fix issue I1DBRX
delete duplicated words in comments fix issue I1CJAP fix issue I1D3WS fix issue I1DBA8 fix issue I1CJ77 fix issue I1CJG3 fix review suggestion
This commit is contained in:
parent
0830ad932b
commit
c3d210cc31
|
@ -249,7 +249,7 @@ class LayerNorm(Cell):
|
|||
'he_uniform', etc. Default: 'zeros'.
|
||||
|
||||
Inputs:
|
||||
- **input_x** (Tensor) - The shape of 'input_x' is input_shape = :math:`(x_1, x_2, ..., x_R)`,
|
||||
- **input_x** (Tensor) - The shape of 'input_x' is :math:`(x_1, x_2, ..., x_R)`,
|
||||
and `input_shape[begin_norm_axis:]` is equal to `normalized_shape`.
|
||||
|
||||
Outputs:
|
||||
|
|
|
@ -443,7 +443,6 @@ class Transpose(PrimitiveWithInfer):
|
|||
Examples:
|
||||
>>> input_tensor = Tensor(np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]]), mindspore.float32)
|
||||
>>> perm = (0, 2, 1)
|
||||
>>> expect = np.array([[[1, 4], [2, 5], [3, 6]], [[7, 10], [8, 11], [9, 12]]])
|
||||
>>> transpose = Transpose()
|
||||
>>> output = transpose(input_tensor, perm)
|
||||
"""
|
||||
|
@ -1631,7 +1630,7 @@ class Diag(PrimitiveWithInfer):
|
|||
Examples:
|
||||
>>> input_x = Tensor([1, 2, 3, 4])
|
||||
>>> diag = P.Diag()
|
||||
>>> diag(x)
|
||||
>>> diag(input_x)
|
||||
[[1, 0, 0, 0],
|
||||
[0, 2, 0, 0],
|
||||
[0, 0, 3, 0],
|
||||
|
|
|
@ -107,8 +107,8 @@ class GeSwitch(PrimitiveWithInfer):
|
|||
>>> ret = self.merge((add_ret, sq_ret))
|
||||
>>> return ret[0]
|
||||
>>>
|
||||
>>> x = Tensor(x_init, dtype=mindspore.float32)
|
||||
>>> y = Tensor(y_init, dtype=mindspore.float32)
|
||||
>>> x = Tensor(10.0, dtype=mindspore.float32)
|
||||
>>> y = Tensor(5.0, dtype=mindspore.float32)
|
||||
>>> net = Net()
|
||||
>>> output = net(x, y)
|
||||
"""
|
||||
|
|
|
@ -140,6 +140,7 @@ class AssignAdd(PrimitiveWithInfer):
|
|||
Examples:
|
||||
>>> class Net(Cell):
|
||||
>>> def __init__(self):
|
||||
>>> super(Net, self).__init__()
|
||||
>>> self.AssignAdd = P.AssignAdd()
|
||||
>>> self.inputdata = Parameter(initializer(1, [1], mindspore.int64), name="global_step")
|
||||
>>>
|
||||
|
@ -272,7 +273,7 @@ class ReduceMean(_Reduce):
|
|||
|
||||
Examples:
|
||||
>>> data = Tensor(np.random.randn(3, 4, 5, 6).astype(np.float32))
|
||||
>>> op = ReduceMean(keep_dims=True)
|
||||
>>> op = P.ReduceMean(keep_dims=True)
|
||||
>>> output = op(data, 1)
|
||||
"""
|
||||
|
||||
|
@ -304,7 +305,7 @@ class ReduceSum(_Reduce):
|
|||
|
||||
Examples:
|
||||
>>> data = Tensor(np.random.randn(3, 4, 5, 6).astype(np.float32))
|
||||
>>> op = ReduceSum(keep_dims=True)
|
||||
>>> op = P.ReduceSum(keep_dims=True)
|
||||
>>> output = op(data, 1)
|
||||
"""
|
||||
|
||||
|
@ -337,7 +338,7 @@ class ReduceAll(_Reduce):
|
|||
|
||||
Examples:
|
||||
>>> data = Tensor(np.array([[True, False], [True, True]]))
|
||||
>>> op = ReduceAll(keep_dims=True)
|
||||
>>> op = P.ReduceAll(keep_dims=True)
|
||||
>>> output = op(data, 1)
|
||||
"""
|
||||
|
||||
|
@ -373,7 +374,7 @@ class ReduceMax(_Reduce):
|
|||
|
||||
Examples:
|
||||
>>> data = Tensor(np.random.randn(3, 4, 5, 6).astype(np.float32))
|
||||
>>> op = ReduceMax(keep_dims=True)
|
||||
>>> op = P.ReduceMax(keep_dims=True)
|
||||
>>> output = op(data, 1)
|
||||
"""
|
||||
|
||||
|
@ -406,7 +407,7 @@ class ReduceMin(_Reduce):
|
|||
|
||||
Examples:
|
||||
>>> data = Tensor(np.random.randn(3, 4, 5, 6).astype(np.float32))
|
||||
>>> op = ReduceMin(keep_dims=True)
|
||||
>>> op = P.ReduceMin(keep_dims=True)
|
||||
>>> output = op(data, 1)
|
||||
"""
|
||||
|
||||
|
@ -438,7 +439,7 @@ class ReduceProd(_Reduce):
|
|||
|
||||
Examples:
|
||||
>>> data = Tensor(np.random.randn(3, 4, 5, 6).astype(np.float32))
|
||||
>>> op = ReduceProd(keep_dims=True)
|
||||
>>> op = P.ReduceProd(keep_dims=True)
|
||||
>>> output = op(data, 1)
|
||||
"""
|
||||
|
||||
|
@ -460,13 +461,13 @@ class CumProd(PrimitiveWithInfer):
|
|||
|
||||
Examples:
|
||||
>>> data = Tensor(np.array([a, b, c]).astype(np.float32))
|
||||
>>> op0 = CumProd()
|
||||
>>> op0 = P.CumProd()
|
||||
>>> output = op0(data, 0) # output=[a, a * b, a * b * c]
|
||||
>>> op1 = CumProd(exclusive=True)
|
||||
>>> op1 = P.CumProd(exclusive=True)
|
||||
>>> output = op1(data, 0) # output=[1, a, a * b]
|
||||
>>> op2 = CumProd(reverse=True)
|
||||
>>> op2 = P.CumProd(reverse=True)
|
||||
>>> output = op2(data, 0) # output=[a * b * c, b * c, c]
|
||||
>>> op3 = CumProd(exclusive=True, reverse=True)
|
||||
>>> op3 = P.CumProd(exclusive=True, reverse=True)
|
||||
>>> output = op3(data, 0) # output=[b * c, c, 1]
|
||||
"""
|
||||
@prim_attr_register
|
||||
|
@ -506,7 +507,7 @@ class MatMul(PrimitiveWithInfer):
|
|||
Examples:
|
||||
>>> input_x = Tensor(np.ones(shape=[1, 3]), mindspore.float32)
|
||||
>>> input_y = Tensor(np.ones(shape=[3, 4]), mindspore.float32)
|
||||
>>> matmul = MatMul()
|
||||
>>> matmul = P.MatMul()
|
||||
>>> output = matmul(input_x, input_y)
|
||||
"""
|
||||
|
||||
|
@ -582,12 +583,12 @@ class BatchMatMul(MatMul):
|
|||
Examples:
|
||||
>>> input_x = Tensor(np.ones(shape=[2, 4, 1, 3]), mindspore.float32)
|
||||
>>> input_y = Tensor(np.ones(shape=[2, 4, 3, 4]), mindspore.float32)
|
||||
>>> batmatmul = BatchMatMul()
|
||||
>>> batmatmul = P.BatchMatMul()
|
||||
>>> output = batmatmul(input_x, input_y)
|
||||
>>>
|
||||
>>> input_x = Tensor(np.ones(shape=[2, 4, 3, 1]), mindspore.float32)
|
||||
>>> input_y = Tensor(np.ones(shape=[2, 4, 3, 4]), mindspore.float32)
|
||||
>>> batmatmul = BatchMatMul(transpose_a=True)
|
||||
>>> batmatmul = P.BatchMatMul(transpose_a=True)
|
||||
>>> output = batmatmul(input_x, input_y)
|
||||
"""
|
||||
|
||||
|
@ -621,7 +622,7 @@ class CumSum(PrimitiveWithInfer):
|
|||
|
||||
Examples:
|
||||
>>> input = Tensor(np.array([[3, 4, 6, 10],[1, 6, 7, 9],[4, 3, 8, 7],[1, 3, 7, 9]]).astype(np.float32))
|
||||
>>> cumsum = CumSum()
|
||||
>>> cumsum = P.CumSum()
|
||||
>>> output = cumsum(input, 1)
|
||||
[[ 3. 7. 13. 23.]
|
||||
[ 1. 7. 14. 23.]
|
||||
|
@ -666,7 +667,7 @@ class AddN(PrimitiveWithInfer):
|
|||
>>> class NetAddN(nn.Cell):
|
||||
>>> def __init__(self):
|
||||
>>> super(NetAddN, self).__init__()
|
||||
>>> self.addN = AddN()
|
||||
>>> self.addN = P.AddN()
|
||||
>>>
|
||||
>>> def construct(self, *z):
|
||||
>>> return self.addN(z)
|
||||
|
@ -748,7 +749,7 @@ class Sub(_MathBinaryOp):
|
|||
Examples:
|
||||
>>> input_x = Tensor(np.array([1, 2, 3]), mindspore.int32)
|
||||
>>> input_y = Tensor(np.array([4, 5, 6]), mindspore.int32)
|
||||
>>> sub = Sub()
|
||||
>>> sub = P.Sub()
|
||||
>>> sub(input_x, input_y)
|
||||
[-3, -3, -3]
|
||||
"""
|
||||
|
@ -775,7 +776,7 @@ class Mul(_MathBinaryOp):
|
|||
Examples:
|
||||
>>> input_x = Tensor(np.array([1, 2, 3]), mindspore.int32)
|
||||
>>> input_y = Tensor(np.array([4, 5, 6]), mindspore.int32)
|
||||
>>> mul = Mul()
|
||||
>>> mul = P.Mul()
|
||||
>>> mul(input_x, input_y)
|
||||
[4, 10, 18]
|
||||
"""
|
||||
|
@ -793,7 +794,7 @@ class Square(PrimitiveWithInfer):
|
|||
|
||||
Examples:
|
||||
>>> input_x = Tensor(np.array([1.0, 2.0, 3.0]), mindspore.float32)
|
||||
>>> square = Square()
|
||||
>>> square = P.Square()
|
||||
>>> square(input_x)
|
||||
[1.0, 4.0, 9.0]
|
||||
"""
|
||||
|
@ -823,7 +824,7 @@ class Rsqrt(PrimitiveWithInfer):
|
|||
|
||||
Examples:
|
||||
>>> input_tensor = Tensor([[4, 4], [9, 9]], mindspore.float32)
|
||||
>>> rsqrt = Rsqrt()
|
||||
>>> rsqrt = P.Rsqrt()
|
||||
>>> rsqrt(input_tensor)
|
||||
[[0.5, 0.5], [0.333333, 0.333333]]
|
||||
"""
|
||||
|
@ -853,7 +854,7 @@ class Sqrt(PrimitiveWithInfer):
|
|||
|
||||
Examples:
|
||||
>>> input_x = Tensor(np.array([1.0, 4.0, 9.0]), mindspore.float32)
|
||||
>>> sqrt = Sqrt()
|
||||
>>> sqrt = P.Sqrt()
|
||||
>>> sqrt(input_x)
|
||||
[1.0, 2.0, 3.0]
|
||||
"""
|
||||
|
@ -883,7 +884,7 @@ class Reciprocal(PrimitiveWithInfer):
|
|||
|
||||
Examples:
|
||||
>>> input_x = Tensor(np.array([1.0, 2.0, 4.0]), mindspore.float32)
|
||||
>>> reciprocal = Reciprocal()
|
||||
>>> reciprocal = P.Reciprocal()
|
||||
>>> reciprocal(input_x)
|
||||
[1.0, 0.5, 0.25]
|
||||
"""
|
||||
|
@ -916,13 +917,13 @@ class Pow(PrimitiveWithInfer):
|
|||
Examples:
|
||||
>>> input_x = Tensor(np.array([1.0, 2.0, 4.0]), mindspore.float32)
|
||||
>>> input_y = 3.0
|
||||
>>> pow = Pow()
|
||||
>>> pow = P.Pow()
|
||||
>>> pow(input_x, input_y)
|
||||
[1.0, 8.0, 64.0]
|
||||
>>>
|
||||
>>> input_x = Tensor(np.array([1.0, 2.0, 4.0]), mindspore.float32)
|
||||
>>> input_y = Tensor(np.array([2.0, 4.0, 3.0]), mindspore.float32)
|
||||
>>> pow = Pow()
|
||||
>>> pow = P.Pow()
|
||||
>>> pow(input_x, input_y)
|
||||
[1.0, 16.0, 64.0]
|
||||
"""
|
||||
|
@ -952,7 +953,7 @@ class Exp(PrimitiveWithInfer):
|
|||
|
||||
Examples:
|
||||
>>> input_x = Tensor(np.array([1.0, 2.0, 4.0]), mindspore.float32)
|
||||
>>> exp = Exp()
|
||||
>>> exp = P.Exp()
|
||||
>>> exp(input_x)
|
||||
[ 2.71828183, 7.3890561 , 54.59815003]
|
||||
"""
|
||||
|
@ -982,7 +983,7 @@ class Log(PrimitiveWithInfer):
|
|||
|
||||
Examples:
|
||||
>>> input_x = Tensor(np.array([1.0, 2.0, 4.0]), mindspore.float32)
|
||||
>>> log = Log()
|
||||
>>> log = P.Log()
|
||||
>>> log(input_x)
|
||||
[0.0, 0.69314718, 1.38629436]
|
||||
"""
|
||||
|
@ -1020,7 +1021,7 @@ class Minimum(_MathBinaryOp):
|
|||
Examples:
|
||||
>>> input_x = Tensor(np.array([1.0, 5.0, 3.0]), mindspore.float32)
|
||||
>>> input_y = Tensor(np.array([4.0, 2.0, 6.0]), mindspore.float32)
|
||||
>>> minimum = Minimum()
|
||||
>>> minimum = P.Minimum()
|
||||
>>> minimum(input_x, input_y)
|
||||
[1.0, 2.0, 3.0]
|
||||
"""
|
||||
|
@ -1047,7 +1048,7 @@ class Maximum(_MathBinaryOp):
|
|||
Examples:
|
||||
>>> input_x = Tensor(np.array([1.0, 5.0, 3.0]), mindspore.float32)
|
||||
>>> input_y = Tensor(np.array([4.0, 2.0, 6.0]), mindspore.float32)
|
||||
>>> maximum = Maximum()
|
||||
>>> maximum = P.Maximum()
|
||||
>>> maximum(input_x, input_y)
|
||||
[4.0, 5.0, 6.0]
|
||||
"""
|
||||
|
@ -1074,7 +1075,7 @@ class RealDiv(_MathBinaryOp):
|
|||
Examples:
|
||||
>>> input_x = Tensor(np.array([1.0, 2.0, 3.0]), mindspore.float32)
|
||||
>>> input_y = Tensor(np.array([4.0, 5.0, 6.0]), mindspore.float32)
|
||||
>>> realdiv = RealDiv()
|
||||
>>> realdiv = P.RealDiv()
|
||||
>>> realdiv(input_x, input_y)
|
||||
[0.25, 0.4, 0.5]
|
||||
"""
|
||||
|
@ -1113,9 +1114,8 @@ class Div(_MathBinaryOp):
|
|||
Examples:
|
||||
>>> input_x = Tensor(np.array([-4.0, 5.0, 6.0]), mindspore.float32)
|
||||
>>> input_y = Tensor(np.array([3.0, 2.0, 3.0]), mindspore.float32)
|
||||
>>> div = Div()
|
||||
>>> div = P.Div()
|
||||
>>> div(input_x, input_y)
|
||||
[-2.0, 2.0, 2.0]
|
||||
"""
|
||||
|
||||
def infer_value(self, x, y):
|
||||
|
@ -1147,7 +1147,7 @@ class FloorDiv(_MathBinaryOp):
|
|||
Examples:
|
||||
>>> input_x = Tensor(np.array([2, 4, -1]), mindspore.int32)
|
||||
>>> input_y = Tensor(np.array([3, 3, 3]), mindspore.int32)
|
||||
>>> floor_div = FloorDiv()
|
||||
>>> floor_div = P.FloorDiv()
|
||||
>>> floor_div(input_x, input_y)
|
||||
[0, 1, -1]
|
||||
"""
|
||||
|
@ -1165,7 +1165,7 @@ class Floor(PrimitiveWithInfer):
|
|||
|
||||
Examples:
|
||||
>>> input_x = Tensor(np.array([1.1, 2.5, -1.5]), mindspore.float32)
|
||||
>>> floor = Floor()
|
||||
>>> floor = P.Floor()
|
||||
>>> floor(input_x)
|
||||
[1.0, 2.0, -2.0]
|
||||
"""
|
||||
|
@ -1221,13 +1221,13 @@ class Equal(_LogicBinaryOp):
|
|||
|
||||
Examples:
|
||||
>>> input_x = Tensor(np.array([1, 2, 3]), mindspore.float32)
|
||||
>>> equal = Equal()
|
||||
>>> equal = P.Equal()
|
||||
>>> equal(input_x, 2.0)
|
||||
[False, True, False]
|
||||
>>>
|
||||
>>> input_x = Tensor(np.array([1, 2, 3]), mindspore.int32)
|
||||
>>> input_y = Tensor(np.array([1, 2, 4]), mindspore.int32)
|
||||
>>> equal = Equal()
|
||||
>>> equal = P.Equal()
|
||||
>>> equal(input_x, input_y)
|
||||
[True, True, False]
|
||||
"""
|
||||
|
@ -1252,7 +1252,7 @@ class EqualCount(PrimitiveWithInfer):
|
|||
Examples:
|
||||
>>> input_x = Tensor(np.array([1, 2, 3]), mindspore.int32)
|
||||
>>> input_y = Tensor(np.array([1, 2, 4]), mindspore.int32)
|
||||
>>> equal_count = EqualCount()
|
||||
>>> equal_count = P.EqualCount()
|
||||
>>> equal_count(input_x, input_y)
|
||||
[2]
|
||||
"""
|
||||
|
@ -1292,13 +1292,13 @@ class NotEqual(_LogicBinaryOp):
|
|||
|
||||
Examples:
|
||||
>>> input_x = Tensor(np.array([1, 2, 3]), mindspore.float32)
|
||||
>>> not_equal = NotEqual()
|
||||
>>> not_equal = P.NotEqual()
|
||||
>>> not_equal(input_x, 2.0)
|
||||
[True, False, True]
|
||||
>>>
|
||||
>>> input_x = Tensor(np.array([1, 2, 3]), mindspore.int32)
|
||||
>>> input_y = Tensor(np.array([1, 2, 4]), mindspore.int32)
|
||||
>>> not_equal = NotEqual()
|
||||
>>> not_equal = P.NotEqual()
|
||||
>>> not_equal(input_x, input_y)
|
||||
[False, False, True]
|
||||
"""
|
||||
|
@ -1328,7 +1328,7 @@ class Greater(_LogicBinaryOp):
|
|||
Examples:
|
||||
>>> input_x = Tensor(np.array([1, 2, 3]), mindspore.int32)
|
||||
>>> input_y = Tensor(np.array([1, 1, 4]), mindspore.int32)
|
||||
>>> greater = Greater()
|
||||
>>> greater = P.Greater()
|
||||
>>> greater(input_x, input_y)
|
||||
[False, True, False]
|
||||
"""
|
||||
|
@ -1355,7 +1355,7 @@ class GreaterEqual(_LogicBinaryOp):
|
|||
Examples:
|
||||
>>> input_x = Tensor(np.array([1, 2, 3]), mindspore.int32)
|
||||
>>> input_y = Tensor(np.array([1, 1, 4]), mindspore.int32)
|
||||
>>> greater_equal = GreaterEqual()
|
||||
>>> greater_equal = P.GreaterEqual()
|
||||
>>> greater_equal(input_x, input_y)
|
||||
[True, True, False]
|
||||
"""
|
||||
|
@ -1382,7 +1382,7 @@ class Less(_LogicBinaryOp):
|
|||
Examples:
|
||||
>>> input_x = Tensor(np.array([1, 2, 3]), mindspore.int32)
|
||||
>>> input_y = Tensor(np.array([1, 1, 4]), mindspore.int32)
|
||||
>>> less = Less()
|
||||
>>> less = P.Less()
|
||||
>>> less(input_x, input_y)
|
||||
[False, False, True]
|
||||
"""
|
||||
|
@ -1409,7 +1409,7 @@ class LessEqual(_LogicBinaryOp):
|
|||
Examples:
|
||||
>>> input_x = Tensor(np.array([1, 2, 3]), mindspore.int32)
|
||||
>>> input_y = Tensor(np.array([1, 1, 4]), mindspore.int32)
|
||||
>>> less_equal = LessEqual()
|
||||
>>> less_equal = P.LessEqual()
|
||||
>>> less_equal(input_x, input_y)
|
||||
[True, False, True]
|
||||
"""
|
||||
|
@ -1427,7 +1427,7 @@ class LogicalNot(PrimitiveWithInfer):
|
|||
|
||||
Examples:
|
||||
>>> input_x = Tensor(np.array([True, False, True]), mindspore.bool_)
|
||||
>>> logical_not = LogicalNot()
|
||||
>>> logical_not = P.LogicalNot()
|
||||
>>> logical_not(input_x)
|
||||
[False, True, False]
|
||||
"""
|
||||
|
@ -1465,7 +1465,7 @@ class LogicalAnd(_LogicBinaryOp):
|
|||
Examples:
|
||||
>>> input_x = Tensor(np.array([True, False, True]), mindspore.bool_)
|
||||
>>> input_y = Tensor(np.array([True, True, False]), mindspore.bool_)
|
||||
>>> logical_and = LogicalAnd()
|
||||
>>> logical_and = P.LogicalAnd()
|
||||
>>> logical_and(input_x, input_y)
|
||||
[True, False, False]
|
||||
"""
|
||||
|
@ -1494,7 +1494,7 @@ class LogicalOr(_LogicBinaryOp):
|
|||
Examples:
|
||||
>>> input_x = Tensor(np.array([True, False, True]), mindspore.bool_)
|
||||
>>> input_y = Tensor(np.array([True, True, False]), mindspore.bool_)
|
||||
>>> logical_or = LogicalOr()
|
||||
>>> logical_or = P.LogicalOr()
|
||||
>>> logical_or(input_x, input_y)
|
||||
[True, True, True]
|
||||
"""
|
||||
|
@ -1516,7 +1516,7 @@ class NPUAllocFloatStatus(PrimitiveWithInfer):
|
|||
Tensor, has the shape of `(8,)`.
|
||||
|
||||
Examples:
|
||||
>>> alloc_status = NPUAllocFloatStatus()
|
||||
>>> alloc_status = P.NPUAllocFloatStatus()
|
||||
>>> init = alloc_status()
|
||||
Tensor([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], shape=(8,), dtype=mindspore.float32)
|
||||
"""
|
||||
|
@ -1548,8 +1548,8 @@ class NPUGetFloatStatus(PrimitiveWithInfer):
|
|||
Tensor, has the same shape as `input_x`. All the elements in the tensor will be zero.
|
||||
|
||||
Examples:
|
||||
>>> alloc_status = NPUAllocFloatStatus()
|
||||
>>> get_status = NPUGetFloatStatus()
|
||||
>>> alloc_status = P.NPUAllocFloatStatus()
|
||||
>>> get_status = P.NPUGetFloatStatus()
|
||||
>>> init = alloc_status()
|
||||
>>> flag = get_status(init)
|
||||
Tensor([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], shape=(8,), dtype=mindspore.float32)
|
||||
|
@ -1588,9 +1588,9 @@ class NPUClearFloatStatus(PrimitiveWithInfer):
|
|||
Tensor, has the same shape as `input_x`. All the elements in the tensor will be zero.
|
||||
|
||||
Examples:
|
||||
>>> alloc_status = NPUAllocFloatStatus()
|
||||
>>> get_status = NPUGetFloatStatus()
|
||||
>>> clear_status = NPUClearFloatStatus()
|
||||
>>> alloc_status = P.NPUAllocFloatStatus()
|
||||
>>> get_status = P.NPUGetFloatStatus()
|
||||
>>> clear_status = P.NPUClearFloatStatus()
|
||||
>>> init = alloc_status()
|
||||
>>> flag = get_status(init)
|
||||
>>> clear = clear_status(init)
|
||||
|
@ -1624,7 +1624,7 @@ class Cos(PrimitiveWithInfer):
|
|||
Tensor, has the same shape as `input_x`.
|
||||
|
||||
Examples:
|
||||
>>> cos = Cos()
|
||||
>>> cos = P.Cos()
|
||||
>>> X = Tensor(np.array([0.24, 0.83, 0.31, 0.09]), ms.float32)
|
||||
>>> output = cos(X)
|
||||
"""
|
||||
|
@ -1653,8 +1653,8 @@ class ACos(PrimitiveWithInfer):
|
|||
Tensor, has the same shape as `input_x`.
|
||||
|
||||
Examples:
|
||||
>>> acos = ACos()
|
||||
>>> X = Tensor(np.array([0.74, 0.04, 0.30, 0.56]), ms.float32)
|
||||
>>> acos = P.ACos()
|
||||
>>> X = Tensor(np.array([0.74, 0.04, 0.30, 0.56]), mindspore.float32)
|
||||
>>> output = acos(X)
|
||||
"""
|
||||
|
||||
|
@ -1682,9 +1682,9 @@ class Sin(PrimitiveWithInfer):
|
|||
Tensor, has the same shape as `input_x`.
|
||||
|
||||
Examples:
|
||||
>>> sin = Sin()
|
||||
>>> X = Tensor(np.array([0.62, 0.28, 0.43, 0.62]), ms.float32)
|
||||
>>> output = sin(X)
|
||||
>>> sin = P.Sin()
|
||||
>>> input_x = Tensor(np.array([0.62, 0.28, 0.43, 0.62]), ms.float32)
|
||||
>>> output = sin(input_x)
|
||||
"""
|
||||
|
||||
@prim_attr_register
|
||||
|
@ -1734,7 +1734,7 @@ class NMSWithMask(PrimitiveWithInfer):
|
|||
>>> bbox[:, 2] += bbox[:, 0]
|
||||
>>> bbox[:, 3] += bbox[:, 1]
|
||||
>>> inputs = Tensor(bbox)
|
||||
>>> nms = NMSWithMask(0.5)
|
||||
>>> nms = P.NMSWithMask(0.5)
|
||||
>>> output_boxes, indices, mask = nms(inputs)
|
||||
"""
|
||||
|
||||
|
@ -1769,7 +1769,7 @@ class Abs(PrimitiveWithInfer):
|
|||
|
||||
Examples:
|
||||
>>> input_x = Tensor(np.array([-1.0, 1.0, 0.0]), mindspore.float32)
|
||||
>>> abs = Abs()
|
||||
>>> abs = P.Abs()
|
||||
>>> abs(input_x)
|
||||
[1.0, 1.0, 0.0]
|
||||
"""
|
||||
|
@ -1812,7 +1812,7 @@ class Sign(PrimitiveWithInfer):
|
|||
|
||||
Examples:
|
||||
>>> input_x = Tensor(np.array([[2.0, 0.0, -1.0]]), mindspore.float32)
|
||||
>>> sign = Sign()
|
||||
>>> sign = P.Sign()
|
||||
>>> output = sign(input_x)
|
||||
[[1.0, 0.0, -1.0]]
|
||||
"""
|
||||
|
@ -1842,7 +1842,7 @@ class Round(PrimitiveWithInfer):
|
|||
|
||||
Examples:
|
||||
>>> input_x = Tensor(np.array([0.8, 1.5, 2.3, 2.5, -4.5]), mindspore.float32)
|
||||
>>> round = Round()
|
||||
>>> round = P.Round()
|
||||
>>> round(input_x)
|
||||
[1.0, 2.0, 2.0, 2.0, -4.0]
|
||||
"""
|
||||
|
@ -1877,7 +1877,7 @@ class Atan2(_MathBinaryOp):
|
|||
Examples:
|
||||
>>> input_x = Tensor(np.array([[0, 1]]), mstype.float32)
|
||||
>>> input_y = Tensor(np.array([[1, 1]]), mstype.float32)
|
||||
>>> atan2 = Atan2()
|
||||
>>> atan2 = P.Atan2()
|
||||
>>> atan2(input_x, input_y)
|
||||
[[0. 0.7853982]]
|
||||
"""
|
||||
|
|
|
@ -1090,9 +1090,10 @@ class TopK(PrimitiveWithInfer):
|
|||
- **indices** (Tensor) - The indices of values within the last dimension of input.
|
||||
|
||||
Examples:
|
||||
>>> topk = TopK(sorted=True)
|
||||
>>> x = Tensor(np.array([1, 2, 3, 4, 5]).astype(np.float16))
|
||||
>>> values, indices = topk(x)
|
||||
>>> topk = P.TopK(sorted=True)
|
||||
>>> input_x = Tensor([1, 2, 3, 4, 5], mindspore.float16))
|
||||
>>> k = 3
|
||||
>>> values, indices = topk(input_x, k)
|
||||
>>> assert values == Tensor(np.array([5, 4, 3]))
|
||||
>>> assert indices == Tensor(np.array([4, 3, 2]))
|
||||
"""
|
||||
|
|
Loading…
Reference in New Issue