!8718 Add labels to python files

From: @JunYuLiu
Reviewed-by: 
Signed-off-by:
This commit is contained in:
mindspore-ci-bot 2020-11-20 19:28:12 +08:00 committed by Gitee
commit d4ebd7bf4a
10 changed files with 801 additions and 0 deletions

View File

@ -143,6 +143,9 @@ class ExpandDims(PrimitiveWithInfer):
Tensor, the shape of tensor is :math:`(1, x_1, x_2, ..., x_R)` if the
value of `axis` is 0.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> input_tensor = Tensor(np.array([[2, 2], [2, 2]]), mindspore.float32)
>>> expand_dims = P.ExpandDims()
@ -192,6 +195,9 @@ class DType(PrimitiveWithInfer):
Outputs:
mindspore.dtype, the data type of a tensor.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> input_tensor = Tensor(np.array([[2, 2], [2, 2]]), mindspore.float32)
>>> output = P.DType()(input_tensor)
@ -227,6 +233,9 @@ class SameTypeShape(PrimitiveWithInfer):
Tensor, the shape of tensor is :math:`(x_1, x_2, ..., x_R)`,
if data type and shape of `input_x` and `input_y` are the same.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> input_x = Tensor(np.array([[2, 2], [2, 2]]), mindspore.float32)
>>> input_y = Tensor(np.array([[2, 2], [2, 2]]), mindspore.float32)
@ -268,6 +277,9 @@ class Cast(PrimitiveWithInfer):
Outputs:
Tensor, the shape of tensor is the same as `input_x`, :math:`(x_1, x_2, ..., x_R)`.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> input_np = np.random.randn(2, 3, 4, 5).astype(np.float32)
>>> input_x = Tensor(input_np)
@ -341,6 +353,9 @@ class IsSubClass(PrimitiveWithInfer):
Outputs:
bool, the check result.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> output = P.IsSubClass()(mindspore.int32, mindspore.intc)
>>> print(output)
@ -377,6 +392,9 @@ class IsInstance(PrimitiveWithInfer):
Outputs:
bool, the check result.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> a = 1
>>> output = P.IsInstance()(a, mindspore.int32)
@ -424,6 +442,9 @@ class Reshape(PrimitiveWithInfer):
Outputs:
Tensor, the shape of tensor is :math:`(y_1, y_2, ..., y_S)`.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> input_tensor = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]), mindspore.float32)
>>> reshape = P.Reshape()
@ -513,6 +534,9 @@ class Shape(PrimitiveWithInfer):
tuple[int], the output tuple is constructed by multiple integers,
:math:`(x_1, x_2, ..., x_R)`.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> input_tensor = Tensor(np.ones(shape=[3, 2, 1]), mindspore.float32)
>>> shape = P.Shape()
@ -543,6 +567,9 @@ class DynamicShape(Primitive):
Outputs:
Tensor[int], 1-dim Tensor of type int32
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> input_tensor = Tensor(np.ones(shape=[3, 2, 1]), mindspore.float32)
>>> shape = P.DynamicShape()
@ -578,6 +605,9 @@ class Squeeze(PrimitiveWithInfer):
Outputs:
Tensor, the shape of tensor is :math:`(x_1, x_2, ..., x_S)`.
Supported Platforms:
``Ascend`` ``GPU``
Examples:
>>> input_tensor = Tensor(np.ones(shape=[3, 2, 1]), mindspore.float32)
>>> squeeze = P.Squeeze(2)
@ -633,6 +663,9 @@ class Transpose(PrimitiveWithCheck):
Tensor, the type of output tensor is the same as `input_x` and the shape of output tensor is decided by the
shape of `input_x` and the value of `input_perm`.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> input_tensor = Tensor(np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]]), mindspore.float32)
>>> perm = (0, 2, 1)
@ -673,6 +706,9 @@ class Unique(Primitive):
Tuple, containing Tensor objects `(y, idx)`, `y` is a tensor has the same type as `x`, `idx` is a tensor
containing indices of elements in the input coressponding to the output tensor.
Supported Platforms:
``Ascend`` ``CPU``
Examples:
>>> x = Tensor(np.array([1, 2, 5, 2]), mindspore.int32)
>>> output = P.Unique()(x)
@ -700,6 +736,9 @@ class GatherV2(PrimitiveWithCheck):
Outputs:
Tensor, the shape of tensor is :math:`(z_1, z_2, ..., z_N)`.
Supported Platforms:
``Ascend`` ``GPU``
Examples:
>>> input_params = Tensor(np.array([[1, 2, 7, 42], [3, 4, 54, 22], [2, 2, 55, 3]]), mindspore.float32)
>>> input_indices = Tensor(np.array([1, 2]), mindspore.int32)
@ -775,6 +814,9 @@ class Padding(PrimitiveWithInfer):
Outputs:
Tensor, the shape of tensor is :math:`(z_1, z_2, ..., z_N)`.
Supported Platforms:
``Ascend``
Examples:
>>> x = Tensor(np.array([[8], [10]]), mindspore.float32)
>>> pad_dim_size = 4
@ -817,6 +859,9 @@ class UniqueWithPad(PrimitiveWithInfer):
- y (Tensor) - The unique elements filled with pad_num, the shape and type same as x.
- idx (Tensor) - The index of each value of x in the unique output y, the shape and type same as x.
Supported Platforms:
``Ascend`` ``CPU``
Examples:
>>> x = Tensor(np.array([1, 1, 5, 5, 4, 4, 3, 3, 2, 2,]), mindspore.int32)
>>> pad_num = 8
@ -862,6 +907,9 @@ class Split(PrimitiveWithInfer):
tuple[Tensor], the shape of each output tensor is the same, which is
:math:`(y_1, y_2, ..., y_S)`.
Supported Platforms:
``Ascend`` ``GPU``
Examples:
>>> split = P.Split(1, 2)
>>> x = Tensor(np.array([[1, 1, 1, 1], [2, 2, 2, 2]]), mindspore.int32)
@ -920,6 +968,9 @@ class Rank(PrimitiveWithInfer):
Outputs:
Tensor. 0-D int32 Tensor representing the rank of input, i.e., :math:`R`.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> input_tensor = Tensor(np.array([[2, 2], [2, 2]]), mindspore.float32)
>>> rank = P.Rank()
@ -992,6 +1043,9 @@ class Size(PrimitiveWithInfer):
int, a scalar representing the elements size of `input_x`, tensor is the number of elements
in a tensor, :math:`size=x_1*x_2*...x_R`.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> input_tensor = Tensor(np.array([[2, 2], [2, 2]]), mindspore.float32)
>>> size = P.Size()
@ -1032,6 +1086,9 @@ class Fill(PrimitiveWithInfer):
Outputs:
Tensor, has the same type and shape as input value.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> fill = P.Fill()
>>> output = fill(mindspore.float32, (2, 2), 1)
@ -1162,6 +1219,9 @@ class OnesLike(PrimitiveWithInfer):
Outputs:
Tensor, has the same shape and type as `input_x` but filled with ones.
Supported Platforms:
``Ascend`` ``GPU``
Examples:
>>> oneslike = P.OnesLike()
>>> x = Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32))
@ -1195,6 +1255,9 @@ class ZerosLike(PrimitiveWithCheck):
Outputs:
Tensor, has the same shape and data type as `input_x` but filled with zeros.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> zeroslike = P.ZerosLike()
>>> x = Tensor(np.array([[0, 1], [2, 1]]).astype(np.float32))
@ -1226,6 +1289,9 @@ class TupleToArray(PrimitiveWithInfer):
Outputs:
Tensor, if the input tuple contains `N` numbers, then the shape of the output tensor is (N,).
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> type = P.TupleToArray()((1,2,3))
>>> print(type)
@ -1269,6 +1335,9 @@ class ScalarToArray(PrimitiveWithInfer):
Outputs:
Tensor. 0-D Tensor and the content is the input.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> op = P.ScalarToArray()
>>> data = 1.0
@ -1302,6 +1371,9 @@ class ScalarToTensor(PrimitiveWithInfer):
Outputs:
Tensor. 0-D Tensor and the content is the input.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> op = P.ScalarToTensor()
>>> data = 1
@ -1345,6 +1417,9 @@ class InvertPermutation(PrimitiveWithInfer):
Outputs:
tuple[int]. It has the same length as the input.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> invert = P.InvertPermutation()
>>> input_data = (3, 4, 0, 2, 1)
@ -1410,6 +1485,9 @@ class Argmax(PrimitiveWithInfer):
Outputs:
Tensor, indices of the max value of input tensor across the axis.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> input_x = Tensor(np.array([2.0, 3.1, 1.2]), mindspore.float32)
>>> output = P.Argmax(output_type=mindspore.int32)(input_x)
@ -1459,6 +1537,9 @@ class Argmin(PrimitiveWithInfer):
Outputs:
Tensor, indices of the min value of input tensor across the axis.
Supported Platforms:
``Ascend``
Examples:
>>> input_x = Tensor(np.array([2.0, 3.1, 1.2]), mindspore.float32)
>>> index = P.Argmin()(input_x)
@ -1517,6 +1598,9 @@ class ArgMaxWithValue(PrimitiveWithInfer):
:math:`(x_1, x_2, ..., x_{axis-1}, x_{axis+1}, ..., x_N)`.
- output_x (Tensor) - The maximum value of input tensor, with the same shape as index.
Supported Platforms:
``Ascend`` ``GPU``
Examples:
>>> input_x = Tensor(np.random.rand(5), mindspore.float32)
>>> index, output = P.ArgMaxWithValue()(input_x)
@ -1569,6 +1653,9 @@ class ArgMinWithValue(PrimitiveWithInfer):
:math:`(x_1, x_2, ..., x_{axis-1}, x_{axis+1}, ..., x_N)`.
- output_x (Tensor) - The minimum value of input tensor, with the same shape as index.
Supported Platforms:
``Ascend``
Examples:
>>> input_x = Tensor(np.random.rand(5), mindspore.float32)
>>> output = P.ArgMinWithValue()(input_x)
@ -1624,6 +1711,9 @@ class Tile(PrimitiveWithInfer):
then the shape of their corresponding positions can be multiplied, and
the shape of Outputs is :math:`(1*y_1, ..., x_S*y_R)`.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> tile = P.Tile()
>>> input_x = Tensor(np.array([[1, 2], [3, 4]]), mindspore.float32)
@ -1699,6 +1789,9 @@ class UnsortedSegmentSum(PrimitiveWithInfer):
Outputs:
Tensor, the shape is :math:`(z, x_{N+1}, ..., x_R)`.
Supported Platforms:
``Ascend`` ``GPU``
Examples:
>>> input_x = Tensor([1, 2, 3, 4], mindspore.float32)
>>> segment_ids = Tensor([0, 0, 1, 2], mindspore.int32)
@ -1774,6 +1867,9 @@ class UnsortedSegmentMin(PrimitiveWithInfer):
Outputs:
Tensor, set the number of `num_segments` as `N`, the shape is :math:`(N, x_2, ..., x_R)`.
Supported Platforms:
``Ascend``
Examples:
>>> input_x = Tensor(np.array([[1, 2, 3], [4, 5, 6], [4, 2, 1]]).astype(np.float32))
>>> segment_ids = Tensor(np.array([0, 1, 1]).astype(np.int32))
@ -1830,6 +1926,9 @@ class UnsortedSegmentMax(PrimitiveWithInfer):
Outputs:
Tensor, set the number of `num_segments` as `N`, the shape is :math:`(N, x_2, ..., x_R)`.
Supported Platforms:
``Ascend`` ``GPU``
Examples:
>>> input_x = Tensor(np.array([[1, 2, 3], [4, 5, 6], [4, 2, 1]]).astype(np.float32))
>>> segment_ids = Tensor(np.array([0, 1, 1]).astype(np.int32))
@ -1883,6 +1982,9 @@ class UnsortedSegmentProd(PrimitiveWithInfer):
Outputs:
Tensor, set the number of `num_segments` as `N`, the shape is :math:`(N, x_2, ..., x_R)`.
Supported Platforms:
``Ascend``
Examples:
>>> input_x = Tensor(np.array([[1, 2, 3], [4, 5, 6], [4, 2, 1]]).astype(np.float32))
>>> segment_ids = Tensor(np.array([0, 1, 0]).astype(np.int32))
@ -1947,6 +2049,9 @@ class Concat(PrimitiveWithInfer):
Outputs:
Tensor, the shape is :math:`(x_1, x_2, ..., \sum_{i=1}^Nx_{mi}, ..., x_R)`.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> data1 = Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32))
>>> data2 = Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32))
@ -1995,6 +2100,9 @@ class ParallelConcat(PrimitiveWithInfer):
Outputs:
Tensor, data type is the same as `values`.
Supported Platforms:
``Ascend``
Examples:
>>> data1 = Tensor(np.array([[0, 1]]).astype(np.int32))
>>> data2 = Tensor(np.array([[2, 1]]).astype(np.int32))
@ -2079,6 +2187,9 @@ class Pack(PrimitiveWithInfer):
or if axis is out of the range [-(R+1), R+1);
or if the shapes of elements in input_x are not the same.
Supported Platforms:
``Ascend``
Examples:
>>> data1 = Tensor(np.array([0, 1]).astype(np.float32))
>>> data2 = Tensor(np.array([2, 3]).astype(np.float32))
@ -2131,6 +2242,9 @@ class Unpack(PrimitiveWithInfer):
Raises:
ValueError: If axis is out of the range [-len(input_x.shape), len(input_x.shape)).
Supported Platforms:
``Ascend``
Examples:
>>> unpack = P.Unpack()
>>> input_x = Tensor(np.array([[1, 1, 1, 1], [2, 2, 2, 2]]))
@ -2186,6 +2300,9 @@ class Slice(PrimitiveWithInfer):
Outputs:
Tensor, the shape is : input `size`, the data type is the same as input `x`.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> data = Tensor(np.array([[[1, 1, 1], [2, 2, 2]],
... [[3, 3, 3], [4, 4, 4]],
@ -2240,6 +2357,9 @@ class ReverseV2(PrimitiveWithInfer):
Outputs:
Tensor, has the same shape and type as `input_x`.
Supported Platforms:
``Ascend``
Examples:
>>> input_x = Tensor(np.array([[1, 2, 3, 4], [5, 6, 7, 8]]), mindspore.int32)
>>> op = P.ReverseV2(axis=[1])
@ -2279,6 +2399,9 @@ class Rint(PrimitiveWithInfer):
Outputs:
Tensor, has the same shape and type as `input_x`.
Supported Platforms:
``Ascend``
Examples:
>>> input_x = Tensor(np.array([-1.6, -0.1, 1.5, 2.0]), mindspore.float32)
>>> op = P.Rint()
@ -2339,6 +2462,9 @@ class Select(PrimitiveWithInfer):
Outputs:
Tensor, has the same shape as `input_x`. The shape is :math:`(x_1, x_2, ..., x_N, ..., x_R)`.
Supported Platforms:
``Ascend`` ``GPU``
Examples:
>>> select = P.Select()
>>> input_cond = Tensor([True, False])
@ -2473,6 +2599,9 @@ class StridedSlice(PrimitiveWithInfer):
i.e., [3, 3, 3].
- Finally, the output is [3, 3, 3].
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples
>>> input_x = Tensor([[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]],
... [[5, 5, 5], [6, 6, 6]]], mindspore.float32)
@ -2722,6 +2851,9 @@ class Eye(PrimitiveWithInfer):
Outputs:
Tensor, a tensor with ones on the diagonal and the rest of elements are zero.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> eye = P.Eye()
>>> output = eye(2, 2, mindspore.int32)
@ -2758,6 +2890,9 @@ class ScatterNd(PrimitiveWithInfer):
Outputs:
Tensor, the new tensor, has the same type as `update` and the same shape as `shape`.
Supported Platforms:
``Ascend`` ``GPU``
Examples:
>>> op = P.ScatterNd()
>>> indices = Tensor(np.array([[0, 1], [1, 1]]), mindspore.int32)
@ -2811,6 +2946,9 @@ class ResizeNearestNeighbor(PrimitiveWithInfer):
Outputs:
Tensor, the shape of the output tensor is :math:`(N, C, NEW\_H, NEW\_W)`.
Supported Platforms:
``Ascend`` ``GPU``
Examples:
>>> input_tensor = Tensor(np.array([[[[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]]]), mindspore.float32)
>>> resize = P.ResizeNearestNeighbor((2, 2))
@ -2852,6 +2990,9 @@ class GatherNd(PrimitiveWithInfer):
Outputs:
Tensor, has the same type as `input_x` and the shape is indices_shape[:-1] + x_shape[indices_shape[-1]:].
Supported Platforms:
``Ascend`` ``GPU``
Examples:
>>> input_x = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]), mindspore.float32)
>>> indices = Tensor(np.array([[0, 0], [1, 1]]), mindspore.int32)
@ -2889,6 +3030,9 @@ class TensorScatterUpdate(PrimitiveWithInfer):
Outputs:
Tensor, has the same shape and type as `input_x`.
Supported Platforms:
``Ascend``
Examples:
>>> input_x = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]), mindspore.float32)
>>> indices = Tensor(np.array([[0, 0], [1, 1]]), mindspore.int32)
@ -2942,6 +3086,9 @@ class ScatterUpdate(_ScatterOp_Dynamic):
Outputs:
Tensor, has the same shape and type as `input_x`.
Supported Platforms:
``Ascend``
Examples:
>>> np_x = np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]])
>>> input_x = mindspore.Parameter(Tensor(np_x, mindspore.float32), name="x")
@ -2984,6 +3131,9 @@ class ScatterNdUpdate(_ScatterNdOp):
Outputs:
Tensor, has the same shape and type as `input_x`.
Supported Platforms:
``Ascend`` ``CPU``
Examples:
>>> np_x = np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]])
>>> input_x = mindspore.Parameter(Tensor(np_x, mindspore.float32), name="x")
@ -3033,6 +3183,9 @@ class ScatterMax(_ScatterOp):
Outputs:
Parameter, the updated `input_x`.
Supported Platforms:
``Ascend``
Examples:
>>> input_x = Parameter(Tensor(np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]), mindspore.float32), name="input_x")
>>> indices = Tensor(np.array([[0, 0], [1, 1]]), mindspore.int32)
@ -3075,6 +3228,9 @@ class ScatterMin(_ScatterOp):
Outputs:
Parameter, the updated `input_x`.
Supported Platforms:
``Ascend``
Examples:
>>> input_x = Parameter(Tensor(np.array([[0.0, 1.0, 2.0], [0.0, 0.0, 0.0]]), mindspore.float32), name="input_x")
>>> indices = Tensor(np.array([[0, 0], [1, 1]]), mindspore.int32)
@ -3111,6 +3267,9 @@ class ScatterAdd(_ScatterOp_Dynamic):
Outputs:
Parameter, the updated `input_x`.
Supported Platforms:
``Ascend`` ``GPU``
Examples:
>>> input_x = Parameter(Tensor(np.array([[0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]), mindspore.float32), name="x")
>>> indices = Tensor(np.array([[0, 1], [1, 1]]), mindspore.int32)
@ -3154,6 +3313,9 @@ class ScatterSub(_ScatterOp):
Outputs:
Parameter, the updated `input_x`.
Supported Platforms:
``Ascend``
Examples:
>>> input_x = Parameter(Tensor(np.array([[0.0, 0.0, 0.0], [1.0, 1.0, 1.0]]), mindspore.float32), name="x")
>>> indices = Tensor(np.array([[0, 1]]), mindspore.int32)
@ -3189,6 +3351,9 @@ class ScatterMul(_ScatterOp):
Outputs:
Parameter, the updated `input_x`.
Supported Platforms:
``Ascend``
Examples:
>>> input_x = Parameter(Tensor(np.array([[1.0, 1.0, 1.0], [2.0, 2.0, 2.0]]), mindspore.float32), name="x")
>>> indices = Tensor(np.array([0, 1]), mindspore.int32)
@ -3225,6 +3390,9 @@ class ScatterDiv(_ScatterOp):
Outputs:
Parameter, the updated `input_x`.
Supported Platforms:
``Ascend``
Examples:
>>> input_x = Parameter(Tensor(np.array([[6.0, 6.0, 6.0], [2.0, 2.0, 2.0]]), mindspore.float32), name="x")
>>> indices = Tensor(np.array([0, 1]), mindspore.int32)
@ -3261,6 +3429,9 @@ class ScatterNdAdd(_ScatterNdOp):
Outputs:
Parameter, the updated `input_x`.
Supported Platforms:
``Ascend``
Examples:
>>> input_x = Parameter(Tensor(np.array([1, 2, 3, 4, 5, 6, 7, 8]), mindspore.float32), name="x")
>>> indices = Tensor(np.array([[2], [4], [1], [7]]), mindspore.int32)
@ -3296,6 +3467,9 @@ class ScatterNdSub(_ScatterNdOp):
Outputs:
Parameter, the updated `input_x`.
Supported Platforms:
``Ascend``
Examples:
>>> input_x = Parameter(Tensor(np.array([1, 2, 3, 4, 5, 6, 7, 8]), mindspore.float32), name="x")
>>> indices = Tensor(np.array([[2], [4], [1], [7]]), mindspore.int32)
@ -3328,6 +3502,9 @@ class ScatterNonAliasingAdd(_ScatterNdOp):
Outputs:
Parameter, the updated `input_x`.
Supported Platforms:
``Ascend``
Examples:
>>> input_x = Parameter(Tensor(np.array([1, 2, 3, 4, 5, 6, 7, 8]), mindspore.float32), name="x")
>>> indices = Tensor(np.array([[2], [4], [1], [7]]), mindspore.int32)
@ -3372,6 +3549,9 @@ class SpaceToDepth(PrimitiveWithInfer):
Outputs:
Tensor, the same data type as `x`. It must be a 4-D tensor.
Supported Platforms:
``Ascend``
Examples:
>>> x = Tensor(np.random.rand(1,3,2,2), mindspore.float32)
>>> block_size = 2
@ -3430,6 +3610,9 @@ class DepthToSpace(PrimitiveWithInfer):
Outputs:
Tensor of shape :math:`(N, C_{in} / \text{block_size}, H_{in} * \text{block_size}, W_{in} * \text{block_size})`.
Supported Platforms:
``Ascend``
Examples:
>>> x = Tensor(np.random.rand(1,12,1,1), mindspore.float32)
>>> block_size = 2
@ -3496,6 +3679,9 @@ class SpaceToBatch(PrimitiveWithInfer):
:math:`w' = (w+paddings[1][0]+paddings[1][1])//block\_size`
Supported Platforms:
``Ascend``
Examples:
>>> block_size = 2
>>> paddings = [[0, 0], [0, 0]]
@ -3570,6 +3756,9 @@ class BatchToSpace(PrimitiveWithInfer):
:math:`w' = w*block\_size-crops[1][0]-crops[1][1]`
Supported Platforms:
``Ascend``
Examples:
>>> block_size = 2
>>> crops = [[0, 0], [0, 0]]
@ -3648,6 +3837,9 @@ class SpaceToBatchND(PrimitiveWithInfer):
:math:`w' = (w+paddings[1][0]+paddings[1][1])//block\_shape[1]`
Supported Platforms:
``Ascend``
Examples:
>>> block_shape = [2, 2]
>>> paddings = [[0, 0], [0, 0]]
@ -3744,6 +3936,9 @@ class BatchToSpaceND(PrimitiveWithInfer):
:math:`w' = w*block\_shape[1]-crops[1][0]-crops[1][1]`
Supported Platforms:
``Ascend``
Examples:
>>> block_shape = [2, 2]
>>> crops = [[0, 0], [0, 0]]
@ -3824,6 +4019,9 @@ class BroadcastTo(PrimitiveWithInfer):
Outputs:
Tensor, with the given `shape` and the same data type as `input_x`.
Supported Platforms:
``Ascend`` ``GPU``
Examples:
>>> shape = (2, 3)
>>> input_x = Tensor(np.array([1, 2, 3]).astype(np.float32))
@ -3973,6 +4171,9 @@ class InplaceUpdate(PrimitiveWithInfer):
Outputs:
Tensor, with the same type and shape as the input `x`.
Supported Platforms:
``Ascend``
Examples:
>>> indices = (0, 1)
>>> x = Tensor(np.array([[1, 2], [3, 4], [5, 6]]), mindspore.float32)
@ -4030,6 +4231,9 @@ class ReverseSequence(PrimitiveWithInfer):
Outputs:
Reversed tensor with the same shape and data type as input.
Supported Platforms:
``Ascend``
Examples:
>>> x = Tensor(np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]), mindspore.float32)
>>> seq_lengths = Tensor(np.array([1, 2, 3]))
@ -4203,6 +4407,9 @@ class Sort(PrimitiveWithInfer):
- **y1** (Tensor) - A tensor whose values are the sorted values, with the same shape and data type as input.
- **y2** (Tensor) - The indices of the elements in the original input tensor. Data type is int32.
Supported Platforms:
``Ascend``
Examples:
>>> x = Tensor(np.array([[8, 2, 1], [5, 9, 3], [4, 6, 7]]), mindspore.float16)
>>> sort = P.Sort()
@ -4250,6 +4457,9 @@ class EmbeddingLookup(PrimitiveWithInfer):
Outputs:
Tensor, the shape of tensor is :math:`(z_1, z_2, ..., z_N)`.
Supported Platforms:
``Ascend`` ``CPU``
Examples:
>>> input_params = Tensor(np.array([[8, 9], [10, 11], [12, 13], [14, 15]]), mindspore.float32)
>>> input_indices = Tensor(np.array([[5, 2], [8, 5]]), mindspore.int32)
@ -4354,6 +4564,9 @@ class Identity(PrimitiveWithInfer):
Outputs:
Tensor, the shape of tensor is the same as `input_x`, :math:`(x_1, x_2, ..., x_R)`.
Supported Platforms:
``Ascend``
Examples:
>>> x = Tensor(np.array([1, 2, 3, 4]), mindspore.int64)
>>> output = P.Identity()(x)

View File

@ -33,6 +33,9 @@ class ReduceOp:
- MAX: Take the maximum.
- MIN: Take the minimum.
- PROD: Take the product.
Supported Platforms:
``Ascend`` ``GPU``
"""
SUM = "sum"
MAX = "max"
@ -67,6 +70,9 @@ class AllReduce(PrimitiveWithInfer):
Tensor, has the same shape of the input, i.e., :math:`(x_1, x_2, ..., x_R)`.
The contents depend on the specified operation.
Supported Platforms:
``Ascend`` ``GPU``
Examples:
>>> from mindspore.communication import init
>>> from mindspore import Tensor
@ -243,6 +249,9 @@ class AllGather(PrimitiveWithInfer):
Tensor. If the number of devices in the group is N,
then the shape of output is :math:`(N, x_1, x_2, ..., x_R)`.
Supported Platforms:
``Ascend`` ``GPU``
Examples:
>>> import mindspore.ops.operations as P
>>> import mindspore.nn as nn
@ -356,6 +365,9 @@ class ReduceScatter(PrimitiveWithInfer):
TypeError: If any of operation and group is not a string.
ValueError: If the first dimension of the input cannot be divided by the rank size.
Supported Platforms:
``GPU``
Examples:
>>> from mindspore import Tensor
>>> from mindspore.communication import init
@ -474,6 +486,9 @@ class Broadcast(PrimitiveWithInfer):
Raises:
TypeError: If root_rank is not a integer or group is not a string.
Supported Platforms:
``Ascend``
Examples:
>>> from mindspore import Tensor
>>> from mindspore.communication import init

View File

@ -49,6 +49,9 @@ class ControlDepend(Primitive):
Outputs:
This operation has no actual data output, it will be used to setup the order of relative operations.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> class Net(nn.Cell):
... def __init__(self):

View File

@ -48,6 +48,9 @@ class ScalarSummary(PrimitiveWithInfer):
- **name** (str) - The name of the input variable, it must not be an empty string.
- **value** (Tensor) - The value of scalar, and the shape of value must be [] or [1].
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> class SummaryDemo(nn.Cell):
... def __init__(self,):
@ -87,6 +90,9 @@ class ImageSummary(PrimitiveWithInfer):
- **name** (str) - The name of the input variable, it must not be an empty string.
- **value** (Tensor) - The value of image, the rank of tensor must be 4.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> class Net(nn.Cell):
... def __init__(self):
@ -125,6 +131,9 @@ class TensorSummary(PrimitiveWithInfer):
- **name** (str) - The name of the input variable.
- **value** (Tensor) - The value of tensor, and the rank of tensor must be greater than 0.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> class SummaryDemo(nn.Cell):
... def __init__(self,):
@ -164,6 +173,9 @@ class HistogramSummary(PrimitiveWithInfer):
- **name** (str) - The name of the input variable.
- **value** (Tensor) - The value of tensor, and the rank of tensor must be greater than 0.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> class SummaryDemo(nn.Cell):
... def __init__(self,):
@ -208,6 +220,9 @@ class InsertGradientOf(PrimitiveWithInfer):
Outputs:
Tensor, returns `input_x` directly. `InsertGradientOf` does not affect the forward result.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> def clip_gradient(dx):
... ret = dx
@ -319,6 +334,9 @@ class Print(PrimitiveWithInfer):
- **input_x** (Union[Tensor, str]) - The graph node to attach to. The input supports
multiple strings and tensors which are separated by ','.
Supported Platforms:
``Ascend``
Examples:
>>> class PrintDemo(nn.Cell):
... def __init__(self):

View File

@ -53,6 +53,9 @@ class CropAndResize(PrimitiveWithInfer):
Outputs:
A 4-D tensor of shape [num_boxes, crop_height, crop_width, depth] with type: float32.
Supported Platforms:
``Ascend``
Examples:
>>> class CropAndResizeNet(nn.Cell):
... def __init__(self, crop_size):

View File

@ -32,6 +32,9 @@ class ScalarCast(PrimitiveWithInfer):
Outputs:
Scalar. The type is the same as the python type corresponding to `input_y`.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> scalar_cast = P.ScalarCast()
>>> output = scalar_cast(255.0, mindspore.int32)

View File

@ -135,6 +135,9 @@ class TensorAdd(_MathBinaryOp):
Tensor, the shape is the same as the one after broadcasting,
and the data type is the one with higher precision or higher digits among the two inputs.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> add = P.TensorAdd()
>>> input_x = Tensor(np.array([1,2,3]).astype(np.float32))
@ -170,6 +173,9 @@ class AssignAdd(PrimitiveWithInfer):
- **value** (Union[numbers.Number, Tensor]) - The value to be added to the `variable`.
It must have the same shape as `variable` if it is a Tensor.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> class Net(nn.Cell):
... def __init__(self):
@ -222,6 +228,9 @@ class AssignSub(PrimitiveWithInfer):
- **value** (Union[numbers.Number, Tensor]) - The value to be subtracted from the `variable`.
It must have the same shape as `variable` if it is a Tensor.
Supported Platforms:
``Ascend``
Examples:
>>> class Net(nn.Cell):
... def __init__(self):
@ -344,6 +353,9 @@ class ReduceMean(_Reduce):
- If axis is tuple(int), set as (2, 3), and keep_dims is False,
the shape of output is :math:`(x_1, x_4, ..., x_R)`.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> input_x = Tensor(np.random.randn(3, 4, 5, 6).astype(np.float32))
>>> op = P.ReduceMean(keep_dims=True)
@ -378,6 +390,9 @@ class ReduceSum(_Reduce):
- If axis is tuple(int), set as (2, 3), and keep_dims is False,
the shape of output is :math:`(x_1, x_4, ..., x_R)`.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> input_x = Tensor(np.random.randn(3, 4, 5, 6).astype(np.float32))
>>> op = P.ReduceSum(keep_dims=True)
@ -419,6 +434,9 @@ class ReduceAll(_Reduce):
- If axis is tuple(int), set as (2, 3), and keep_dims is False,
the shape of output is :math:`(x_1, x_4, ..., x_R)`.
Supported Platforms:
``Ascend``
Examples:
>>> input_x = Tensor(np.array([[True, False], [True, True]]))
>>> op = P.ReduceAll(keep_dims=True)
@ -458,6 +476,9 @@ class ReduceAny(_Reduce):
- If axis is tuple(int), set as (2, 3), and keep_dims is False,
the shape of output is :math:`(x_1, x_4, ..., x_R)`.
Supported Platforms:
``Ascend``
Examples:
>>> input_x = Tensor(np.array([[True, False], [True, True]]))
>>> op = P.ReduceAny(keep_dims=True)
@ -497,6 +518,9 @@ class ReduceMax(_Reduce):
- If axis is tuple(int), set as (2, 3), and keep_dims is False,
the shape of output is :math:`(x_1, x_4, ..., x_R)`.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> input_x = Tensor(np.random.randn(3, 4, 5, 6).astype(np.float32))
>>> op = P.ReduceMax(keep_dims=True)
@ -541,6 +565,9 @@ class ReduceMin(_Reduce):
- If axis is tuple(int), set as (2, 3), and keep_dims is False,
the shape of output is :math:`(x_1, x_4, ..., x_R)`.
Supported Platforms:
``Ascend`` ``GPU``
Examples:
>>> input_x = Tensor(np.random.randn(3, 4, 5, 6).astype(np.float32))
>>> op = P.ReduceMin(keep_dims=True)
@ -576,6 +603,9 @@ class ReduceProd(_Reduce):
- If axis is tuple(int), set as (2, 3), and keep_dims is False,
the shape of output is :math:`(x_1, x_4, ..., x_R)`.
Supported Platforms:
``Ascend``
Examples:
>>> input_x = Tensor(np.random.randn(3, 4, 5, 6).astype(np.float32))
>>> op = P.ReduceProd(keep_dims=True)
@ -601,6 +631,9 @@ class CumProd(PrimitiveWithInfer):
Outputs:
Tensor, has the same shape and dtype as the `input_x`.
Supported Platforms:
``Ascend``
Examples:
>>> a, b, c, = 1, 2, 3
>>> input_x = Tensor(np.array([a, b, c]).astype(np.float32))
@ -662,6 +695,9 @@ class MatMul(PrimitiveWithInfer):
Outputs:
Tensor, the shape of the output tensor is :math:`(N, M)`.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> input_x1 = Tensor(np.ones(shape=[1, 3]), mindspore.float32)
>>> input_x2 = Tensor(np.ones(shape=[3, 4]), mindspore.float32)
@ -741,6 +777,9 @@ class BatchMatMul(MatMul):
Outputs:
Tensor, the shape of the output tensor is :math:`(*B, N, M)`.
Supported Platforms:
``Ascend`` ``GPU``
Examples:
>>> input_x = Tensor(np.ones(shape=[2, 4, 1, 3]), mindspore.float32)
>>> input_y = Tensor(np.ones(shape=[2, 4, 3, 4]), mindspore.float32)
@ -800,6 +839,9 @@ class CumSum(PrimitiveWithInfer):
Outputs:
Tensor, the shape of the output tensor is consistent with the input tensor's.
Supported Platforms:
``Ascend`` ``GPU``
Examples:
>>> input = Tensor(np.array([[3, 4, 6, 10],[1, 6, 7, 9],[4, 3, 8, 7],[1, 3, 7, 9]]).astype(np.float32))
>>> cumsum = P.CumSum()
@ -845,6 +887,9 @@ class AddN(PrimitiveWithInfer):
Outputs:
Tensor, has the same shape and dtype as each entry of the `input_x`.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> class NetAddN(nn.Cell):
... def __init__(self):
@ -928,6 +973,9 @@ class AccumulateNV2(PrimitiveWithInfer):
Outputs:
Tensor, has the same shape and dtype as each entry of the `input_x`.
Supported Platforms:
``Ascend``
Examples:
>>> class NetAccumulateNV2(nn.Cell):
... def __init__(self):
@ -987,6 +1035,9 @@ class Neg(PrimitiveWithInfer):
Outputs:
Tensor, has the same shape and dtype as input.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> neg = P.Neg()
>>> input_x = Tensor(np.array([1, 2, -1, 2, 0, -3.5]), mindspore.float32)
@ -1032,6 +1083,9 @@ class InplaceAdd(PrimitiveWithInfer):
Outputs:
Tensor, has the same shape and dtype as input_x.
Supported Platforms:
``Ascend``
Examples:
>>> indices = (0, 1)
>>> input_x = Tensor(np.array([[1, 2], [3, 4], [5, 6]]), mindspore.float32)
@ -1091,6 +1145,9 @@ class InplaceSub(PrimitiveWithInfer):
Outputs:
Tensor, has the same shape and dtype as input_x.
Supported Platforms:
``Ascend``
Examples:
>>> indices = (0, 1)
>>> input_x = Tensor(np.array([[1, 2], [3, 4], [5, 6]]), mindspore.float32)
@ -1155,6 +1212,9 @@ class Sub(_MathBinaryOp):
Tensor, the shape is the same as the one after broadcasting,
and the data type is the one with higher precision or higher digits among the two inputs.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> input_x = Tensor(np.array([1, 2, 3]), mindspore.int32)
>>> input_y = Tensor(np.array([4, 5, 6]), mindspore.int32)
@ -1195,6 +1255,9 @@ class Mul(_MathBinaryOp):
Tensor, the shape is the same as the one after broadcasting,
and the data type is the one with higher precision or higher digits among the two inputs.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> input_x = Tensor(np.array([1.0, 2.0, 3.0]), mindspore.float32)
>>> input_y = Tensor(np.array([4.0, 5.0, 6.0]), mindspore.float32)
@ -1235,6 +1298,9 @@ class SquaredDifference(_MathBinaryOp):
Tensor, the shape is the same as the one after broadcasting,
and the data type is the one with higher precision or higher digits among the two inputs.
Supported Platforms:
``Ascend``
Examples:
>>> input_x = Tensor(np.array([1.0, 2.0, 3.0]), mindspore.float32)
>>> input_y = Tensor(np.array([2.0, 4.0, 6.0]), mindspore.float32)
@ -1259,6 +1325,9 @@ class Square(PrimitiveWithInfer):
Outputs:
Tensor, has the same shape and dtype as the `input_x`.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> input_x = Tensor(np.array([1.0, 2.0, 3.0]), mindspore.float32)
>>> square = P.Square()
@ -1298,6 +1367,9 @@ class Rsqrt(PrimitiveWithInfer):
Outputs:
Tensor, has the same type and shape as `input_x`.
Supported Platforms:
``Ascend`` ``GPU``
Examples:
>>> input_tensor = Tensor([[4, 4], [9, 9]], mindspore.float32)
>>> rsqrt = P.Rsqrt()
@ -1338,6 +1410,9 @@ class Sqrt(PrimitiveWithCheck):
Outputs:
Tensor, has the same shape as the `input_x`.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> input_x = Tensor(np.array([1.0, 4.0, 9.0]), mindspore.float32)
>>> sqrt = P.Sqrt()
@ -1373,6 +1448,9 @@ class Reciprocal(PrimitiveWithInfer):
Outputs:
Tensor, has the same shape as the `input_x`.
Supported Platforms:
``Ascend`` ``GPU``
Examples:
>>> input_x = Tensor(np.array([1.0, 2.0, 4.0]), mindspore.float32)
>>> reciprocal = P.Reciprocal()
@ -1427,6 +1505,9 @@ class Pow(_MathBinaryOp):
Tensor, the shape is the same as the one after broadcasting,
and the data type is the one with higher precision or higher digits among the two inputs.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> input_x = Tensor(np.array([1.0, 2.0, 4.0]), mindspore.float32)
>>> input_y = 3.0
@ -1463,6 +1544,9 @@ class Exp(PrimitiveWithInfer):
Outputs:
Tensor, has the same shape and dtype as the `input_x`.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> input_x = Tensor(np.array([1.0, 2.0, 4.0]), mindspore.float32)
>>> exp = P.Exp()
@ -1502,6 +1586,9 @@ class Expm1(PrimitiveWithInfer):
Outputs:
Tensor, has the same shape as the `input_x`.
Supported Platforms:
``Ascend``
Examples:
>>> input_x = Tensor(np.array([0.0, 1.0, 2.0, 4.0]), mindspore.float32)
>>> expm1 = P.Expm1()
@ -1540,6 +1627,9 @@ class HistogramFixedWidth(PrimitiveWithInfer):
Outputs:
Tensor, the type is int32.
Supported Platforms:
``Ascend``
Examples:
>>> x = Tensor([-1.0, 0.0, 1.5, 2.0, 5.0, 15], mindspore.float16)
>>> range = Tensor([0.0, 5.0], mindspore.float16)
@ -1578,6 +1668,9 @@ class Log(PrimitiveWithInfer):
Outputs:
Tensor, has the same shape as the `input_x`.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> input_x = Tensor(np.array([1.0, 2.0, 4.0]), mindspore.float32)
>>> log = P.Log()
@ -1616,6 +1709,9 @@ class Log1p(PrimitiveWithInfer):
Outputs:
Tensor, has the same shape as the `input_x`.
Supported Platforms:
``Ascend``
Examples:
>>> input_x = Tensor(np.array([1.0, 2.0, 4.0]), mindspore.float32)
>>> log1p = P.Log1p()
@ -1647,6 +1743,9 @@ class Erf(PrimitiveWithInfer):
Outputs:
Tensor, has the same shape and dtype as the `input_x`.
Supported Platforms:
``Ascend``
Examples:
>>> input_x = Tensor(np.array([-1, 0, 1, 2, 3]), mindspore.float32)
>>> erf = P.Erf()
@ -1678,6 +1777,9 @@ class Erfc(PrimitiveWithInfer):
Outputs:
Tensor, has the same shape and dtype as the `input_x`.
Supported Platforms:
``Ascend``
Examples:
>>> input_x = Tensor(np.array([-1, 0, 1, 2, 3]), mindspore.float32)
>>> erfc = P.Erfc()
@ -1720,6 +1822,9 @@ class Minimum(_MathBinaryOp):
Tensor, the shape is the same as the one after broadcasting,
and the data type is the one with higher precision or higher digits among the two inputs.
Supported Platforms:
``Ascend`` ``GPU``
Examples:
>>> input_x = Tensor(np.array([1.0, 5.0, 3.0]), mindspore.float32)
>>> input_y = Tensor(np.array([4.0, 2.0, 6.0]), mindspore.float32)
@ -1760,6 +1865,9 @@ class Maximum(_MathBinaryOp):
Tensor, the shape is the same as the one after broadcasting,
and the data type is the one with higher precision or higher digits among the two inputs.
Supported Platforms:
``Ascend`` ``GPU``
Examples:
>>> input_x = Tensor(np.array([1.0, 5.0, 3.0]), mindspore.float32)
>>> input_y = Tensor(np.array([4.0, 2.0, 6.0]), mindspore.float32)
@ -1800,6 +1908,9 @@ class RealDiv(_MathBinaryOp):
Tensor, the shape is the same as the one after broadcasting,
and the data type is the one with higher precision or higher digits among the two inputs.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> input_x = Tensor(np.array([1.0, 2.0, 3.0]), mindspore.float32)
>>> input_y = Tensor(np.array([4.0, 5.0, 6.0]), mindspore.float32)
@ -1841,6 +1952,9 @@ class Div(_MathBinaryOp):
Tensor, the shape is the same as the one after broadcasting,
and the data type is the one with higher precision or higher digits among the two inputs.
Supported Platforms:
``Ascend`` ``GPU``
Examples:
>>> input_x = Tensor(np.array([-4.0, 5.0, 6.0]), mindspore.float32)
>>> input_y = Tensor(np.array([3.0, 2.0, 3.0]), mindspore.float32)
@ -1880,6 +1994,9 @@ class DivNoNan(_MathBinaryOp):
Tensor, the shape is the same as the one after broadcasting,
and the data type is the one with higher precision or higher digits among the two inputs.
Supported Platforms:
``Ascend``
Examples:
>>> input_x = Tensor(np.array([-1.0, 0., 1.0, 5.0, 6.0]), mindspore.float32)
>>> input_y = Tensor(np.array([0., 0., 0., 2.0, 3.0]), mindspore.float32)
@ -1926,6 +2043,9 @@ class FloorDiv(_MathBinaryOp):
Tensor, the shape is the same as the one after broadcasting,
and the data type is the one with higher precision or higher digits among the two inputs.
Supported Platforms:
``Ascend`` ``GPU``
Examples:
>>> input_x = Tensor(np.array([2, 4, -1]), mindspore.int32)
>>> input_y = Tensor(np.array([3, 3, 3]), mindspore.int32)
@ -1958,6 +2078,9 @@ class TruncateDiv(_MathBinaryOp):
Tensor, the shape is the same as the one after broadcasting,
and the data type is the one with higher precision or higher digits among the two inputs.
Supported Platforms:
``Ascend``
Examples:
>>> input_x = Tensor(np.array([2, 4, -1]), mindspore.int32)
>>> input_y = Tensor(np.array([3, 3, 3]), mindspore.int32)
@ -1989,6 +2112,9 @@ class TruncateMod(_MathBinaryOp):
Tensor, the shape is the same as the one after broadcasting,
and the data type is the one with higher precision or higher digits among the two inputs.
Supported Platforms:
``Ascend``
Examples:
>>> input_x = Tensor(np.array([2, 4, -1]), mindspore.int32)
>>> input_y = Tensor(np.array([3, 3, 3]), mindspore.int32)
@ -2021,6 +2147,9 @@ class Mod(_MathBinaryOp):
Raises:
ValueError: When `input_x` and `input_y` are not the same dtype.
Supported Platforms:
``Ascend``
Examples:
>>> input_x = Tensor(np.array([-4.0, 5.0, 6.0]), mindspore.float32)
>>> input_y = Tensor(np.array([3.0, 2.0, 3.0]), mindspore.float32)
@ -2048,6 +2177,9 @@ class Floor(PrimitiveWithInfer):
Outputs:
Tensor, has the same shape as `input_x`.
Supported Platforms:
``Ascend`` ``GPU``
Examples:
>>> input_x = Tensor(np.array([1.1, 2.5, -1.5]), mindspore.float32)
>>> floor = P.Floor()
@ -2089,6 +2221,9 @@ class FloorMod(_MathBinaryOp):
Tensor, the shape is the same as the one after broadcasting,
and the data type is the one with higher precision or higher digits among the two inputs.
Supported Platforms:
``Ascend``
Examples:
>>> input_x = Tensor(np.array([2, 4, -1]), mindspore.int32)
>>> input_y = Tensor(np.array([3, 3, 3]), mindspore.int32)
@ -2109,6 +2244,9 @@ class Ceil(PrimitiveWithInfer):
Outputs:
Tensor, has the same shape as `input_x`.
Supported Platforms:
``Ascend``
Examples:
>>> input_x = Tensor(np.array([1.1, 2.5, -1.5]), mindspore.float32)
>>> ceil_op = P.Ceil()
@ -2150,6 +2288,9 @@ class Xdivy(_MathBinaryOp):
Tensor, the shape is the same as the one after broadcasting,
and the data type is the one with higher precision or higher digits among the two inputs.
Supported Platforms:
``Ascend``
Examples:
>>> input_x = Tensor(np.array([2, 4, -1]), mindspore.float32)
>>> input_y = Tensor(np.array([2, 2, 2]), mindspore.float32)
@ -2186,6 +2327,9 @@ class Xlogy(_MathBinaryOp):
Tensor, the shape is the same as the one after broadcasting,
and the data type is the one with higher precision or higher digits among the two inputs.
Supported Platforms:
``Ascend``
Examples:
>>> input_x = Tensor(np.array([-5, 0, 4]), mindspore.float32)
>>> input_y = Tensor(np.array([2, 2, 2]), mindspore.float32)
@ -2209,6 +2353,9 @@ class Acosh(PrimitiveWithInfer):
Outputs:
Tensor, has the same shape as `input_x`.
Supported Platforms:
``Ascend``
Examples:
>>> acosh = P.Acosh()
>>> input_x = Tensor(np.array([1.0, 1.5, 3.0, 100.0]), mindspore.float32)
@ -2237,6 +2384,9 @@ class Cosh(PrimitiveWithInfer):
Outputs:
Tensor, has the same shape as `input_x`.
Supported Platforms:
``Ascend``
Examples:
>>> cosh = P.Cosh()
>>> input_x = Tensor(np.array([0.24, 0.83, 0.31, 0.09]), mindspore.float32)
@ -2267,6 +2417,9 @@ class Asinh(PrimitiveWithInfer):
Outputs:
Tensor, has the same shape as `input_x`.
Supported Platforms:
``Ascend``
Examples:
>>> asinh = P.Asinh()
>>> input_x = Tensor(np.array([-5.0, 1.5, 3.0, 100.0]), mindspore.float32)
@ -2297,6 +2450,9 @@ class Sinh(PrimitiveWithInfer):
Outputs:
Tensor, has the same shape as `input_x`.
Supported Platforms:
``Ascend``
Examples:
>>> sinh = P.Sinh()
>>> input_x = Tensor(np.array([0.62, 0.28, 0.43, 0.62]), mindspore.float32)
@ -2350,6 +2506,9 @@ class Equal(_LogicBinaryOp):
Outputs:
Tensor, the shape is the same as the one after broadcasting,and the data type is bool.
Supported Platforms:
``Ascend`` ``GPU``
Examples:
>>> input_x = Tensor(np.array([1, 2, 3]), mindspore.float32)
>>> equal = P.Equal()
@ -2396,6 +2555,9 @@ class ApproximateEqual(_LogicBinaryOp):
Outputs:
Tensor, the shape is the same as the shape of 'x1', and the data type is bool.
Supported Platforms:
``Ascend``
Examples:
>>> x1 = Tensor(np.array([1, 2, 3]), mindspore.float32)
>>> x2 = Tensor(np.array([2, 4, 6]), mindspore.float32)
@ -2434,6 +2596,9 @@ class EqualCount(PrimitiveWithInfer):
Outputs:
Tensor, with the type same as input tensor and size as (1,).
Supported Platforms:
``GPU`` ``CPU``
Examples:
>>> input_x = Tensor(np.array([1, 2, 3]), mindspore.int32)
>>> input_y = Tensor(np.array([1, 2, 4]), mindspore.int32)
@ -2477,6 +2642,9 @@ class NotEqual(_LogicBinaryOp):
Outputs:
Tensor, the shape is the same as the one after broadcasting,and the data type is bool.
Supported Platforms:
``Ascend`` ``GPU``
Examples:
>>> input_x = Tensor(np.array([1, 2, 3]), mindspore.float32)
>>> not_equal = P.NotEqual()
@ -2516,6 +2684,9 @@ class Greater(_LogicBinaryOp):
Outputs:
Tensor, the shape is the same as the one after broadcasting,and the data type is bool.
Supported Platforms:
``Ascend`` ``GPU``
Examples:
>>> input_x = Tensor(np.array([1, 2, 3]), mindspore.int32)
>>> input_y = Tensor(np.array([1, 1, 4]), mindspore.int32)
@ -2554,6 +2725,9 @@ class GreaterEqual(_LogicBinaryOp):
Outputs:
Tensor, the shape is the same as the one after broadcasting,and the data type is bool.
Supported Platforms:
``Ascend`` ``GPU``
Examples:
>>> input_x = Tensor(np.array([1, 2, 3]), mindspore.int32)
>>> input_y = Tensor(np.array([1, 1, 4]), mindspore.int32)
@ -2592,6 +2766,9 @@ class Less(_LogicBinaryOp):
Outputs:
Tensor, the shape is the same as the one after broadcasting,and the data type is bool.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> input_x = Tensor(np.array([1, 2, 3]), mindspore.int32)
>>> input_y = Tensor(np.array([1, 1, 4]), mindspore.int32)
@ -2630,6 +2807,9 @@ class LessEqual(_LogicBinaryOp):
Outputs:
Tensor, the shape is the same as the one after broadcasting,and the data type is bool.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> input_x = Tensor(np.array([1, 2, 3]), mindspore.int32)
>>> input_y = Tensor(np.array([1, 1, 4]), mindspore.int32)
@ -2658,6 +2838,9 @@ class LogicalNot(PrimitiveWithInfer):
Outputs:
Tensor, the shape is the same as the `input_x`, and the dtype is bool.
Supported Platforms:
``Ascend`` ``GPU``
Examples:
>>> input_x = Tensor(np.array([True, False, True]), mindspore.bool_)
>>> logical_not = P.LogicalNot()
@ -2698,6 +2881,9 @@ class LogicalAnd(_LogicBinaryOp):
Outputs:
Tensor, the shape is the same as the one after broadcasting, and the data type is bool.
Supported Platforms:
``Ascend`` ``GPU``
Examples:
>>> input_x = Tensor(np.array([True, False, True]), mindspore.bool_)
>>> input_y = Tensor(np.array([True, True, False]), mindspore.bool_)
@ -2730,6 +2916,9 @@ class LogicalOr(_LogicBinaryOp):
Outputs:
Tensor, the shape is the same as the one after broadcasting,and the data type is bool.
Supported Platforms:
``Ascend`` ``GPU``
Examples:
>>> input_x = Tensor(np.array([True, False, True]), mindspore.bool_)
>>> input_y = Tensor(np.array([True, True, False]), mindspore.bool_)
@ -2753,6 +2942,9 @@ class IsNan(PrimitiveWithInfer):
Outputs:
Tensor, has the same shape of input, and the dtype is bool.
Supported Platforms:
``GPU``
Examples:
>>> is_nan = P.IsNan()
>>> input_x = Tensor(np.array([np.log(-1), 1, np.log(0)]), mindspore.float32)
@ -2781,6 +2973,9 @@ class IsInf(PrimitiveWithInfer):
Outputs:
Tensor, has the same shape of input, and the dtype is bool.
Supported Platforms:
``GPU``
Examples:
>>> is_inf = P.IsInf()
>>> input_x = Tensor(np.array([np.log(-1), 1, np.log(0)]), mindspore.float32)
@ -2809,6 +3004,9 @@ class IsFinite(PrimitiveWithInfer):
Outputs:
Tensor, has the same shape of input, and the dtype is bool.
Supported Platforms:
``Ascend`` ``GPU``
Examples:
>>> is_finite = P.IsFinite()
>>> input_x = Tensor(np.array([np.log(-1), 1, np.log(0)]), mindspore.float32)
@ -2841,6 +3039,9 @@ class FloatStatus(PrimitiveWithInfer):
Tensor, has the shape of `(1,)`, and has the same dtype of input `mindspore.dtype.float32` or
`mindspore.dtype.float16`.
Supported Platforms:
``GPU``
Examples:
>>> float_status = P.FloatStatus()
>>> input_x = Tensor(np.array([np.log(-1), 1, np.log(0)]), mindspore.float32)
@ -2874,6 +3075,9 @@ class NPUAllocFloatStatus(PrimitiveWithInfer):
Outputs:
Tensor, has the shape of `(8,)`.
Supported Platforms:
``Ascend``
Examples:
>>> alloc_status = P.NPUAllocFloatStatus()
>>> output = alloc_status()
@ -2908,6 +3112,9 @@ class NPUGetFloatStatus(PrimitiveWithInfer):
Outputs:
Tensor, has the same shape as `input_x`. All the elements in the tensor will be zero.
Supported Platforms:
``Ascend``
Examples:
>>> alloc_status = P.NPUAllocFloatStatus()
>>> get_status = P.NPUGetFloatStatus()
@ -2950,6 +3157,9 @@ class NPUClearFloatStatus(PrimitiveWithInfer):
Outputs:
Tensor, has the same shape as `input_x`. All the elements in the tensor will be zero.
Supported Platforms:
``Ascend``
Examples:
>>> alloc_status = P.NPUAllocFloatStatus()
>>> get_status = P.NPUGetFloatStatus()
@ -2987,6 +3197,9 @@ class Cos(PrimitiveWithInfer):
Outputs:
Tensor, has the same shape as `input_x`.
Supported Platforms:
``Ascend`` ``GPU``
Examples:
>>> cos = P.Cos()
>>> input_x = Tensor(np.array([0.24, 0.83, 0.31, 0.09]), mindspore.float32)
@ -3017,6 +3230,9 @@ class ACos(PrimitiveWithInfer):
Outputs:
Tensor, has the same shape as `input_x`.
Supported Platforms:
``Ascend`` ``GPU``
Examples:
>>> acos = P.ACos()
>>> input_x = Tensor(np.array([0.74, 0.04, 0.30, 0.56]), mindspore.float32)
@ -3045,6 +3261,9 @@ class Sin(PrimitiveWithInfer):
Outputs:
Tensor, has the same shape as `input_x`.
Supported Platforms:
``Ascend`` ``GPU``
Examples:
>>> sin = P.Sin()
>>> input_x = Tensor(np.array([0.62, 0.28, 0.43, 0.62]), mindspore.float32)
@ -3075,6 +3294,9 @@ class Asin(PrimitiveWithInfer):
Outputs:
Tensor, has the same shape as `input_x`.
Supported Platforms:
``Ascend`` ``GPU``
Examples:
>>> asin = P.Asin()
>>> input_x = Tensor(np.array([0.74, 0.04, 0.30, 0.56]), mindspore.float32)
@ -3125,6 +3347,9 @@ class NMSWithMask(PrimitiveWithInfer):
- **selected_mask** (Tensor) - The shape of tensor is :math:`(N,)`. A mask list of
valid output bounding boxes.
Supported Platforms:
``Ascend`` ``GPU``
Examples:
>>> bbox = np.random.rand(128, 5)
>>> bbox[:, 2] += bbox[:, 0]
@ -3164,6 +3389,9 @@ class Abs(PrimitiveWithInfer):
Outputs:
Tensor, has the same shape as the `input_x`.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> input_x = Tensor(np.array([-1.0, 1.0, 0.0]), mindspore.float32)
>>> abs = P.Abs()
@ -3208,6 +3436,9 @@ class Sign(PrimitiveWithInfer):
Outputs:
Tensor, has the same shape and type as the `input_x`.
Supported Platforms:
``Ascend``
Examples:
>>> input_x = Tensor(np.array([[2.0, 0.0, -1.0]]), mindspore.float32)
>>> sign = P.Sign()
@ -3238,6 +3469,9 @@ class Round(PrimitiveWithInfer):
Outputs:
Tensor, has the same shape and type as the `input_x`.
Supported Platforms:
``Ascend``
Examples:
>>> input_x = Tensor(np.array([0.8, 1.5, 2.3, 2.5, -4.5]), mindspore.float32)
>>> round = P.Round()
@ -3270,6 +3504,9 @@ class Tan(PrimitiveWithInfer):
Outputs:
Tensor, has the same shape as `input_x`.
Supported Platforms:
``Ascend``
Examples:
>>> tan = P.Tan()
>>> input_x = Tensor(np.array([-1.0, 0.0, 1.0]), mindspore.float32)
@ -3300,6 +3537,9 @@ class Atan(PrimitiveWithInfer):
Outputs:
A Tensor, has the same type as the input.
Supported Platforms:
``Ascend``
Examples:
>>> input_x = Tensor(np.array([1.047, 0.785]), mindspore.float32)
>>> tan = P.Tan()
@ -3332,6 +3572,9 @@ class Atanh(PrimitiveWithInfer):
Outputs:
A Tensor, has the same type as the input.
Supported Platforms:
``Ascend``
Examples:
>>> input_x = Tensor(np.array([1.047, 0.785]), mindspore.float32)
>>> atanh = P.Atanh()
@ -3371,6 +3614,9 @@ class Atan2(_MathBinaryOp):
Outputs:
Tensor, the shape is the same as the one after broadcasting,and the data type is same as `input_x`.
Supported Platforms:
``Ascend``
Examples:
>>> input_x = Tensor(np.array([0, 1]), mindspore.float32)
>>> input_y = Tensor(np.array([1, 1]), mindspore.float32)
@ -3396,6 +3642,9 @@ class SquareSumAll(PrimitiveWithInfer):
- **output_y1** (Tensor) - The same type as the `input_x1`.
- **output_y2** (Tensor) - The same type as the `input_x1`.
Supported Platforms:
``Ascend``
Examples:
>>> input_x1 = Tensor(np.array([0, 0, 2, 0]), mindspore.float32)
>>> input_x2 = Tensor(np.array([0, 0, 2, 4]), mindspore.float32)
@ -3438,6 +3687,9 @@ class BitwiseAnd(_BitwiseBinaryOp):
Outputs:
Tensor, has the same type as the `input_x1`.
Supported Platforms:
``Ascend``
Examples:
>>> input_x1 = Tensor(np.array([0, 0, 1, -1, 1, 1, 1]), mindspore.int16)
>>> input_x2 = Tensor(np.array([0, 1, 1, -1, -1, 2, 3]), mindspore.int16)
@ -3465,6 +3717,9 @@ class BitwiseOr(_BitwiseBinaryOp):
Outputs:
Tensor, has the same type as the `input_x1`.
Supported Platforms:
``Ascend``
Examples:
>>> input_x1 = Tensor(np.array([0, 0, 1, -1, 1, 1, 1]), mindspore.int16)
>>> input_x2 = Tensor(np.array([0, 1, 1, -1, -1, 2, 3]), mindspore.int16)
@ -3492,6 +3747,9 @@ class BitwiseXor(_BitwiseBinaryOp):
Outputs:
Tensor, has the same type as the `input_x1`.
Supported Platforms:
``Ascend``
Examples:
>>> input_x1 = Tensor(np.array([0, 0, 1, -1, 1, 1, 1]), mindspore.int16)
>>> input_x2 = Tensor(np.array([0, 1, 1, -1, -1, 2, 3]), mindspore.int16)
@ -3513,6 +3771,9 @@ class BesselI0e(PrimitiveWithInfer):
Outputs:
Tensor, has the same shape as `input_x`.
Supported Platforms:
``Ascend``
Examples:
>>> bessel_i0e = P.BesselI0e()
>>> input_x = Tensor(np.array([0.24, 0.83, 0.31, 0.09]), mindspore.float32)
@ -3544,6 +3805,9 @@ class BesselI1e(PrimitiveWithInfer):
Outputs:
Tensor, has the same shape as `input_x`.
Supported Platforms:
``Ascend``
Examples:
>>> bessel_i1e = P.BesselI1e()
>>> input_x = Tensor(np.array([0.24, 0.83, 0.31, 0.09]), mindspore.float32)
@ -3575,6 +3839,9 @@ class Inv(PrimitiveWithInfer):
Outputs:
Tensor, has the same shape and data type as `input_x`.
Supported Platforms:
``Ascend``
Examples:
>>> inv = P.Inv()
>>> input_x = Tensor(np.array([0.25, 0.4, 0.31, 0.52]), mindspore.float32)
@ -3606,6 +3873,9 @@ class Invert(PrimitiveWithInfer):
Outputs:
Tensor, has the same shape as `input_x`.
Supported Platforms:
``Ascend``
Examples:
>>> invert = P.Invert()
>>> input_x = Tensor(np.array([25, 4, 13, 9]), mindspore.int16)
@ -3636,6 +3906,9 @@ class Eps(PrimitiveWithInfer):
Outputs:
Tensor, has the same type and shape as `input_x`, but filled with `input_x` dtype minimum val.
Supported Platforms:
``Ascend`` ``GPU``
Examples:
>>> input_x = Tensor([4, 1, 2, 3], mindspore.float32)
>>> output = P.Eps()(input_x)

View File

@ -86,6 +86,9 @@ class Flatten(PrimitiveWithInfer):
Tensor, the shape of the output tensor is :math:`(N, X)`, where :math:`X` is
the product of the remaining dimension.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> input_tensor = Tensor(np.ones(shape=[1, 2, 3, 4]), mindspore.float32)
>>> flatten = P.Flatten()
@ -130,6 +133,9 @@ class Softmax(PrimitiveWithInfer):
Outputs:
Tensor, with the same type and shape as the logits.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> input_x = Tensor(np.array([1, 2, 3, 4, 5]), mindspore.float32)
>>> softmax = P.Softmax()
@ -181,6 +187,9 @@ class LogSoftmax(PrimitiveWithInfer):
Outputs:
Tensor, with the same type and shape as the logits.
Supported Platforms:
``Ascend`` ``GPU``
Examples:
>>> input_x = Tensor(np.array([1, 2, 3, 4, 5]), mindspore.float32)
>>> log_softmax = P.LogSoftmax()
@ -219,6 +228,9 @@ class Softplus(PrimitiveWithInfer):
Outputs:
Tensor, with the same type and shape as the `input_x`.
Supported Platforms:
``Ascend`` ``GPU``
Examples:
>>> input_x = Tensor(np.array([1, 2, 3, 4, 5]), mindspore.float32)
>>> softplus = P.Softplus()
@ -255,6 +267,9 @@ class Softsign(PrimitiveWithInfer):
Outputs:
Tensor, with the same type and shape as the `input_x`.
Supported Platforms:
``Ascend``
Examples:
>>> input_x = Tensor(np.array([0, -1, 2, 30, -30]), mindspore.float32)
>>> softsign = P.Softsign()
@ -288,6 +303,9 @@ class ReLU(PrimitiveWithInfer):
Outputs:
Tensor, with the same type and shape as the `input_x`.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> input_x = Tensor(np.array([[-1.0, 4.0, -8.0], [2.0, -5.0, 9.0]]), mindspore.float32)
>>> relu = P.ReLU()
@ -322,6 +340,9 @@ class ReLU6(PrimitiveWithInfer):
Outputs:
Tensor, with the same type and shape as the `input_x`.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> input_x = Tensor(np.array([[-1.0, 4.0, -8.0], [2.0, -5.0, 9.0]]), mindspore.float32)
>>> relu6 = P.ReLU6()
@ -357,6 +378,9 @@ class ReLUV2(PrimitiveWithInfer):
- **output** (Tensor) - Has the same type and shape as the `input_x`.
- **mask** (Tensor) - A tensor whose data type must be uint8.
Supported Platforms:
``Ascend``
Examples:
>>> input_x = Tensor(np.array([[[[1, -2], [-3, 4]], [[-5, 6], [7, -8]]]]), mindspore.float32)
>>> relu_v2 = P.ReLUV2()
@ -424,6 +448,9 @@ class Elu(PrimitiveWithInfer):
Outputs:
Tensor, has the same shape and data type as `input_x`.
Supported Platforms:
``Ascend`` ``GPU``
Examples:
>>> input_x = Tensor(np.array([[-1.0, 4.0, -8.0], [2.0, -5.0, 9.0]]), mindspore.float32)
>>> elu = P.Elu()
@ -466,6 +493,9 @@ class HSwish(PrimitiveWithInfer):
Outputs:
Tensor, with the same type and shape as the `input_data`.
Supported Platforms:
``GPU``
Examples:
>>> hswish = P.HSwish()
>>> input_x = Tensor(np.array([-1, -2, 0, 2, 1]), mindspore.float16)
@ -503,6 +533,9 @@ class Sigmoid(PrimitiveWithInfer):
Outputs:
Tensor, with the same type and shape as the input_x.
Supported Platforms:
``Ascend`` ``GPU``
Examples:
>>> input_x = Tensor(np.array([1, 2, 3, 4, 5]), mindspore.float32)
>>> sigmoid = P.Sigmoid()
@ -542,6 +575,9 @@ class HSigmoid(PrimitiveWithInfer):
Outputs:
Tensor, with the same type and shape as the `input_data`.
Supported Platforms:
``GPU``
Examples:
>>> hsigmoid = P.HSigmoid()
>>> input_x = Tensor(np.array([-1, -2, 0, 2, 1]), mindspore.float16)
@ -579,6 +615,9 @@ class Tanh(PrimitiveWithInfer):
Outputs:
Tensor, with the same type and shape as the input_x.
Supported Platforms:
``Ascend`` ``GPU``
Examples:
>>> input_x = Tensor(np.array([1, 2, 3, 4, 5]), mindspore.float32)
>>> tanh = P.Tanh()
@ -638,6 +677,9 @@ class FusedBatchNorm(Primitive):
- **updated_moving_mean** (Tensor) - Tensor of shape :math:`(C,)`.
- **updated_moving_variance** (Tensor) - Tensor of shape :math:`(C,)`.
Supported Platforms:
``CPU``
Examples:
>>> import mindspore
>>> import mindspore.nn as nn
@ -731,6 +773,9 @@ class FusedBatchNormEx(PrimitiveWithInfer):
data type: float32.
- **reserve** (Tensor) - reserve space, Tensor of shape :math:`(C,)`, data type: float32.
Supported Platforms:
``GPU``
Examples:
>>> import mindspore
>>> import mindspore.nn as nn
@ -811,6 +856,9 @@ class BNTrainingReduce(PrimitiveWithInfer):
- **sum** (Tensor) - A 1-D Tensor with float32 data type. Tensor of shape :math:`(C,)`.
- **square_sum** (Tensor) - A 1-D Tensor with float32 data type. Tensor of shape :math:`(C,)`.
Supported Platforms:
``Ascend``
Examples:
>>> input_x = Tensor(np.ones([128, 3, 32, 3]), mindspore.float32)
>>> bn_training_reduce = P.BNTrainingReduce()
@ -868,6 +916,9 @@ class BNTrainingUpdate(PrimitiveWithInfer):
- **batch_variance** (Tensor) - Tensor for the mean of `variance`, with float32 data type.
Has the same shape as `variance`.
Supported Platforms:
``Ascend``
Examples:
>>> input_x = Tensor(np.ones([1, 2, 2, 2]), mindspore.float32)
>>> sum = Tensor(np.ones([2]), mindspore.float32)
@ -968,6 +1019,9 @@ class BatchNorm(PrimitiveWithInfer):
- **reserve_space_1** (Tensor) - Tensor of shape :math:`(C,)`.
- **reserve_space_2** (Tensor) - Tensor of shape :math:`(C,)`.
Supported Platforms:
``Ascend``
Examples:
>>> input_x = Tensor(np.ones([2, 2]), mindspore.float32)
>>> scale = Tensor(np.ones([2]), mindspore.float32)
@ -1074,6 +1128,9 @@ class Conv2D(PrimitiveWithInfer):
Outputs:
Tensor, the value that applied 2D convolution. The shape is :math:`(N, C_{out}, H_{out}, W_{out})`.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> input = Tensor(np.ones([10, 32, 32, 32]), mindspore.float32)
>>> weight = Tensor(np.ones([32, 32, 3, 3]), mindspore.float32)
@ -1219,6 +1276,9 @@ class DepthwiseConv2dNative(PrimitiveWithInfer):
Outputs:
Tensor of shape :math:`(N, C_{in} * \text{channel_multiplier}, H_{out}, W_{out})`.
Supported Platforms:
``Ascend``
Examples:
>>> input = Tensor(np.ones([10, 32, 32, 32]), mindspore.float32)
>>> weight = Tensor(np.ones([1, 32, 3, 3]), mindspore.float32)
@ -1430,6 +1490,9 @@ class MaxPool(_Pool):
Outputs:
Tensor, with shape :math:`(N, C_{out}, H_{out}, W_{out})`.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> input_tensor = Tensor(np.arange(1 * 3 * 3 * 4).reshape((1, 3, 3, 4)), mindspore.float32)
>>> maxpool_op = P.MaxPool(padding="VALID", ksize=2, strides=1)
@ -1482,6 +1545,9 @@ class MaxPoolWithArgmax(_Pool):
- **output** (Tensor) - Maxpooling result, with shape :math:`(N, C_{out}, H_{out}, W_{out})`.
- **mask** (Tensor) - Max values' index represented by the mask.
Supported Platforms:
``Ascend``
Examples:
>>> input_tensor = Tensor(np.arange(1 * 3 * 3 * 4).reshape((1, 3, 3, 4)), mindspore.float32)
>>> maxpool_arg_op = P.MaxPoolWithArgmax(padding="VALID", ksize=2, strides=1)
@ -1562,6 +1628,9 @@ class AvgPool(_Pool):
Outputs:
Tensor, with shape :math:`(N, C_{out}, H_{out}, W_{out})`.
Supported Platforms:
``Ascend`` ``GPU``
Examples:
>>> import mindspore
>>> import mindspore.nn as nn
@ -1631,6 +1700,9 @@ class Conv2DBackpropInput(PrimitiveWithInfer):
Outputs:
Tensor, the gradients w.r.t the input of convolution. It has the same shape as the input.
Supported Platforms:
``Ascend`` ``GPU``
Examples:
>>> dout = Tensor(np.ones([10, 32, 30, 30]), mindspore.float32)
>>> weight = Tensor(np.ones([32, 32, 3, 3]), mindspore.float32)
@ -1749,6 +1821,9 @@ class BiasAdd(PrimitiveWithInfer):
Outputs:
Tensor, with the same shape and type as `input_x`.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> input_x = Tensor(np.arange(6).reshape((2, 3)), mindspore.float32)
>>> bias = Tensor(np.random.random(3).reshape((3,)), mindspore.float32)
@ -1798,6 +1873,9 @@ class TopK(PrimitiveWithInfer):
- **values** (Tensor) - The `k` largest elements in each slice of the last dimensional.
- **indices** (Tensor) - The indices of values within the last dimension of input.
Supported Platforms:
``Ascend`` ``GPU``
Examples:
>>> topk = P.TopK(sorted=True)
>>> input_x = Tensor([1, 2, 3, 4, 5], mindspore.float16)
@ -1846,6 +1924,9 @@ class SoftmaxCrossEntropyWithLogits(PrimitiveWithInfer):
Outputs:
Tuple of 2 tensors, the `loss` shape is `(N,)`, and the `dlogits` with the same shape as `logits`.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> logits = Tensor([[2, 4, 1, 4, 5], [2, 1, 2, 4, 3]], mindspore.float32)
>>> labels = Tensor([[0, 0, 0, 0, 1], [0, 0, 0, 1, 0]], mindspore.float32)
@ -1902,6 +1983,9 @@ class SparseSoftmaxCrossEntropyWithLogits(PrimitiveWithInfer):
Tensor, if `is_grad` is False, the output tensor is the value of loss which is a scalar tensor;
if `is_grad` is True, the output tensor is the gradient of input with the same shape as `logits`.
Supported Platforms:
``GPU`` ``CPU``
Examples:
Please refer to the usage in nn.SoftmaxCrossEntropyWithLogits source code.
"""
@ -1959,6 +2043,9 @@ class ApplyMomentum(PrimitiveWithInfer):
Outputs:
Tensor, parameters to be updated.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
Please refer to the usage in nn.ApplyMomentum.
"""
@ -2020,6 +2107,9 @@ class SmoothL1Loss(PrimitiveWithInfer):
Outputs:
Tensor, with the same type and shape as `prediction`.
Supported Platforms:
``Ascend`` ``GPU``
Examples:
>>> loss = P.SmoothL1Loss()
>>> input_data = Tensor(np.array([1, 2, 3]), mindspore.float32)
@ -2063,6 +2153,9 @@ class L2Loss(PrimitiveWithInfer):
Outputs:
Tensor, has the same dtype as `input_x`. The output tensor is the value of loss which is a scalar tensor.
Supported Platforms:
``Ascend``
Examples
>>> input_x = Tensor(np.array([1, 2, 3]), mindspore.float16)
>>> l2_loss = P.L2Loss()
@ -2100,6 +2193,9 @@ class DataFormatDimMap(PrimitiveWithInfer):
Outputs:
Tensor, has the same type as the `input_x`.
Supported Platforms:
``Ascend``
Examples:
>>> x = Tensor([0, 1, 2, 3], mindspore.int32)
>>> dfdm = P.DataFormatDimMap()
@ -2141,6 +2237,9 @@ class RNNTLoss(PrimitiveWithInfer):
- **costs** (Tensor[int32]) - Tensor of shape :math:`(B,)`.
- **grads** (Tensor[int32]) - Has the same shape as `acts`.
Supported Platforms:
``Ascend``
Examples:
>>> B, T, U, V = 1, 2, 3, 5
>>> blank = 0
@ -2207,6 +2306,9 @@ class SGD(PrimitiveWithCheck):
Outputs:
Tensor, parameters to be updated.
Supported Platforms:
``Ascend`` ``GPU``
Examples:
>>> sgd = P.SGD()
>>> parameters = Tensor(np.array([2, -0.5, 1.7, 4]), mindspore.float32)
@ -2286,6 +2388,9 @@ class ApplyRMSProp(PrimitiveWithInfer):
Outputs:
Tensor, parameters to be update.
Supported Platforms:
``Ascend`` ``GPU``
Examples:
>>> apply_rms = P.ApplyRMSProp()
>>> input_x = Tensor(1., mindspore.float32)
@ -2385,6 +2490,9 @@ class ApplyCenteredRMSProp(PrimitiveWithInfer):
Outputs:
Tensor, parameters to be update.
Supported Platforms:
``Ascend`` ``GPU``
Examples:
>>> centered_rms_prop = P.ApplyCenteredRMSProp()
>>> input_x = Tensor(np.arange(-2, 2).astype(np.float32).reshape(2, 2), mindspore.float32)
@ -2476,6 +2584,9 @@ class LayerNorm(Primitive):
- **mean** (Tensor) - Tensor of shape :math:`(C,)`.
- **variance** (Tensor) - Tensor of shape :math:`(C,)`.
Supported Platforms:
``Ascend`` ``GPU``
Examples:
>>> input_x = Tensor(np.array([[1, 2, 3], [1, 2, 3]]), mindspore.float32)
>>> gamma = Tensor(np.ones([3]), mindspore.float32)
@ -2521,6 +2632,9 @@ class L2Normalize(PrimitiveWithInfer):
Outputs:
Tensor, with the same type and shape as the input.
Supported Platforms:
``Ascend``
Examples:
>>> l2_normalize = P.L2Normalize()
>>> input_x = Tensor(np.random.randint(-256, 256, (2, 3, 4)), mindspore.float32)
@ -2565,6 +2679,9 @@ class DropoutGenMask(Primitive):
Outputs:
Tensor, the value of generated mask for input shape.
Supported Platforms:
``Ascend``
Examples:
>>> dropout_gen_mask = P.DropoutGenMask()
>>> shape = (2, 4, 5)
@ -2600,6 +2717,9 @@ class DropoutDoMask(PrimitiveWithInfer):
Outputs:
Tensor, the value that applied dropout on.
Supported Platforms:
``Ascend``
Examples:
>>> x = Tensor(np.ones([2, 2, 3]), mindspore.float32)
>>> shape = (2, 2, 3)
@ -2671,6 +2791,9 @@ class ResizeBilinear(PrimitiveWithInfer):
Outputs:
Tensor, resized image. 4-D with shape [batch, channels, new_height, new_width] in `float32`.
Supported Platforms:
``Ascend``
Examples:
>>> tensor = Tensor([[[[1, 2, 3, 4, 5], [1, 2, 3, 4, 5]]]], mindspore.float32)
>>> resize_bilinear = P.ResizeBilinear((5, 5))
@ -2727,6 +2850,9 @@ class OneHot(PrimitiveWithInfer):
Outputs:
Tensor, one-hot tensor. Tensor of shape :math:`(X_0, \ldots, X_{axis}, \text{depth} ,X_{axis+1}, \ldots, X_n)`.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> indices = Tensor(np.array([0, 1, 2]), mindspore.int32)
>>> depth, on_value, off_value = 3, Tensor(1.0, mindspore.float32), Tensor(0.0, mindspore.float32)
@ -2784,6 +2910,9 @@ class Gelu(PrimitiveWithInfer):
Outputs:
Tensor, with the same type and shape as input.
Supported Platforms:
``Ascend`` ``GPU``
Examples:
>>> tensor = Tensor(np.array([1.0, 2.0, 3.0]), mindspore.float32)
>>> gelu = P.Gelu()
@ -2827,6 +2956,9 @@ class GetNext(PrimitiveWithInfer):
tuple[Tensor], the output of Dataset. The shape is described in `shapes`
and the type is described is `types`.
Supported Platforms:
``Ascend`` ``GPU``
Examples:
>>> get_next = P.GetNext([mindspore.float32, mindspore.int32], [[32, 1, 28, 28], [10]], 2, 'shared_name')
>>> feature, label = get_next()
@ -2872,6 +3004,9 @@ class PReLU(PrimitiveWithInfer):
For detailed information, please refer to `nn.PReLU`.
Supported Platforms:
``Ascend``
Examples:
>>> import mindspore
>>> import mindspore.nn as nn
@ -2932,6 +3067,9 @@ class LSTM(PrimitiveWithInfer):
Performs the long short term memory(LSTM) on the input.
For detailed information, please refer to `nn.LSTM`.
Supported Platforms:
``GPU`` ``CPU``
"""
@prim_attr_register
@ -3027,6 +3165,9 @@ class SigmoidCrossEntropyWithLogits(PrimitiveWithInfer):
Outputs:
Tensor, with the same shape and type as input `logits`.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> logits = Tensor(np.array([[-0.8, 1.2, 0.7], [-0.1, -0.4, 0.7]]).astype(np.float32))
>>> labels = Tensor(np.array([[0.3, 0.8, 1.2], [-0.6, 0.1, 2.2]]).astype(np.float32))
@ -3068,6 +3209,9 @@ class Pad(PrimitiveWithInfer):
Outputs:
Tensor, the tensor after padding.
Supported Platforms:
``Ascend`` ``GPU``
Examples:
>>> input_tensor = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]), mindspore.float32)
>>> pad_op = P.Pad(((1, 2), (2, 1)))
@ -3133,6 +3277,9 @@ class MirrorPad(PrimitiveWithInfer):
is [[1,2,3],[4,5,6],[7,8,9]] and `paddings` is [[1,1],[2,2]], then the Outputs is
[[2,1,1,2,3,3,2],[2,1,1,2,3,3,2],[5,4,4,5,6,6,5],[8,7,7,8,9,9,8],[8,7,7,8,9,9,8]].
Supported Platforms:
``Ascend`` ``GPU``
Examples:
>>> from mindspore import Tensor
>>> from mindspore.ops import operations as P
@ -3215,6 +3362,9 @@ class ROIAlign(PrimitiveWithInfer):
Outputs:
Tensor, the shape is `(rois_n, C, pooled_height, pooled_width)`.
Supported Platforms:
``Ascend`` ``GPU``
Examples:
>>> input_tensor = Tensor(np.array([[[[1., 2.], [3., 4.]]]]), mindspore.float32)
>>> rois = Tensor(np.array([[0, 0.2, 0.3, 0.2, 0.3]]), mindspore.float32)
@ -3301,6 +3451,9 @@ class Adam(PrimitiveWithInfer):
- **m** (Tensor) - The same shape and data type as `m`.
- **v** (Tensor) - The same shape and data type as `v`.
Supported Platforms:
``Ascend`` ``GPU``
Examples:
>>> import numpy as np
>>> import mindspore.nn as nn
@ -3514,6 +3667,9 @@ class FusedSparseAdam(PrimitiveWithInfer):
- **m** (Tensor) - A Tensor with shape (1,).
- **v** (Tensor) - A Tensor with shape (1,).
Supported Platforms:
``CPU``
Examples:
>>> import numpy as np
>>> import mindspore.nn as nn
@ -3649,6 +3805,9 @@ class FusedSparseLazyAdam(PrimitiveWithInfer):
- **m** (Tensor) - A Tensor with shape (1,).
- **v** (Tensor) - A Tensor with shape (1,).
Supported Platforms:
``CPU``
Examples:
>>> import numpy as np
>>> import mindspore.nn as nn
@ -3758,6 +3917,9 @@ class FusedSparseFtrl(PrimitiveWithInfer):
- **accum** (Tensor) - A Tensor with shape (1,).
- **linear** (Tensor) - A Tensor with shape (1,).
Supported Platforms:
``CPU``
Examples:
>>> import mindspore
>>> import mindspore.nn as nn
@ -3949,6 +4111,9 @@ class KLDivLoss(PrimitiveWithInfer):
Tensor or Scalar, if `reduction` is 'none', then output is a tensor and has the same shape as `input_x`.
Otherwise it is a scalar.
Supported Platforms:
``GPU``
Examples:
>>> import mindspore
>>> import mindspore.nn as nn
@ -4025,6 +4190,9 @@ class BinaryCrossEntropy(PrimitiveWithInfer):
Tensor or Scalar, if `reduction` is 'none', then output is a tensor and has the same shape as `input_x`.
Otherwise, the output is a scalar.
Supported Platforms:
``Ascend`` ``GPU``
Examples:
>>> import mindspore
>>> import mindspore.nn as nn
@ -4123,6 +4291,9 @@ class ApplyAdaMax(PrimitiveWithInfer):
- **m** (Tensor) - The same shape and data type as `m`.
- **v** (Tensor) - The same shape and data type as `v`.
Supported Platforms:
``Ascend``
Examples:
>>> import numpy as np
>>> import mindspore.nn as nn
@ -4252,6 +4423,9 @@ class ApplyAdadelta(PrimitiveWithInfer):
- **accum** (Tensor) - The same shape and data type as `accum`.
- **accum_update** (Tensor) - The same shape and data type as `accum_update`.
Supported Platforms:
``Ascend``
Examples:
>>> import numpy as np
>>> import mindspore.nn as nn
@ -4361,6 +4535,9 @@ class ApplyAdagrad(PrimitiveWithInfer):
- **var** (Tensor) - The same shape and data type as `var`.
- **accum** (Tensor) - The same shape and data type as `accum`.
Supported Platforms:
``Ascend``
Examples:
>>> import numpy as np
>>> import mindspore.nn as nn
@ -4451,6 +4628,9 @@ class ApplyAdagradV2(PrimitiveWithInfer):
- **var** (Tensor) - The same shape and data type as `var`.
- **accum** (Tensor) - The same shape and data type as `m`.
Supported Platforms:
``Ascend``
Examples:
>>> import numpy as np
>>> import mindspore.nn as nn
@ -4542,6 +4722,9 @@ class SparseApplyAdagrad(PrimitiveWithInfer):
- **var** (Tensor) - The same shape and data type as `var`.
- **accum** (Tensor) - The same shape and data type as `accum`.
Supported Platforms:
``Ascend``
Examples:
>>> import numpy as np
>>> import mindspore.nn as nn
@ -4634,6 +4817,9 @@ class SparseApplyAdagradV2(PrimitiveWithInfer):
- **var** (Tensor) - The same shape and data type as `var`.
- **accum** (Tensor) - The same shape and data type as `accum`.
Supported Platforms:
``Ascend``
Examples:
>>> import numpy as np
>>> import mindspore.nn as nn
@ -4840,6 +5026,9 @@ class SparseApplyProximalAdagrad(PrimitiveWithCheck):
- **var** (Tensor) - The same shape and data type as `var`.
- **accum** (Tensor) - The same shape and data type as `accum`.
Supported Platforms:
``Ascend`` ``GPU``
Examples:
>>> import numpy as np
>>> import mindspore.nn as nn
@ -4936,6 +5125,9 @@ class ApplyAddSign(PrimitiveWithInfer):
- **var** (Tensor) - The same shape and data type as `var`.
- **m** (Tensor) - The same shape and data type as `m`.
Supported Platforms:
``Ascend``
Examples:
>>> import numpy as np
>>> import mindspore.nn as nn
@ -5051,6 +5243,9 @@ class ApplyPowerSign(PrimitiveWithInfer):
- **var** (Tensor) - The same shape and data type as `var`.
- **m** (Tensor) - The same shape and data type as `m`.
Supported Platforms:
``Ascend``
Examples:
>>> import numpy as np
>>> import mindspore.nn as nn
@ -5148,6 +5343,9 @@ class ApplyGradientDescent(PrimitiveWithInfer):
Outputs:
Tensor, represents the updated `var`.
Supported Platforms:
``Ascend``
Examples:
>>> import numpy as np
>>> import mindspore.nn as nn
@ -5223,6 +5421,9 @@ class ApplyProximalGradientDescent(PrimitiveWithInfer):
Outputs:
Tensor, represents the updated `var`.
Supported Platforms:
``Ascend``
Examples:
>>> import numpy as np
>>> import mindspore.nn as nn
@ -5306,6 +5507,9 @@ class LARSUpdate(PrimitiveWithInfer):
Outputs:
Tensor, represents the new gradient.
Supported Platforms:
``Ascend``
Examples:
>>> from mindspore import Tensor
>>> from mindspore.ops import operations as P
@ -5393,6 +5597,9 @@ class ApplyFtrl(PrimitiveWithInfer):
Outputs:
Tensor, represents the updated `var`.
Supported Platforms:
``Ascend`` ``GPU``
Examples:
>>> import mindspore
>>> import mindspore.nn as nn
@ -5489,6 +5696,9 @@ class SparseApplyFtrl(PrimitiveWithCheck):
- **accum** (Tensor) - Tensor, has the same shape and data type as `accum`.
- **linear** (Tensor) - Tensor, has the same shape and data type as `linear`.
Supported Platforms:
``Ascend``
Examples:
>>> import mindspore
>>> import mindspore.nn as nn
@ -5590,6 +5800,9 @@ class SparseApplyFtrlV2(PrimitiveWithInfer):
- **accum** (Tensor) - Tensor, has the same shape and data type as `accum`.
- **linear** (Tensor) - Tensor, has the same shape and data type as `linear`.
Supported Platforms:
``Ascend``
Examples:
>>> import mindspore
>>> import mindspore.nn as nn
@ -5729,6 +5942,9 @@ class CTCLoss(PrimitiveWithInfer):
the same type with `inputs`.
- **gradient** (Tensor) - The gradient of `loss`, has the same type and shape with `inputs`.
Supported Platforms:
``Ascend`` ``GPU``
Examples:
>>> inputs = Tensor(np.random.random((2, 2, 3)), mindspore.float32)
>>> labels_indices = Tensor(np.array([[0, 0], [1, 0]]), mindspore.int64)
@ -5906,6 +6122,9 @@ class BasicLSTMCell(PrimitiveWithInfer):
- **tanhct** (Tensor) - Forward :math:`tanh c_t` cache at moment `t`.
Tensor of shape (`batch_size`, `hidden_size`), has the same type with input `c`.
Supported Platforms:
``Ascend``
Examples:
>>> x = Tensor(np.random.rand(1, 32).astype(np.float16))
>>> h = Tensor(np.random.rand(1, 2).astype(np.float16))
@ -6126,6 +6345,9 @@ class InTopK(PrimitiveWithInfer):
Tensor has 1 dimension of type bool and the same shape with `x2`. For labeling sample `i` in `x2`,
if the label in the first `k` predictions for sample `i` is in `x1`, then the value is True, otherwise False.
Supported Platforms:
``Ascend``
Examples:
>>> x1 = Tensor(np.array([[1, 8, 5, 2, 7], [4, 9, 1, 3, 5]]), mindspore.float32)
>>> x2 = Tensor(np.array([1, 3]), mindspore.int32)
@ -6171,6 +6393,9 @@ class LRN(PrimitiveWithInfer):
Outputs:
Tensor, with the same shape and data type as the input tensor.
Supported Platforms:
``Ascend``
Examples:
>>> x = Tensor(np.random.rand(1, 2, 2, 2), mindspore.float32)
>>> lrn = P.LRN()

View File

@ -37,6 +37,9 @@ class Assign(PrimitiveWithCheck):
Outputs:
Tensor, has the same type as original `variable`.
Supported Platforms:
``Ascend`` ``GPU``
Examples:
>>> class Net(nn.Cell):
... def __init__(self):
@ -120,6 +123,9 @@ class BoundingBoxEncode(PrimitiveWithInfer):
Outputs:
Tensor, encoded bounding boxes.
Supported Platforms:
``Ascend`` ``GPU``
Examples:
>>> anchor_box = Tensor([[4,1,2,1],[2,2,2,3]],mindspore.float32)
>>> groundtruth_box = Tensor([[3,1,2,2],[1,2,1,4]],mindspore.float32)
@ -173,6 +179,9 @@ class BoundingBoxDecode(PrimitiveWithInfer):
Outputs:
Tensor, decoded boxes.
Supported Platforms:
``Ascend`` ``GPU``
Examples:
>>> anchor_box = Tensor([[4,1,2,1],[2,2,2,3]],mindspore.float32)
>>> deltas = Tensor([[3,1,2,2],[1,2,1,4]],mindspore.float32)
@ -228,6 +237,9 @@ class CheckValid(PrimitiveWithInfer):
Outputs:
Tensor, with shape of (N,) and dtype of bool.
Supported Platforms:
``Ascend`` ``GPU``
Examples:
>>> import mindspore
>>> import mindspore.nn as nn
@ -297,6 +309,9 @@ class IOU(PrimitiveWithInfer):
Raises:
KeyError: When `mode` is not 'iou' or 'iof'.
Supported Platforms:
``Ascend`` ``GPU``
Examples:
>>> iou = P.IOU()
>>> anchor_boxes = Tensor(np.random.randint(1.0, 5.0, [3, 4]), mindspore.float16)
@ -344,6 +359,9 @@ class MakeRefKey(Primitive):
Outputs:
RefKeyType, made from the Parameter name.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> from mindspore.ops import functional as F
>>> class Net(nn.Cell):
@ -545,6 +563,9 @@ class PopulationCount(PrimitiveWithInfer):
Outputs:
Tensor, with the sam shape as the input.
Supported Platforms:
``Ascend``
Examples:
>>> population_count = P.PopulationCount()
>>> x_input = Tensor([0, 1, 3], mindspore.int16)

View File

@ -34,6 +34,9 @@ class StandardNormal(PrimitiveWithInfer):
Outputs:
Tensor. The shape is the same as the input `shape`. The dtype is float32.
Supported Platforms:
``Ascend`` ``GPU``
Examples:
>>> shape = (4, 16)
>>> stdnormal = P.StandardNormal(seed=2)
@ -81,6 +84,9 @@ class StandardLaplace(PrimitiveWithInfer):
Outputs:
Tensor. The shape that the input 'shape' denotes. The dtype is float32.
Supported Platforms:
``Ascend``
Examples:
>>> shape = (4, 16)
>>> stdlaplace = P.StandardLaplace(seed=2)
@ -133,6 +139,9 @@ class Gamma(PrimitiveWithInfer):
Tensor. The shape must be the broadcasted shape of Input "shape" and shapes of alpha and beta.
The dtype is float32.
Supported Platforms:
``Ascend``
Examples:
>>> shape = (2, 2)
>>> alpha = Tensor(1.0, mstype.float32)
@ -189,6 +198,9 @@ class Poisson(PrimitiveWithInfer):
Tensor. Its shape must be the broadcasted shape of `shape` and the shape of `mean`.
The dtype is int32.
Supported Platforms:
``Ascend``
Examples:
>>> shape = (4, 16)
>>> mean = Tensor(5.0, mstype.float32)
@ -244,6 +256,9 @@ class UniformInt(PrimitiveWithInfer):
Outputs:
Tensor. The shape is the same as the input 'shape', and the data type is int32.
Supported Platforms:
``Ascend`` ``GPU``
Examples:
>>> shape = (2, 4)
>>> minval = Tensor(1, mstype.int32)
@ -296,6 +311,9 @@ class UniformReal(PrimitiveWithInfer):
Outputs:
Tensor. The shape that the input 'shape' denotes. The dtype is float32.
Supported Platforms:
``Ascend`` ``GPU``
Examples:
>>> shape = (2, 2)
>>> uniformreal = P.UniformReal(seed=2)
@ -350,6 +368,9 @@ class RandomChoiceWithMask(PrimitiveWithInfer):
- **index** (Tensor) - The output shape is 2-D.
- **mask** (Tensor) - The output shape is 1-D.
Supported Platforms:
``Ascend`` ``GPU``
Examples:
>>> rnd_choice_mask = P.RandomChoiceWithMask()
>>> input_x = Tensor(np.ones(shape=[240000, 4]).astype(np.bool))
@ -394,6 +415,9 @@ class RandomCategorical(PrimitiveWithInfer):
Outputs:
- **output** (Tensor) - The output Tensor with shape [batch_size, num_samples].
Supported Platforms:
``Ascend`` ``GPU``
Examples:
>>> class Net(nn.Cell):
... def __init__(self, num_sample):
@ -469,6 +493,9 @@ class Multinomial(PrimitiveWithInfer):
Outputs:
Tensor with the same rows as input, each row has num_samples sampled indices.
Supported Platforms:
``GPU``
Examples:
>>> input = Tensor([0., 9., 4., 0.], mstype.float32)
>>> multinomial = P.Multinomial(seed=10)