add random_map ops
This commit is contained in:
parent
b5269d6bd4
commit
b8943722c8
|
@ -0,0 +1,67 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "backend/kernel_compiler/cpu/map_uniform_cpu_kernel.h"
|
||||
#include <string>
|
||||
#include <memory>
|
||||
#include <vector>
|
||||
#include "runtime/device/cpu/cpu_device_address.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
void MapUniformCPUKernel::InitKernel(const CNodePtr &kernel_node) {
|
||||
MS_EXCEPTION_IF_NULL(kernel_node);
|
||||
node_ = kernel_node;
|
||||
dtype_ = AnfAlgo::GetPrevNodeOutputInferDataType(kernel_node, 0);
|
||||
}
|
||||
|
||||
bool MapUniformCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs,
|
||||
const std::vector<kernel::AddressPtr> & /*workspace*/,
|
||||
const std::vector<kernel::AddressPtr> &outputs) {
|
||||
if (dtype_ == kNumberTypeInt32) {
|
||||
LaunchKernel<int>(inputs, outputs);
|
||||
} else if (dtype_ == kNumberTypeInt64) {
|
||||
LaunchKernel<int64_t>(inputs, outputs);
|
||||
} else {
|
||||
MS_LOG(ERROR) << "Only support int32, int64";
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void MapUniformCPUKernel::LaunchKernel(const std::vector<AddressPtr> &inputs,
|
||||
const std::vector<kernel::AddressPtr> &outputs) {
|
||||
auto input_x_shape = AnfAlgo::GetPrevNodeOutputInferShape(node_, 0);
|
||||
batch_size_ = 1;
|
||||
for (size_t i = 0; i < input_x_shape.size(); ++i) {
|
||||
batch_size_ *= input_x_shape[i];
|
||||
}
|
||||
MS_LOG(INFO) << "Input size: " << batch_size_;
|
||||
auto input_x = reinterpret_cast<T *>(inputs[0]->addr);
|
||||
auto per_group_size = *reinterpret_cast<T *>(inputs[1]->addr);
|
||||
auto group_num = *reinterpret_cast<T *>(inputs[2]->addr);
|
||||
auto output_x = reinterpret_cast<T *>(outputs[0]->addr);
|
||||
T max_num = group_num * per_group_size;
|
||||
for (size_t i = 0; i < batch_size_; ++i) {
|
||||
output_x[i] = input_x[i] % group_num * per_group_size + input_x[i] / group_num;
|
||||
if (output_x[i] >= max_num) {
|
||||
MS_LOG(EXCEPTION) << "Value can not >= " << max_num;
|
||||
}
|
||||
}
|
||||
}
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,65 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_MAP_UNIFORM_CPU_KERNEL_H_
|
||||
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_MAP_UNIFORM_CPU_KERNEL_H_
|
||||
|
||||
#include <math.h>
|
||||
#include <vector>
|
||||
#include <memory>
|
||||
#include <unordered_map>
|
||||
#include "backend/kernel_compiler/cpu/cpu_kernel.h"
|
||||
#include "backend/kernel_compiler/cpu/cpu_kernel_factory.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
class MapUniformCPUKernel : public CPUKernel {
|
||||
public:
|
||||
MapUniformCPUKernel() = default;
|
||||
~MapUniformCPUKernel() override = default;
|
||||
|
||||
void InitKernel(const CNodePtr &kernel_node) override;
|
||||
|
||||
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
|
||||
const std::vector<AddressPtr> &outputs) override;
|
||||
|
||||
template <typename T>
|
||||
void LaunchKernel(const std::vector<AddressPtr> &inputs, const std::vector<kernel::AddressPtr> &outputs);
|
||||
|
||||
private:
|
||||
size_t batch_size_{1};
|
||||
TypeId dtype_{kTypeUnknown};
|
||||
CNodePtr node_ = nullptr;
|
||||
};
|
||||
|
||||
MS_REG_CPU_KERNEL(MapUniform,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddOutputAttr(kNumberTypeInt32),
|
||||
MapUniformCPUKernel);
|
||||
|
||||
MS_REG_CPU_KERNEL(MapUniform,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddOutputAttr(kNumberTypeInt64),
|
||||
MapUniformCPUKernel);
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_MAP_UNIFORM_CPU_KERNEL_H_
|
|
@ -267,6 +267,8 @@ AbstractBasePtr InferImplGpuConvertToDynamicShape(const AnalysisEnginePtr &, con
|
|||
const AbstractBasePtrList &args_spec_list);
|
||||
AbstractBasePtr InferImplPad(const AnalysisEnginePtr &, const PrimitivePtr &primitive,
|
||||
const AbstractBasePtrList &args_spec_list);
|
||||
AbstractBasePtr InferImplMapUniform(const AnalysisEnginePtr &, const PrimitivePtr &primitive,
|
||||
const AbstractBasePtrList &args_spec_list);
|
||||
AbstractBasePtr InferImplSplit(const AnalysisEnginePtr &, const PrimitivePtr &primitive,
|
||||
const AbstractBasePtrList &args_spec_list);
|
||||
AbstractBasePtr InferImplSequenceMask(const AnalysisEnginePtr &, const PrimitivePtr &primitive,
|
||||
|
|
|
@ -863,6 +863,14 @@ AbstractBasePtr InferImplReshape(const AnalysisEnginePtr &, const PrimitivePtr &
|
|||
return ret;
|
||||
}
|
||||
|
||||
AbstractBasePtr InferImplMapUniform(const AnalysisEnginePtr &, const PrimitivePtr &primitive,
|
||||
const AbstractBasePtrList &args_spec_list) {
|
||||
// Inputs: one tensor.
|
||||
const std::string op_name = primitive->name();
|
||||
CheckArgsSize(op_name, args_spec_list, 3);
|
||||
return args_spec_list[0]->Broaden();
|
||||
}
|
||||
|
||||
AbstractBasePtr InferImplSplit(const AnalysisEnginePtr &, const PrimitivePtr &primitive,
|
||||
const AbstractBasePtrList &args_spec_list) {
|
||||
const std::string op_name = primitive->name();
|
||||
|
|
|
@ -74,6 +74,7 @@ PrimitiveEvalImplMap &GetPrimitiveToEvalImplMap() {
|
|||
{prim::kPrimDynamicShape, {InferImplDynamicShape, true}},
|
||||
{prim::kPrimTranspose, {InferImplTranspose, true}},
|
||||
{prim::kPrimReshape, {InferImplReshape, true}},
|
||||
{prim::kPrimMapUniform, {InferImplMapUniform, true}},
|
||||
{prim::kPrimSplit, {InferImplSplit, true}},
|
||||
{prim::kPrimSequenceMask, {InferImplSequenceMask, true}},
|
||||
// Structure
|
||||
|
|
|
@ -119,6 +119,7 @@ inline const PrimitivePtr kPrimDynamicGRUV2 = std::make_shared<Primitive>("Dynam
|
|||
inline const PrimitivePtr kPrimDynamicGRUV2Grad = std::make_shared<Primitive>("DynamicGRUV2Grad");
|
||||
inline const PrimitivePtr kPrimScatterAdd = std::make_shared<Primitive>("ScatterAdd");
|
||||
inline const PrimitivePtr kPrimScatterUpdate = std::make_shared<Primitive>("ScatterUpdate");
|
||||
inline const PrimitivePtr kPrimMapUniform = std::make_shared<Primitive>("MapUniform");
|
||||
inline const PrimitivePtr kPrimSplit = std::make_shared<Primitive>("Split");
|
||||
inline const PrimitivePtr kPrimSequenceMask = std::make_shared<Primitive>("SequenceMask");
|
||||
|
||||
|
|
|
@ -90,7 +90,8 @@ from ._thor_ops import (CusBatchMatMul, CusCholeskyTrsm, CusFusedAbsMax1, CusImg
|
|||
CusMatMulCubeDenseRight,
|
||||
CusMatMulCubeFraczLeftCast, Im2Col, UpdateThorGradient, Cholesky, CholeskyTrsm, DetTriangle)
|
||||
from .sparse_ops import SparseToDense
|
||||
from ._cache_ops import CacheSwapHashmap, SearchCacheIdx, CacheSwapTable, UpdateCache, MapCacheIdx, SubAndFilter
|
||||
from ._cache_ops import (CacheSwapHashmap, SearchCacheIdx, CacheSwapTable, UpdateCache, MapCacheIdx, SubAndFilter,
|
||||
MapUniform)
|
||||
|
||||
__all__ = [
|
||||
'Unique',
|
||||
|
|
|
@ -187,6 +187,46 @@ class SearchCacheIdx(PrimitiveWithInfer):
|
|||
return out_dtype
|
||||
|
||||
|
||||
class MapUniform(PrimitiveWithCheck):
|
||||
"""
|
||||
Map a tensor by using fomula : value = key % `group_num` * `per_group_size` + key // `group_num`.
|
||||
|
||||
Inputs:
|
||||
- **input** (Tensor) - Input Tensor.
|
||||
- **per_group_size** (int) - The size of each group.
|
||||
- **group_num** (int) - The number of group.
|
||||
|
||||
Outputs:
|
||||
Tensor, has the same dtype and shape as the `input`.
|
||||
|
||||
Supported Platforms:
|
||||
`CPU`
|
||||
|
||||
Examples:
|
||||
>>> input_x = Tensor(np.array([0, 1, 2, 3, 4, 5, 6, 7]))
|
||||
>>> per_group_size = 4
|
||||
>>> group_num = 2
|
||||
>>> map_uniform = ops.MapUniform()
|
||||
>>> output = map_uniform(input_x, per_group_size, group_num)
|
||||
>>> print(output)
|
||||
[0, 4, 1, 5, 2, 6, 3, 7]
|
||||
"""
|
||||
|
||||
@prim_attr_register
|
||||
def __init__(self):
|
||||
"""init MapUniform"""
|
||||
self.init_prim_io_names(inputs=['input', 'per_group_size', 'group_num'],
|
||||
outputs=['output'])
|
||||
|
||||
def check_dtype(self, input_dtype, per_group_size_dtype, group_num_dtype):
|
||||
validator.check_tensor_dtype_valid(
|
||||
"input", input_dtype, mstype.int_type, self.name)
|
||||
validator.check_value_type(
|
||||
'per_group_size', per_group_size_dtype, [mstype.Int], self.name)
|
||||
validator.check_value_type(
|
||||
'group_num', group_num_dtype, [mstype.Int], self.name)
|
||||
|
||||
|
||||
class CacheSwapHashmap(PrimitiveWithInfer):
|
||||
"""
|
||||
Delete a hashmap entry,and insert a new key to hashmap, return the key and value of delete entry.
|
||||
|
|
|
@ -0,0 +1,46 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
import pytest
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
import mindspore.common.dtype as mstype
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.map_uniform = P.MapUniform()
|
||||
self.per_group_size = 4
|
||||
self.group_num = 2
|
||||
|
||||
def construct(self, x):
|
||||
return self.map_uniform(x, self.per_group_size, self.group_num)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_map_uniform():
|
||||
x = Tensor(np.array([0, 1, 2, 3, 4, 5, 6, 7]), mstype.int32)
|
||||
net = Net()
|
||||
output = net(x)
|
||||
expect1 = np.array([0, 4, 1, 5, 2, 6, 3, 7])
|
||||
assert (output.asnumpy() == expect1).all()
|
Loading…
Reference in New Issue