delete redundant codes
This commit is contained in:
parent
63ae2c3639
commit
d421f49e60
|
@ -50,7 +50,7 @@ Dataset used: [CIFAR-10](<http://www.cs.toronto.edu/~kriz/cifar.html>)
|
|||
- Hardware(Ascend/GPU)
|
||||
- Prepare hardware environment with Ascend or GPU processor.
|
||||
- Framework
|
||||
- [MindSpore](http://10.90.67.50/mindspore/archive/20200506/OpenSource/me_vm_x86/)
|
||||
- [MindSpore](https://www.mindspore.cn/install/en)
|
||||
- For more information, please check the resources below:
|
||||
- [MindSpore tutorials](https://www.mindspore.cn/tutorial/zh-CN/master/index.html)
|
||||
- [MindSpore API](https://www.mindspore.cn/api/zh-CN/master/index.html)
|
||||
|
|
|
@ -13,8 +13,8 @@
|
|||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
import cv2
|
||||
import mindspore.dataset as de
|
||||
cv2.setNumThreads(0)
|
||||
|
||||
|
|
|
@ -114,7 +114,7 @@ class BboxAssignSampleForRcnn(nn.Cell):
|
|||
bboxes = self.select(self.cast(self.tile(self.reshape(self.cast(valid_mask, mstype.int32), \
|
||||
(self.num_bboxes, 1)), (1, 4)), mstype.bool_), \
|
||||
bboxes, self.check_anchor_two)
|
||||
# 1 dim = gt, 2 dim = bbox
|
||||
|
||||
overlaps = self.iou(bboxes, gt_bboxes_i)
|
||||
|
||||
max_overlaps_w_gt_index, max_overlaps_w_gt = self.max_gt(overlaps)
|
||||
|
|
|
@ -166,15 +166,12 @@ if __name__ == '__main__':
|
|||
parameter_name = x.name
|
||||
if parameter_name.endswith('.bias'):
|
||||
# all bias not using weight decay
|
||||
# print('no decay:{}'.format(parameter_name))
|
||||
no_decay_params.append(x)
|
||||
elif parameter_name.endswith('.gamma'):
|
||||
# bn weight bias not using weight decay, be carefully for now x not include BN
|
||||
# print('no decay:{}'.format(parameter_name))
|
||||
no_decay_params.append(x)
|
||||
elif parameter_name.endswith('.beta'):
|
||||
# bn weight bias not using weight decay, be carefully for now x not include BN
|
||||
# print('no decay:{}'.format(parameter_name))
|
||||
no_decay_params.append(x)
|
||||
else:
|
||||
decay_params.append(x)
|
||||
|
|
|
@ -54,7 +54,7 @@ For FP16 operators, if the input data type is FP32, the backend of MindSpore wil
|
|||
- Hardware(Ascend/GPU)
|
||||
- Prepare hardware environment with Ascend or GPU processor. If you want to try Ascend , please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
|
||||
- Framework
|
||||
- [MindSpore](http://10.90.67.50/mindspore/archive/20200506/OpenSource/me_vm_x86/)
|
||||
- [MindSpore](https://www.mindspore.cn/install/en)
|
||||
- For more information, please check the resources below:
|
||||
- [MindSpore tutorials](https://www.mindspore.cn/tutorial/zh-CN/master/index.html)
|
||||
- [MindSpore API](https://www.mindspore.cn/api/zh-CN/master/index.html)
|
||||
|
|
|
@ -56,7 +56,7 @@ Dataset used: [MNIST](<http://yann.lecun.com/exdb/mnist/>)
|
|||
- Hardware(Ascend/GPU/CPU)
|
||||
- Prepare hardware environment with Ascend, GPU, or CPU processor.
|
||||
- Framework
|
||||
- [MindSpore](http://10.90.67.50/mindspore/archive/20200506/OpenSource/me_vm_x86/)
|
||||
- [MindSpore](https://www.mindspore.cn/install/en)
|
||||
- For more information, please check the resources below:
|
||||
- [MindSpore tutorials](https://www.mindspore.cn/tutorial/zh-CN/master/index.html)
|
||||
- [MindSpore API](https://www.mindspore.cn/api/zh-CN/master/index.html)
|
||||
|
|
|
@ -22,8 +22,8 @@ class LeNet5(nn.Cell):
|
|||
Lenet network
|
||||
|
||||
Args:
|
||||
num_class (int): Num classes. Default: 10.
|
||||
num_channel (int): Num channels. Default: 1.
|
||||
num_class (int): Number of classes. Default: 10.
|
||||
num_channel (int): Number of channels. Default: 1.
|
||||
|
||||
Returns:
|
||||
Tensor, output tensor
|
||||
|
|
|
@ -21,7 +21,7 @@ class LeNet5(nn.Cell):
|
|||
Lenet network
|
||||
|
||||
Args:
|
||||
num_class (int): Num classes. Default: 10.
|
||||
num_class (int): Number of classes. Default: 10.
|
||||
|
||||
Returns:
|
||||
Tensor, output tensor
|
||||
|
|
|
@ -22,7 +22,7 @@ class LeNet5(nn.Cell):
|
|||
Lenet network
|
||||
|
||||
Args:
|
||||
num_class (int): Num classes. Default: 10.
|
||||
num_class (int): Number of classes. Default: 10.
|
||||
|
||||
Returns:
|
||||
Tensor, output tensor
|
||||
|
|
|
@ -118,7 +118,7 @@ class BboxAssignSampleForRcnn(nn.Cell):
|
|||
bboxes = self.select(self.cast(self.tile(self.reshape(self.cast(valid_mask, mstype.int32), \
|
||||
(self.num_bboxes, 1)), (1, 4)), mstype.bool_), \
|
||||
bboxes, self.check_anchor_two)
|
||||
# 1 dim = gt, 2 dim = bbox
|
||||
|
||||
overlaps = self.iou(bboxes, gt_bboxes_i)
|
||||
|
||||
max_overlaps_w_gt_index, max_overlaps_w_gt = self.max_gt(overlaps)
|
||||
|
|
|
@ -51,7 +51,7 @@ For FP16 operators, if the input data type is FP32, the backend of MindSpore wil
|
|||
- Hardware(Ascend/GPU/CPU)
|
||||
- Prepare hardware environment with Ascend、GPU or CPU processor. If you want to try Ascend, please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
|
||||
- Framework
|
||||
- [MindSpore](http://10.90.67.50/mindspore/archive/20200506/OpenSource/me_vm_x86/)
|
||||
- [MindSpore](https://www.mindspore.cn/install/en)
|
||||
- For more information, please check the resources below:
|
||||
- [MindSpore tutorials](https://www.mindspore.cn/tutorial/zh-CN/master/index.html)
|
||||
- [MindSpore API](https://www.mindspore.cn/api/zh-CN/master/index.html)
|
||||
|
|
|
@ -145,7 +145,7 @@ class MobileNetV2Backbone(nn.Cell):
|
|||
MobileNetV2 architecture.
|
||||
|
||||
Args:
|
||||
class_num (Cell): number of classes.
|
||||
class_num (int): number of classes.
|
||||
width_mult (int): Channels multiplier for round to 8/16 and others. Default is 1.
|
||||
has_dropout (bool): Is dropout used. Default is false
|
||||
inverted_residual_setting (list): Inverted residual settings. Default is None
|
||||
|
@ -233,7 +233,7 @@ class MobileNetV2Head(nn.Cell):
|
|||
MobileNetV2 architecture.
|
||||
|
||||
Args:
|
||||
class_num (Cell): number of classes.
|
||||
class_num (int): Number of classes. Default is 1000.
|
||||
has_dropout (bool): Is dropout used. Default is false
|
||||
Returns:
|
||||
Tensor, output tensor.
|
||||
|
@ -284,11 +284,13 @@ class MobileNetV2(nn.Cell):
|
|||
MobileNetV2 architecture.
|
||||
|
||||
Args:
|
||||
class_num (Cell): number of classes.
|
||||
class_num (int): number of classes.
|
||||
width_mult (int): Channels multiplier for round to 8/16 and others. Default is 1.
|
||||
has_dropout (bool): Is dropout used. Default is false
|
||||
inverted_residual_setting (list): Inverted residual settings. Default is None
|
||||
round_nearest (list): Channel round to . Default is 8
|
||||
backbone(nn.Cell): Backbone of MobileNetV2.
|
||||
head(nn.Cell): Classification head of MobileNetV2.
|
||||
Returns:
|
||||
Tensor, output tensor.
|
||||
|
||||
|
|
|
@ -29,8 +29,8 @@ class CrossEntropyWithLabelSmooth(_Loss):
|
|||
CrossEntropyWith LabelSmooth.
|
||||
|
||||
Args:
|
||||
smooth_factor (float): smooth factor, default=0.
|
||||
num_classes (int): num classes
|
||||
smooth_factor (float): smooth factor. Default is 0.
|
||||
num_classes (int): number of classes. Default is 1000.
|
||||
|
||||
Returns:
|
||||
None.
|
||||
|
|
|
@ -83,8 +83,8 @@ class CrossEntropyWithLabelSmooth(_Loss):
|
|||
CrossEntropyWith LabelSmooth.
|
||||
|
||||
Args:
|
||||
smooth_factor (float): smooth factor, default=0.
|
||||
num_classes (int): num classes
|
||||
smooth_factor (float): smooth factor for label smooth. Default is 0.
|
||||
num_classes (int): number of classes. Default is 1000.
|
||||
|
||||
Returns:
|
||||
None.
|
||||
|
|
|
@ -45,7 +45,7 @@ Dataset used: [imagenet](http://www.image-net.org/)
|
|||
- Hardware(GPU)
|
||||
- Prepare hardware environment with GPU processor.
|
||||
- Framework
|
||||
- [MindSpore](http://10.90.67.50/mindspore/archive/20200506/OpenSource/me_vm_x86/)
|
||||
- [MindSpore](https://www.mindspore.cn/install/en)
|
||||
- For more information, please check the resources below:
|
||||
- [MindSpore tutorials](https://www.mindspore.cn/tutorial/zh-CN/master/index.html)
|
||||
- [MindSpore API](https://www.mindspore.cn/api/zh-CN/master/index.html)
|
||||
|
|
|
@ -83,7 +83,7 @@ class SE(nn.Cell):
|
|||
SE warpper definition.
|
||||
|
||||
Args:
|
||||
num_out (int): Output channel.
|
||||
num_out (int): Numbers of output channels.
|
||||
ratio (int): middle output ratio.
|
||||
|
||||
Returns:
|
||||
|
@ -301,7 +301,7 @@ class MobileNetV3(nn.Cell):
|
|||
def _make_layer(self, kernel_size, exp_ch, out_channel, use_se, act_func, stride=1):
|
||||
mid_planes = exp_ch
|
||||
out_planes = out_channel
|
||||
#num_in, num_mid, num_out, kernel_size, stride=1, act_type='relu', use_se=False):
|
||||
|
||||
layer = ResUnit(self.inplanes, mid_planes, out_planes,
|
||||
kernel_size, stride=stride, act_type=act_func, use_se=use_se)
|
||||
self.inplanes = out_planes
|
||||
|
|
|
@ -68,8 +68,8 @@ class CrossEntropyWithLabelSmooth(_Loss):
|
|||
CrossEntropyWith LabelSmooth.
|
||||
|
||||
Args:
|
||||
smooth_factor (float): smooth factor, default=0.
|
||||
num_classes (int): num classes
|
||||
smooth_factor (float): smooth factor for label smooth. Default is 0.
|
||||
num_classes (int): number of classes. Default is 1000.
|
||||
|
||||
Returns:
|
||||
None.
|
||||
|
|
|
@ -47,7 +47,6 @@ def create_dataset(dataset_path, config, do_train, repeat_num=1):
|
|||
C.RandomCropDecodeResize(config.image_size),
|
||||
C.RandomHorizontalFlip(prob=0.5),
|
||||
C.RandomColorAdjust(brightness=0.4, saturation=0.5) # fast mode
|
||||
# C.RandomColorAdjust(brightness=0.4, contrast=0.5, saturation=0.5, hue=0.2)
|
||||
]
|
||||
else:
|
||||
trans = [
|
||||
|
|
|
@ -151,7 +151,7 @@ class _DatasetIter:
|
|||
|
||||
|
||||
class _DatasetIterMSLoopSink(_DatasetIter):
|
||||
"""Iter for context (device_target=Ascend)"""
|
||||
"""Iter for context when device_target is Ascend"""
|
||||
def __init__(self, dataset, sink_size, epoch_num, iter_first_order):
|
||||
super().__init__(dataset, sink_size, epoch_num)
|
||||
sink_count = 1
|
||||
|
@ -179,7 +179,7 @@ class _DatasetIterMSLoopSink(_DatasetIter):
|
|||
|
||||
|
||||
class _DatasetIterMS(_DatasetIter):
|
||||
"""Iter for MS(enable_loop_sink=False)."""
|
||||
"""Iter for MS when enable_loop_sink is False."""
|
||||
def __init__(self, dataset, sink_size, epoch_num):
|
||||
super().__init__(dataset, sink_size, epoch_num)
|
||||
if sink_size > 0:
|
||||
|
|
|
@ -283,7 +283,7 @@ class ResNet(nn.Cell):
|
|||
frequency=frequency, batch_size=batch_size)
|
||||
self.bn1 = _bn(64)
|
||||
self.relu = P.ReLU()
|
||||
# self.maxpool = P.MaxPoolWithArgmax(padding="same", ksize=3, strides=2)
|
||||
|
||||
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, pad_mode="same")
|
||||
|
||||
self.layer1 = self._make_layer(block,
|
||||
|
|
|
@ -56,7 +56,7 @@ For FP16 operators, if the input data type is FP32, the backend of MindSpore wil
|
|||
- Hardware(Ascend/GPU)
|
||||
- Prepare hardware environment with Ascend or GPU processor. If you want to try Ascend , please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
|
||||
- Framework
|
||||
- [MindSpore](http://10.90.67.50/mindspore/archive/20200506/OpenSource/me_vm_x86/)
|
||||
- [MindSpore](https://www.mindspore.cn/install/en)
|
||||
- For more information, please check the resources below:
|
||||
- [MindSpore tutorials](https://www.mindspore.cn/tutorial/zh-CN/master/index.html)
|
||||
- [MindSpore API](https://www.mindspore.cn/api/zh-CN/master/index.html)
|
||||
|
|
|
@ -23,15 +23,12 @@ def get_param_groups(network):
|
|||
parameter_name = x.name
|
||||
if parameter_name.endswith('.bias'):
|
||||
# all bias not using weight decay
|
||||
# print('no decay:{}'.format(parameter_name))
|
||||
no_decay_params.append(x)
|
||||
elif parameter_name.endswith('.gamma'):
|
||||
# bn weight bias not using weight decay, be carefully for now x not include BN
|
||||
# print('no decay:{}'.format(parameter_name))
|
||||
no_decay_params.append(x)
|
||||
elif parameter_name.endswith('.beta'):
|
||||
# bn weight bias not using weight decay, be carefully for now x not include BN
|
||||
# print('no decay:{}'.format(parameter_name))
|
||||
no_decay_params.append(x)
|
||||
else:
|
||||
decay_params.append(x)
|
||||
|
|
|
@ -40,7 +40,7 @@ Dataset used: [imagenet](http://www.image-net.org/)
|
|||
- Hardware(GPU)
|
||||
- Prepare hardware environment with GPU processor.
|
||||
- Framework
|
||||
- [MindSpore](http://10.90.67.50/mindspore/archive/20200506/OpenSource/me_vm_x86/)
|
||||
- [MindSpore](https://www.mindspore.cn/install/en)
|
||||
- For more information, please check the resources below:
|
||||
- [MindSpore tutorials](https://www.mindspore.cn/tutorial/zh-CN/master/index.html)
|
||||
- [MindSpore API](https://www.mindspore.cn/api/zh-CN/master/index.html)
|
||||
|
|
|
@ -66,7 +66,6 @@ def create_dataset(dataset_path, do_train, rank, group_size, repeat_num=1):
|
|||
trans += [
|
||||
toBGR(),
|
||||
C.Rescale(1.0 / 255.0, 0.0),
|
||||
# C.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
||||
C.HWC2CHW(),
|
||||
C2.TypeCast(mstype.float32)
|
||||
]
|
||||
|
|
|
@ -79,7 +79,6 @@ class ShuffleV2Block(nn.Cell):
|
|||
|
||||
def channel_shuffle(self, x):
|
||||
batchsize, num_channels, height, width = P.Shape()(x)
|
||||
##assert (num_channels % 4 == 0)
|
||||
x = P.Reshape()(x, (batchsize * num_channels // 2, 2, height * width,))
|
||||
x = P.Transpose()(x, (1, 0, 2,))
|
||||
x = P.Reshape()(x, (2, -1, num_channels // 2, height, width,))
|
||||
|
|
|
@ -162,7 +162,6 @@ def create_voc_label(is_training):
|
|||
voc_dir = config.voc_dir
|
||||
cls_map = {name: i for i, name in enumerate(config.coco_classes)}
|
||||
sub_dir = 'train' if is_training else 'eval'
|
||||
# sub_dir = 'train'
|
||||
voc_dir = os.path.join(voc_dir, sub_dir)
|
||||
if not os.path.isdir(voc_dir):
|
||||
raise ValueError(f'Cannot find {sub_dir} dataset path.')
|
||||
|
|
|
@ -14,7 +14,6 @@
|
|||
# ============================================================================
|
||||
"""
|
||||
#################train vgg16 example on cifar10########################
|
||||
python train.py --data_path=$DATA_HOME --device_id=$DEVICE_ID
|
||||
"""
|
||||
import argparse
|
||||
import datetime
|
||||
|
|
|
@ -146,7 +146,7 @@ def _preprocess_true_boxes(true_boxes, anchors, in_shape, num_classes,
|
|||
# input_shape is [h, w]
|
||||
true_boxes[..., 0:2] = boxes_xy / input_shape[::-1]
|
||||
true_boxes[..., 2:4] = boxes_wh / input_shape[::-1]
|
||||
# true_boxes = [xywh]
|
||||
# true_boxes [x, y, w, h]
|
||||
|
||||
grid_shapes = [input_shape // 32, input_shape // 16, input_shape // 8]
|
||||
# grid_shape [h, w]
|
||||
|
|
|
@ -153,7 +153,7 @@ def _preprocess_true_boxes(true_boxes, anchors, in_shape, num_classes,
|
|||
# input_shape is [h, w]
|
||||
true_boxes[..., 0:2] = boxes_xy / input_shape[::-1]
|
||||
true_boxes[..., 2:4] = boxes_wh / input_shape[::-1]
|
||||
# true_boxes = [xywh]
|
||||
# true_boxes [x, y, w, h]
|
||||
|
||||
grid_shapes = [input_shape // 32, input_shape // 16, input_shape // 8]
|
||||
# grid_shape [h, w]
|
||||
|
|
|
@ -44,7 +44,6 @@ def preprocess_fn(image, box, is_training):
|
|||
num_layers = anchors.shape[0] // 3
|
||||
anchor_mask = [[6, 7, 8], [3, 4, 5], [0, 1, 2]]
|
||||
true_boxes = np.array(true_boxes, dtype='float32')
|
||||
# input_shape = np.array([in_shape, in_shape], dtype='int32')
|
||||
input_shape = np.array(in_shape, dtype='int32')
|
||||
boxes_xy = (true_boxes[..., 0:2] + true_boxes[..., 2:4]) // 2.
|
||||
boxes_wh = true_boxes[..., 2:4] - true_boxes[..., 0:2]
|
||||
|
|
|
@ -105,7 +105,7 @@ class BertPretrainEva(nn.Cell):
|
|||
|
||||
def get_enwiki_512_dataset(batch_size=1, repeat_count=1, distribute_file=''):
|
||||
'''
|
||||
Get enwiki seq_length=512 dataset
|
||||
Get enwiki dataset when seq_length is 512.
|
||||
'''
|
||||
ds = de.TFRecordDataset([cfg.data_file], cfg.schema_file, columns_list=["input_ids", "input_mask", "segment_ids",
|
||||
"masked_lm_positions", "masked_lm_ids",
|
||||
|
|
|
@ -490,7 +490,7 @@ class BertAttention(nn.Cell):
|
|||
|
||||
# use_relative_position, supplementary logic
|
||||
if self.use_relative_positions:
|
||||
# 'relations_keys' = [F|T, F|T, H]
|
||||
# relations_keys is [F|T, F|T, H]
|
||||
relations_keys = self._generate_relative_positions_embeddings()
|
||||
relations_keys = self.cast_compute_type(relations_keys)
|
||||
# query_layer_t is [F, B, N, H]
|
||||
|
@ -533,7 +533,7 @@ class BertAttention(nn.Cell):
|
|||
|
||||
# use_relative_position, supplementary logic
|
||||
if self.use_relative_positions:
|
||||
# 'relations_values' = [F|T, F|T, H]
|
||||
# relations_values is [F|T, F|T, H]
|
||||
relations_values = self._generate_relative_positions_embeddings()
|
||||
relations_values = self.cast_compute_type(relations_values)
|
||||
# attention_probs_t is [F, B, N, T]
|
||||
|
|
|
@ -165,7 +165,6 @@ def LoadNewestCkpt(load_finetune_checkpoint_dir, steps_per_epoch, epoch_num, pre
|
|||
name_ext = os.path.splitext(filename)
|
||||
if name_ext[-1] != ".ckpt":
|
||||
continue
|
||||
#steps_per_epoch = ds.get_dataset_size()
|
||||
if filename.find(prefix) == 0 and not filename[pre_len].isalpha():
|
||||
index = filename[pre_len:].find("-")
|
||||
if index == 0 and max_num == 0:
|
||||
|
|
|
@ -49,7 +49,7 @@ The classical first-order optimization algorithm, such as SGD, has a small amoun
|
|||
- Hardware(Ascend/GPU)
|
||||
- Prepare hardware environment with Ascend or GPU processor. If you want to try Ascend , please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
|
||||
- Framework
|
||||
- [MindSpore](http://10.90.67.50/mindspore/archive/20200506/OpenSource/me_vm_x86/)
|
||||
- [MindSpore](https://www.mindspore.cn/install/en)
|
||||
- For more information, please check the resources below:
|
||||
- [MindSpore tutorials](https://www.mindspore.cn/tutorial/zh-CN/master/index.html)
|
||||
- [MindSpore API](https://www.mindspore.cn/api/zh-CN/master/index.html)
|
||||
|
|
|
@ -110,7 +110,7 @@ class BertPretrainEva(nn.Cell):
|
|||
|
||||
def get_enwiki_512_dataset(batch_size=1, repeat_count=1, distribute_file=''):
|
||||
'''
|
||||
Get enwiki seq_length=512 dataset
|
||||
Get enwiki dataset when seq_length is 512.
|
||||
'''
|
||||
ds = de.TFRecordDataset([cfg.data_file], cfg.schema_file, columns_list=["input_ids", "input_mask", "segment_ids",
|
||||
"masked_lm_positions", "masked_lm_ids",
|
||||
|
|
|
@ -566,7 +566,7 @@ class BertAttention(nn.Cell):
|
|||
|
||||
# use_relative_position, supplementary logic
|
||||
if self.use_relative_positions:
|
||||
# 'relations_keys' = [F|T, F|T, H]
|
||||
# relations_keys is [F|T, F|T, H]
|
||||
relations_keys = self._generate_relative_positions_embeddings()
|
||||
relations_keys = self.cast_compute_type(relations_keys)
|
||||
# query_layer_t is [F, B, N, H]
|
||||
|
@ -609,7 +609,7 @@ class BertAttention(nn.Cell):
|
|||
|
||||
# use_relative_position, supplementary logic
|
||||
if self.use_relative_positions:
|
||||
# 'relations_values' = [F|T, F|T, H]
|
||||
# relations_values is [F|T, F|T, H]
|
||||
relations_values = self._generate_relative_positions_embeddings()
|
||||
relations_values = self.cast_compute_type(relations_values)
|
||||
# attention_probs_t is [F, B, N, T]
|
||||
|
|
|
@ -155,7 +155,7 @@ class _DatasetIter:
|
|||
|
||||
|
||||
class _DatasetIterMSLoopSink(_DatasetIter):
|
||||
"""Iter for context (device_target=Ascend)"""
|
||||
"""Iter for context, the device_target is Ascend."""
|
||||
|
||||
def __init__(self, dataset, sink_size, epoch_num, iter_first_order):
|
||||
super().__init__(dataset, sink_size, epoch_num)
|
||||
|
|
|
@ -198,7 +198,7 @@ class THOR(Optimizer):
|
|||
g = F.depend(g, fake_G)
|
||||
new_grads = new_grads + (g, pooler_bias)
|
||||
|
||||
# for cls1 fc layer: mlm
|
||||
# cls1 fully connect layer for masked language model(mlm)
|
||||
mlm_fc_idx = encoder_layers_num * self.num_hidden_layers + 8
|
||||
matrix_idx = self.num_hidden_layers * 6 + 4
|
||||
g = gradients[mlm_fc_idx]
|
||||
|
@ -327,7 +327,7 @@ class THOR(Optimizer):
|
|||
g = self.cast(g, mstype.float32)
|
||||
new_grads = new_grads + (g, pooler_bias)
|
||||
|
||||
# for cls1 fc layer: mlm
|
||||
# cls1 fully connect layer for masked language model(mlm)
|
||||
mlm_fc_idx = encoder_layers_num * self.num_hidden_layers + 8
|
||||
matrix_idx = self.num_hidden_layers * 6 + 4
|
||||
g = gradients[mlm_fc_idx]
|
||||
|
|
|
@ -203,7 +203,7 @@ class THOR(Optimizer):
|
|||
g = F.depend(g, fake_G)
|
||||
new_grads = new_grads + (g, pooler_bias)
|
||||
|
||||
# for cls1 fc layer: mlm
|
||||
# cls1 fully connect layer for masked language model(mlm)
|
||||
mlm_fc_idx = encoder_layers_num * self.num_hidden_layers + 8
|
||||
matrix_idx = self.num_hidden_layers * 6 + 4
|
||||
g = gradients[mlm_fc_idx]
|
||||
|
@ -333,7 +333,7 @@ class THOR(Optimizer):
|
|||
g = self.cast(g, mstype.float32)
|
||||
new_grads = new_grads + (g, pooler_bias)
|
||||
|
||||
# for cls1 fc layer: mlm
|
||||
# cls1 fully connect layer for masked language model(mlm)
|
||||
mlm_fc_idx = encoder_layers_num * self.num_hidden_layers + 8
|
||||
matrix_idx = self.num_hidden_layers * 6 + 4
|
||||
g = gradients[mlm_fc_idx]
|
||||
|
|
|
@ -129,7 +129,6 @@ def LoadNewestCkpt(load_finetune_checkpoint_dir, steps_per_epoch, epoch_num, pre
|
|||
name_ext = os.path.splitext(filename)
|
||||
if name_ext[-1] != ".ckpt":
|
||||
continue
|
||||
# steps_per_epoch = ds.get_dataset_size()
|
||||
if filename.find(prefix) == 0 and not filename[pre_len].isalpha():
|
||||
index = filename[pre_len:].find("-")
|
||||
if index == 0 and max_num == 0:
|
||||
|
|
|
@ -14,7 +14,6 @@
|
|||
# ============================================================================
|
||||
"""
|
||||
#################train lstm example on aclImdb########################
|
||||
python eval.py --ckpt_path=./lstm-20-390.ckpt
|
||||
"""
|
||||
import argparse
|
||||
import os
|
||||
|
|
|
@ -103,7 +103,7 @@ class ImdbParser():
|
|||
vocab = set(chain(*tokenized_features))
|
||||
self.__vacab[seg] = vocab
|
||||
|
||||
# word_to_idx: {'hello': 1, 'world':111, ... '<unk>': 0}
|
||||
# word_to_idx looks like {'hello': 1, 'world':111, ... '<unk>': 0}
|
||||
word_to_idx = {word: i + 1 for i, word in enumerate(vocab)}
|
||||
word_to_idx['<unk>'] = 0
|
||||
self.__word2idx[seg] = word_to_idx
|
||||
|
@ -147,7 +147,7 @@ class ImdbParser():
|
|||
|
||||
def get_datas(self, seg):
|
||||
"""
|
||||
return features, labels, and weight
|
||||
get features, labels, and weight by gensim.
|
||||
"""
|
||||
features = np.array(self.__features[seg]).astype(np.int32)
|
||||
labels = np.array(self.__labels[seg]).astype(np.int32)
|
||||
|
|
|
@ -14,7 +14,6 @@
|
|||
# ============================================================================
|
||||
"""
|
||||
#################train lstm example on aclImdb########################
|
||||
python train.py --preprocess=true --aclimdb_path=your_imdb_path --glove_path=your_glove_path
|
||||
"""
|
||||
import argparse
|
||||
import os
|
||||
|
|
|
@ -472,7 +472,7 @@ More detail about LR scheduler could be found in `src/utils/lr_scheduler.py`.
|
|||
- Hardware(Ascend/GPU)
|
||||
- Prepare hardware environment with Ascend or GPU processor. If you want to try Ascend , please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
|
||||
- Framework
|
||||
- [MindSpore](http://10.90.67.50/mindspore/archive/20200506/OpenSource/me_vm_x86/)
|
||||
- [MindSpore](https://www.mindspore.cn/install/en)
|
||||
- For more information, please check the resources below:
|
||||
- [MindSpore tutorials](https://www.mindspore.cn/tutorial/zh-CN/master/index.html)
|
||||
- [MindSpore API](https://www.mindspore.cn/api/zh-CN/master/index.html)
|
||||
|
|
|
@ -94,7 +94,6 @@ class TileBeam(nn.Cell):
|
|||
# add an dim
|
||||
input_tensor = self.expand(input_tensor, 1)
|
||||
# get tile shape: [1, beam, ...]
|
||||
# shape = self.shape(input_tensor)
|
||||
tile_shape = (1,) + (self.beam_width,)
|
||||
for _ in range(len(shape) - 1):
|
||||
tile_shape = tile_shape + (1,)
|
||||
|
@ -349,7 +348,7 @@ class BeamSearchDecoder(nn.Cell):
|
|||
|
||||
# add length penalty scores
|
||||
penalty_len = self.length_penalty(state_length)
|
||||
# return penalty_len
|
||||
# get penalty length
|
||||
log_probs = self.real_div(state_log_probs, penalty_len)
|
||||
|
||||
# sort according to scores
|
||||
|
|
|
@ -383,7 +383,6 @@ class BertNetworkWithLoss_td(nn.Cell):
|
|||
if is_predistill:
|
||||
new_param_dict = {}
|
||||
for key, value in param_dict.items():
|
||||
# new_key = re.sub('tinybert_', 'bert_', key)
|
||||
new_key = re.sub('tinybert_', 'bert_', 'bert.' + key)
|
||||
new_param_dict[new_key] = value
|
||||
load_param_into_net(self.bert, new_param_dict)
|
||||
|
@ -391,7 +390,6 @@ class BertNetworkWithLoss_td(nn.Cell):
|
|||
new_param_dict = {}
|
||||
for key, value in param_dict.items():
|
||||
new_key = re.sub('tinybert_', 'bert_', key)
|
||||
# new_key = re.sub('tinybert_', 'bert_', 'bert.'+ key)
|
||||
new_param_dict[new_key] = value
|
||||
load_param_into_net(self.bert, new_param_dict)
|
||||
self.cast = P.Cast()
|
||||
|
|
|
@ -502,7 +502,7 @@ class BertAttention(nn.Cell):
|
|||
attention_scores = self.matmul_trans_b(query_layer, key_layer)
|
||||
# use_relative_position, supplementary logic
|
||||
if self.use_relative_positions:
|
||||
# 'relations_keys' = [F|T, F|T, H]
|
||||
# relations_keys is [F|T, F|T, H]
|
||||
relations_keys = self._generate_relative_positions_embeddings()
|
||||
relations_keys = self.cast_compute_type(relations_keys)
|
||||
# query_layer_t is [F, B, N, H]
|
||||
|
@ -539,7 +539,7 @@ class BertAttention(nn.Cell):
|
|||
context_layer = self.matmul(attention_probs, value_layer)
|
||||
# use_relative_position, supplementary logic
|
||||
if self.use_relative_positions:
|
||||
# 'relations_values' = [F|T, F|T, H]
|
||||
# relations_values is [F|T, F|T, H]
|
||||
relations_values = self._generate_relative_positions_embeddings()
|
||||
relations_values = self.cast_compute_type(relations_values)
|
||||
# attention_probs_t is [F, B, N, T]
|
||||
|
|
|
@ -258,7 +258,7 @@ class BeamSearchDecoder(nn.Cell):
|
|||
|
||||
# add length penalty scores
|
||||
penalty_len = self.length_penalty(state_length)
|
||||
# return penalty_len
|
||||
# get penalty length
|
||||
log_probs = self.real_div(state_log_probs, penalty_len)
|
||||
|
||||
# sort according to scores
|
||||
|
|
|
@ -55,7 +55,7 @@ class ClipGradients(nn.Cell):
|
|||
grads,
|
||||
clip_type,
|
||||
clip_value):
|
||||
"""return grads"""
|
||||
"""Defines the gradients clip."""
|
||||
if clip_type != 0 and clip_type != 1:
|
||||
return grads
|
||||
|
||||
|
|
|
@ -156,6 +156,7 @@ class WideDeepModel(nn.Cell):
|
|||
emb64_multi_size = 20900
|
||||
indicator_size = 16
|
||||
deep_dim_list = [1024, 1024, 1024, 1024, 1024]
|
||||
|
||||
wide_reg_coef = [0.0, 0.0]
|
||||
deep_reg_coef = [0.0, 0.0]
|
||||
wide_lr = 0.2
|
||||
|
|
|
@ -43,7 +43,7 @@ Dataset used: [Oxford-IIIT Pet](https://www.robots.ox.ac.uk/~vgg/data/pets/)
|
|||
- Hardware(Ascend/GPU)
|
||||
- Prepare hardware environment with Ascend or GPU. If you want to try Ascend, please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
|
||||
- Framework
|
||||
- [MindSpore](http://10.90.67.50/mindspore/archive/20200506/OpenSource/me_vm_x86/)
|
||||
- [MindSpore](https://www.mindspore.cn/install/en)
|
||||
- For more information, please check the resources below:
|
||||
- [MindSpore tutorials](https://www.mindspore.cn/tutorial/zh-CN/master/index.html)
|
||||
- [MindSpore API](https://www.mindspore.cn/api/zh-CN/master/index.html)
|
||||
|
|
|
@ -335,7 +335,6 @@ class GhostNet(nn.Cell):
|
|||
|
||||
self.blocks = []
|
||||
for layer_cfg in self.cfgs:
|
||||
#print (layer_cfg)
|
||||
self.blocks.append(self._make_layer(kernel_size=layer_cfg[0],
|
||||
exp_ch=_make_divisible(
|
||||
self.inplanes * layer_cfg[3]),
|
||||
|
|
|
@ -48,7 +48,7 @@ Dataset used: [Oxford-IIIT Pet](https://www.robots.ox.ac.uk/~vgg/data/pets/)
|
|||
- Hardware(Ascend/GPU)
|
||||
- Prepare hardware environment with Ascend or GPU processor. If you want to try Ascend, please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
|
||||
- Framework
|
||||
- [MindSpore](http://10.90.67.50/mindspore/archive/20200506/OpenSource/me_vm_x86/)
|
||||
- [MindSpore](https://www.mindspore.cn/install/en)
|
||||
- For more information, please check the resources below:
|
||||
- [MindSpore tutorials](https://www.mindspore.cn/tutorial/zh-CN/master/index.html)
|
||||
- [MindSpore API](https://www.mindspore.cn/api/zh-CN/master/index.html)
|
||||
|
|
|
@ -105,7 +105,7 @@ class SE(nn.Cell):
|
|||
SE warpper definition.
|
||||
|
||||
Args:
|
||||
num_out (int): Output channel.
|
||||
num_out (int): output channel.
|
||||
ratio (int): middle output ratio.
|
||||
|
||||
Returns:
|
||||
|
|
|
@ -36,7 +36,7 @@ Dataset used: [Oxford-IIIT Pet](https://www.robots.ox.ac.uk/~vgg/data/pets/)
|
|||
- Hardware(Ascend/GPU)
|
||||
- Prepare hardware environment with Ascend or GPU processor. If you want to try Ascend, please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
|
||||
- Framework
|
||||
- [MindSpore](http://10.90.67.50/mindspore/archive/20200506/OpenSource/me_vm_x86/)
|
||||
- [MindSpore](https://www.mindspore.cn/install/en)
|
||||
- For more information, please check the resources below:
|
||||
- [MindSpore tutorials](https://www.mindspore.cn/tutorial/zh-CN/master/index.html)
|
||||
- [MindSpore API](https://www.mindspore.cn/api/zh-CN/master/index.html)
|
||||
|
|
|
@ -23,7 +23,7 @@ Dataset used: [COCO2017](<http://images.cocodataset.org/>)
|
|||
- Hardware(Ascend/GPU)
|
||||
- Prepare hardware environment with Ascend or GPU processor. If you want to try Ascend, please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
|
||||
- Framework
|
||||
- [MindSpore](http://10.90.67.50/mindspore/archive/20200506/OpenSource/me_vm_x86/)
|
||||
- [MindSpore](https://www.mindspore.cn/install/en)
|
||||
- For more information, please check the resources below:
|
||||
- [MindSpore tutorials](https://www.mindspore.cn/tutorial/zh-CN/master/index.html)
|
||||
- [MindSpore API](https://www.mindspore.cn/api/zh-CN/master/index.html)
|
||||
|
|
|
@ -84,7 +84,6 @@ class ConvBNReLU(nn.Cell):
|
|||
|
||||
def construct(self, x):
|
||||
output = self.features(x)
|
||||
# print(output.shape)
|
||||
return output
|
||||
|
||||
|
||||
|
@ -267,8 +266,6 @@ class GhostModule(nn.Cell):
|
|||
def construct(self, x):
|
||||
x1 = self.primary_conv(x)
|
||||
x2 = self.cheap_operation(x1)
|
||||
# print(x1.shape)
|
||||
# print(x2.shape)
|
||||
return self.concat((x1, x2))
|
||||
|
||||
|
||||
|
@ -342,7 +339,6 @@ class GhostBottleneck(nn.Cell):
|
|||
out = self.add(shortcut, out)
|
||||
if self.last_relu:
|
||||
out = self.relu(out)
|
||||
# print(out.shape)
|
||||
return out
|
||||
|
||||
def _get_pad(self, kernel_size):
|
||||
|
@ -410,7 +406,6 @@ class InvertedResidual(nn.Cell):
|
|||
x = self.add(identity, x)
|
||||
if self.last_relu:
|
||||
x = self.relu(x)
|
||||
# print(x.shape)
|
||||
return x
|
||||
|
||||
|
||||
|
@ -675,7 +670,6 @@ class SSDWithGhostNet(nn.Cell):
|
|||
def __init__(self, model_cfgs, multiplier=1., round_nearest=8):
|
||||
super(SSDWithGhostNet, self).__init__()
|
||||
self.cfgs = model_cfgs['cfg']
|
||||
# self.inplanes = 16 ## for "1x"
|
||||
self.inplanes = 20 # for "1.3x"
|
||||
first_conv_in_channel = 3
|
||||
first_conv_out_channel = _make_divisible(multiplier * self.inplanes)
|
||||
|
@ -686,7 +680,6 @@ class SSDWithGhostNet(nn.Cell):
|
|||
|
||||
layer_index = 0
|
||||
for layer_cfg in self.cfgs:
|
||||
# print(layer_cfg)
|
||||
if layer_index == 11:
|
||||
hidden_dim = int(round(self.inplanes * 6))
|
||||
self.expand_layer_conv_11 = ConvBNReLU(
|
||||
|
@ -711,7 +704,6 @@ class SSDWithGhostNet(nn.Cell):
|
|||
def _make_layer(self, kernel_size, exp_ch, out_channel, use_se, act_func, stride=1):
|
||||
mid_planes = exp_ch
|
||||
out_planes = out_channel
|
||||
# num_in, num_mid, num_out, kernel_size, stride=1, act_type='relu', use_se=False):
|
||||
layer = GhostBottleneck(self.inplanes, mid_planes, out_planes,
|
||||
kernel_size, stride=stride, act_type=act_func, use_se=use_se)
|
||||
self.inplanes = out_planes
|
||||
|
|
|
@ -23,10 +23,8 @@ from mindspore import context, Tensor
|
|||
from mindspore.communication.management import init
|
||||
from mindspore.train.callback import CheckpointConfig, ModelCheckpoint, LossMonitor, TimeMonitor
|
||||
from mindspore.train import Model, ParallelMode
|
||||
# from mindspore.context import ParallelMode
|
||||
from mindspore.train.serialization import load_checkpoint, load_param_into_net
|
||||
from src.ssd_ghostnet import SSD300, SSDWithLossCell, TrainingWrapper, ssd_ghostnet
|
||||
# from src.config_ghostnet_1x import config
|
||||
from src.config_ghostnet_13x import config
|
||||
from src.dataset import create_ssd_dataset, data_to_mindrecord_byte_image, voc_data_to_mindrecord
|
||||
from src.lr_schedule import get_lr
|
||||
|
@ -124,7 +122,6 @@ def main():
|
|||
|
||||
backbone = ssd_ghostnet()
|
||||
ssd = SSD300(backbone=backbone, config=config)
|
||||
# print(ssd)
|
||||
net = SSDWithLossCell(ssd, config)
|
||||
init_net_param(net)
|
||||
|
||||
|
|
|
@ -149,7 +149,6 @@ if __name__ == "__main__":
|
|||
# pass mr_api arguments
|
||||
os.environ['graph_api_args'] = args.graph_api_args
|
||||
|
||||
# import mr_api
|
||||
try:
|
||||
mr_api = import_module(args.mindrecord_script + '.mr_api')
|
||||
except ModuleNotFoundError:
|
||||
|
|
|
@ -13,22 +13,19 @@
|
|||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""wide and deep model"""
|
||||
import numpy as np
|
||||
from mindspore import nn
|
||||
from mindspore import Parameter, ParameterTuple
|
||||
import mindspore.common.dtype as mstype
|
||||
from mindspore.ops import functional as F
|
||||
from mindspore.ops import composite as C
|
||||
from mindspore.ops import operations as P
|
||||
# from mindspore.nn import Dropout
|
||||
from mindspore.nn.optim import Adam, FTRL
|
||||
# from mindspore.nn.metrics import Metric
|
||||
from mindspore.common.initializer import Uniform, initializer
|
||||
# from mindspore.train.callback import ModelCheckpoint, CheckpointConfig
|
||||
from mindspore.parallel._utils import _get_device_num, _get_parallel_mode, _get_gradients_mean
|
||||
from mindspore.context import ParallelMode
|
||||
from mindspore.nn.wrap.grad_reducer import DistributedGradReducer
|
||||
from mindspore.communication.management import get_group_size
|
||||
import numpy as np
|
||||
|
||||
np_type = np.float32
|
||||
ms_type = mstype.float32
|
||||
|
@ -110,8 +107,6 @@ class DenseLayer(nn.Cell):
|
|||
|
||||
def construct(self, x):
|
||||
x = self.act_func(x)
|
||||
# if self.training:
|
||||
# x = self.dropout(x)
|
||||
x = self.mul(x, self.scale_coef)
|
||||
if self.convert_dtype:
|
||||
x = self.cast(x, mstype.float16)
|
||||
|
|
|
@ -13,6 +13,7 @@
|
|||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""fused layernorm"""
|
||||
import numpy as np
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.ops import functional as F
|
||||
from mindspore.common.parameter import Parameter
|
||||
|
@ -21,8 +22,6 @@ from mindspore.ops.primitive import constexpr
|
|||
import mindspore.common.dtype as mstype
|
||||
from mindspore.nn.cell import Cell
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
__all__ = ['FusedLayerNorm']
|
||||
|
||||
|
|
|
@ -13,10 +13,10 @@
|
|||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""Dataset module."""
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
import mindspore.dataset as de
|
||||
import mindspore.dataset.vision.c_transforms as C
|
||||
import numpy as np
|
||||
|
||||
from .ei_dataset import HwVocRawDataset
|
||||
from .utils import custom_transforms as tr
|
||||
|
|
Loading…
Reference in New Issue