph_kernel)
if args_opt.accumulation_steps > 1:
logger.info("accumulation steps: {}".format(args_opt.accumulation_steps))

View File

@ -174,8 +174,8 @@ class TimeMonitor(Callback):
self.per_step_mseconds_list.append(epoch_mseconds / self.data_size)
def test_bert_percision(enable_graph_kernel=False):
"""test bert percision"""
def test_bert_precision(enable_graph_kernel=False):
"""test bert precision"""
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", reserve_class_name_in_scope=False)
if enable_graph_kernel:
context.set_context(enable_graph_kernel=True)
@ -249,18 +249,13 @@ def test_bert_percision(enable_graph_kernel=False):
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_bert_percision_graph_kernel_off():
test_bert_percision(enable_graph_kernel=False)
def test_bert_precision_graph_kernel_off():
test_bert_precision(enable_graph_kernel=False)
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_bert_percision_graph_kernel_on():
test_bert_percision(enable_graph_kernel=True)
def test_bert_precision_graph_kernel_on():
test_bert_precision(enable_graph_kernel=True)
if __name__ == '__main__':
test_bert_percision(enable_graph_kernel=False)
test_bert_percision(enable_graph_kernel=True)
test_bert_precision(enable_graph_kernel=False)

View File

@ -13,7 +13,6 @@
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
@ -60,10 +59,6 @@ def test_clip_by_norm_no_div_sum(shape0, shape1, shape2, shape3, dtype):
assert np.allclose(expect_np, output_np, 0.0001, 0.0001)
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_clip_by_norm_no_div_sum_ascend():
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
test_clip_by_norm_no_div_sum((1, 1), (1,), (1, 1), (1,), np.float32)

View File

@ -54,10 +54,6 @@ def test_basic_gpu():
test_basic()
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_basic_ascend():
context.set_context(mode=context.GRAPH_MODE, enable_graph_kernel=True, device_target="Ascend")
test_basic()

View File

@ -70,10 +70,6 @@ def test_basic_gpu():
test_basic()
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_basic_ascend():
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
test_basic()

View File

@ -135,10 +135,6 @@ def test_adam_gpu():
test_adam()
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_adam_ascend():
context.set_context(mode=context.GRAPH_MODE, enable_graph_kernel=True, device_target="Ascend")
test_adam()
@ -152,10 +148,6 @@ def test_adam_weight_decay_gpu():
test_adam_weight_decay()
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_adam_weight_decay_ascend():
context.set_context(mode=context.GRAPH_MODE, enable_graph_kernel=True, device_target="Ascend")
test_adam_weight_decay()

View File

@ -85,10 +85,6 @@ def test_gelu_gpu():
test_gelu()
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_gelu_ascend():
context.set_context(mode=context.GRAPH_MODE, enable_graph_kernel=True, device_target="Ascend")
test_gelu()
@ -102,10 +98,6 @@ def test_gelu_grad_gpu():
test_gelu_grad()
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_gelu_grad_ascend():
context.set_context(mode=context.GRAPH_MODE, enable_graph_kernel=True, device_target="Ascend")
test_gelu_grad()

View File

@ -13,7 +13,6 @@
# limitations under the License.
# ============================================================================
import pytest
import numpy as np
import mindspore.context as context
from mindspore import Tensor, Parameter
@ -135,10 +134,6 @@ def test_graph_kernel_lamb_gpu():
test_graph_kernel_lamb()
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_graph_kernel_lamb_ascend():
context.set_context(mode=context.GRAPH_MODE, enable_graph_kernel=True, device_target="Ascend")
test_graph_kernel_lamb()

View File

@ -144,10 +144,6 @@ def test_basic_gpu():
test_basic()
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_basic_ascend():
context.set_context(mode=context.GRAPH_MODE, enable_graph_kernel=True, device_target="Ascend")
test_basic()
@ -161,10 +157,6 @@ def test_layernormgrad_gpu():
test_layernormgrad()
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_layernormgrad_ascend():
context.set_context(mode=context.GRAPH_MODE, enable_graph_kernel=True, device_target="Ascend")
test_layernormgrad()

View File

@ -107,19 +107,11 @@ def test_logsoftmaxgrad_gpu():
test_logsoftmaxgrad()
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_logsoftmax_asend():
context.set_context(mode=context.GRAPH_MODE, enable_graph_kernel=True, device_target="Ascend")
test_logsoftmax()
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_logsoftmaxgrad_asend():
context.set_context(mode=context.GRAPH_MODE, enable_graph_kernel=True, device_target="Ascend")
test_logsoftmaxgrad()

View File

@ -51,10 +51,6 @@ def test_maximum_grad_gpu():
test_maximum_grad()
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_maximum_grad_ascend():
context.set_context(mode=context.GRAPH_MODE, enable_graph_kernel=True, device_target="Ascend")
test_maximum_grad()

View File

@ -51,10 +51,6 @@ def test_basic_gpu():
test_minimum_grad()
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_basic_ascend():
context.set_context(mode=context.GRAPH_MODE, enable_graph_kernel=True, device_target="Ascend")
test_minimum_grad()

View File

@ -48,10 +48,6 @@ def test_reduce_mean_gpu():
test_reduce_mean()
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_reduce_mean_ascend():
context.set_context(mode=context.GRAPH_MODE, enable_graph_kernel=True, device_target="Ascend")
test_reduce_mean()

View File

@ -76,10 +76,6 @@ def test_basic_gpu():
test_basic()
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_basic_ascend():
context.set_context(mode=context.GRAPH_MODE, enable_graph_kernel=True, device_target="Ascend")
test_basic()

View File

@ -13,7 +13,6 @@
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
@ -56,10 +55,6 @@ def test_sqrt_grad(shape_x, shape_dout, dtype):
assert np.allclose(expect_np, output_np, rtol, atol)
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_sqrt_grad_ascend():
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
test_sqrt_grad((16, 16), (16, 16), np.float16)

View File

@ -49,10 +49,6 @@ def test_tanh_grad_gpu():
test_tanh_grad()
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_tanh_grad_ascend():
context.set_context(mode=context.GRAPH_MODE, enable_graph_kernel=True, device_target="Ascend")
test_tanh_grad()

View File

@ -13,7 +13,6 @@
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
@ -49,10 +48,6 @@ def test_tile(shape, dtype, multiples):
assert np.allclose(expect_np, output_np, 0.0001, 0.0001)
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_tile_ascend():
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
test_tile((24, 1), np.float16, (2, 2, 2))