diff --git a/model_zoo/research/hpc/pinns/README.md b/model_zoo/research/hpc/pinns/README.md index 1949c2bb399..4d792767ebc 100644 --- a/model_zoo/research/hpc/pinns/README.md +++ b/model_zoo/research/hpc/pinns/README.md @@ -302,13 +302,13 @@ Navier-Stokes equation scenario | uploaded Date | 6/7/2021 (month/day/year) | | MindSpore Version | 1.2.0 | | Dataset | cylinder nektar wake | -| Training Parameters | epoch=18000, lr=0.01, batch size=500. See src/config.py for details | +| Training Parameters | epoch=19500, lr=0.01, batch size=500. See src/config.py for details | | Optimizer | Adam | | Loss Function | src/NavierStokes/loss.py | | outputs | the velocity field (x and y component), presure, and the fitting of the Navier-Stokes equation (x and y component) | -| Loss | 0.0007302 | +| Loss | 0.00042734024 | | Speed | 99ms/step | -| Total time | 4.9431 hours | +| Total time | 5.355 hours | | Parameters | 3.1K | | Checkpoint for Fine tuning | 39K (.ckpt file) | @@ -320,13 +320,13 @@ Navier-Stokes equation scenario | MindSpore Version | 1.2.0 | | Dataset | cylinder nektar wake | | Noise intensity of the training data | 0.01 | -| Training Parameters | epoch=18000, lr=0.01, batch size=500. See src/config.py for details | +| Training Parameters | epoch=19400, lr=0.01, batch size=500. See src/config.py for details | | Optimizer | Adam | | Loss Function | src/NavierStokes/loss.py | | outputs | the velocity field (x and y component), presure, and the fitting of the Navier-Stokes equation (x and y component) | -| Loss | 0.001309 | +| Loss | 0.00045599302 | | Speed | 100ms/step | -| Total time | 5.0084 hours | +| Total time | 5.3979 hours | | Parameters | 3.1K | | Checkpoint for Fine tuning | 39K (.ckpt file) | @@ -354,8 +354,8 @@ Navier-Stokes equation scenario | MindSpore Version | 1.2.0 | | Dataset | cylinder nektar wake | | outputs | undermined coefficient $\lambda_1$ and $\lambda_2$ of the Naiver-Stokes equation | -| error percentage of $\lambda_1$ | 0.2698% | -| error percentage of $\lambda_2$ | 0.8558% | +| error percentage of $\lambda_1$ | 0.2545% | +| error percentage of $\lambda_2$ | 0.9312% | | Parameters | GPU | | ------------------------------------ | ------------------------------------------------------------ | @@ -366,8 +366,8 @@ Navier-Stokes equation scenario | Dataset | cylinder nektar wake | | Noise intensity of the training data | 0.01 | | outputs | undermined coefficient $\lambda_1$ and $\lambda_2$ of the Naiver-Stokes equation | -| error percentage of $\lambda_1$ | 0.3655% | -| error percentage of $\lambda_2$ | 2.3851% | +| error percentage of $\lambda_1$ | 0.2497% | +| error percentage of $\lambda_2$ | 1.8279% | # [Description of Random Situation](#contents) diff --git a/model_zoo/research/hpc/pinns/README_CN.md b/model_zoo/research/hpc/pinns/README_CN.md index a3de0597870..ec50127e53e 100644 --- a/model_zoo/research/hpc/pinns/README_CN.md +++ b/model_zoo/research/hpc/pinns/README_CN.md @@ -160,29 +160,29 @@ Navier-Stokes方程是流体力学中描述粘性牛顿流体的方程。针对N - 配置Schrodinger方程场景。 ```python - 'epoch':50000 #训练轮次 - 'lr':0.0001 #学习率 - 'N0':50 #训练集在初始条件处的采样点数量,对于NLS数据集,0