!18618 update the documentation of loss operator.

Merge pull request !18618 from wangshuide/code_docs_wsd_master
This commit is contained in:
i-robot 2021-06-21 15:17:25 +08:00 committed by Gitee
commit b566a744ad
1 changed files with 173 additions and 97 deletions

View File

@ -121,21 +121,31 @@ class L1Loss(Loss):
the unreduced loss (i.e. with argument reduction set to 'none') of :math:`x` and :math:`y` is given as:
.. math::
L(x, y) = \{l_1,\dots,l_N\}, \quad \text{with } l_n = \left| x_n - y_n \right|
\ell(x, y) = L = \{l_1,\dots,l_N\}, \quad \text{with } l_n = \left| x_n - y_n \right|,
When argument reduction is 'mean', the mean value of :math:`L(x, y)` will be returned.
When argument reduction is 'sum', the sum of :math:`L(x, y)` will be returned. :math:`N` is the batch size.
where :math:`N` is the batch size. If `reduction` is not 'none', then:
.. math::
\ell(x, y) =
\begin{cases}
\operatorname{mean}(L), & \text{if reduction} = \text{`mean';}\\
\operatorname{sum}(L), & \text{if reduction} = \text{`sum'.}
\end{cases}
Args:
reduction (str): Type of reduction to be applied to loss. The optional values are "mean", "sum", and "none".
Default: "mean".
Inputs:
- **logits** (Tensor) - Tensor of shape :math:`(x_1, x_2, ..., x_R)`.
- **labels** (Tensor) - Tensor of shape :math:`(y_1, y_2, ..., y_S)`.
- **logits** (Tensor) - Tensor of shape :math:`(N, *)` where :math:`*` means, any number of
additional dimensions.
- **labels** (Tensor) - Tensor of shape :math:`(N, *)`, same shape as the `logits` in common cases.
However, it supports the shape of `logits` is different from the shape of `labels`
and they should be broadcasted to each other.
Outputs:
Tensor, loss float tensor.
Tensor, loss float tensor, the shape is zero if `reduction` is 'mean' or 'sum',
while the shape of output is the broadcasted shape if `reduction` is 'none'.
Raises:
ValueError: If `reduction` is not one of 'none', 'mean', 'sum'.
@ -144,12 +154,21 @@ class L1Loss(Loss):
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> # Case 1: logits.shape = labels.shape = (3,)
>>> loss = nn.L1Loss()
>>> logits = Tensor(np.array([1, 2, 3]), mindspore.float32)
>>> labels = Tensor(np.array([1, 2, 2]), mindspore.float32)
>>> output = loss(logits, labels)
>>> print(output)
0.33333334
>>> # Case 2: logits.shape = (3,), labels.shape = (2, 3)
>>> loss = nn.L1Loss(reduction='none')
>>> logits = Tensor(np.array([1, 2, 3]), mindspore.float32)
>>> labels = Tensor(np.array([[1, 1, 1], [1, 2, 2]]), mindspore.float32)
>>> output = loss(logits, labels)
>>> print(output)
[[0. 1. 2.]
[0. 0. 1.]]
"""
def __init__(self, reduction='mean'):
"""Initialize L1Loss."""
@ -172,21 +191,31 @@ class MSELoss(Loss):
the unreduced loss (i.e. with argument reduction set to 'none') of :math:`x` and :math:`y` is given as:
.. math::
L(x, y) = \{l_1,\dots,l_N\}, \quad \text{with} \quad l_n = (x_n - y_n)^2.
\ell(x, y) = L = \{l_1,\dots,l_N\}, \quad \text{with} \quad l_n = (x_n - y_n)^2.
When argument reduction is 'mean', the mean value of :math:`L(x, y)` will be returned.
When argument reduction is 'sum', the sum of :math:`L(x, y)` will be returned. :math:`N` is the batch size.
where :math:`N` is the batch size. If `reduction` is not 'none', then:
.. math::
\ell(x, y) =
\begin{cases}
\operatorname{mean}(L), & \text{if reduction} = \text{`mean';}\\
\operatorname{sum}(L), & \text{if reduction} = \text{`sum'.}
\end{cases}
Args:
reduction (str): Type of reduction to be applied to loss. The optional values are "mean", "sum", and "none".
Default: "mean".
Inputs:
- **logits** (Tensor) - Tensor of shape :math:`(x_1, x_2, ..., x_R)`.
- **labels** (Tensor) - Tensor of shape :math:`(y_1, y_2, ..., y_S)`.
- **logits** (Tensor) - Tensor of shape :math:`(N, *)` where :math:`*` means, any number of
additional dimensions.
- **labels** (Tensor) - Tensor of shape :math:`(N, *)`, same shape as the `logits` in common cases.
However, it supports the shape of `logits` is different from the shape of `labels`
and they should be broadcasted to each other.
Outputs:
Tensor, weighted loss float tensor.
Tensor, loss float tensor, the shape is zero if `reduction` is 'mean' or 'sum',
while the shape of output is the broadcasted shape if `reduction` is 'none'.
Raises:
ValueError: If `reduction` is not one of 'none', 'mean', 'sum'.
@ -195,12 +224,21 @@ class MSELoss(Loss):
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> # Case 1: logits.shape = labels.shape = (3,)
>>> loss = nn.MSELoss()
>>> logits = Tensor(np.array([1, 2, 3]), mindspore.float32)
>>> labels = Tensor(np.array([1, 2, 2]), mindspore.float32)
>>> labels = Tensor(np.array([1, 1, 1]), mindspore.float32)
>>> output = loss(logits, labels)
>>> print(output)
0.33333334
1.6666667
>>> # Case 2: logits.shape = (3,), labels.shape = (2, 3)
>>> loss = nn.MSELoss(reduction='none')
>>> logits = Tensor(np.array([1, 2, 3]), mindspore.float32)
>>> labels = Tensor(np.array([[1, 1, 1], [1, 2, 2]]), mindspore.float32)
>>> output = loss(logits, labels)
>>> print(output)
[[0. 1. 4.]
[0. 0. 1.]]
"""
def construct(self, base, target):
_check_input_type('logits', base, Tensor, self.cls_name)
@ -211,34 +249,45 @@ class MSELoss(Loss):
class RMSELoss(Loss):
r"""
RMSELoss creates a standard to measure the root mean square error between :math:`x` and :math:`y`
RMSELoss creates a criterion to measure the root mean square error between :math:`x` and :math:`y`
element-wise, where :math:`x` is the input and :math:`y` is the target.
For simplicity, let :math:`x` and :math:`y` be 1-dimensional Tensor with length :math:`M` and :math:`N`,
the unreduced loss (i.e. with argument reduction set to 'none') of :math:`x` and :math:`y` is given as:
For simplicity, let :math:`x` and :math:`y` be 1-dimensional Tensor with length :math:`N`,
the unreduced loss (i.e. with argument reduction set to 'none') of :math:`x` and :math:`y`
is given as:
.. math::
loss = \begin{cases} \sqrt{\frac{1}{M}\sum_{m=1,n=1}^{M,N}{(x_m-y_n)^2}}, & \text {if M > N }
\\\\ \sqrt{\frac{1}{N}\sum_{m=1,n=1}^{M,N}{(x_m-y_n)^2}}, &\text{if M < N } \end{cases}
loss = \sqrt{\frac{1}{N}\sum_{i=1}^{N}{(x_i-y_i)^2}}
Inputs:
- **logits** (Tensor) - Tensor of shape :math:`(x_1, x_2, ..., x_M)`.
- **labels** (Tensor) - Tensor of shape :math:`(y_1, y_2, ..., y_N)`.
- **logits** (Tensor) - Tensor of shape :math:`(N, *)` where :math:`*` means, any number of
additional dimensions.
- **labels** (Tensor) - Tensor of shape :math:`(N, *)`, same shape as the `logits` in common cases.
However, it supports the shape of `logits` is different from the shape of `labels`
and they should be broadcasted to each other.
Outputs:
Tensor, weighted loss float tensor.
Tensor, weighted loss float tensor and its shape is zero.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> # Case 1: logits.shape = labels.shape = (3,)
>>> loss = nn.RMSELoss()
>>> logits = Tensor(np.array([1, 2, 3]), mindspore.float32)
>>> labels = Tensor(np.array([1, 2, 2]), mindspore.float32)
>>> output = loss(logits, labels)
>>> print(output)
0.57735026
>>> # Case 2: logits.shape = (3,), labels.shape = (2, 3)
>>> loss = nn.RMSELoss()
>>> logits = Tensor(np.array([1, 2, 3]), mindspore.float32)
>>> labels = Tensor(np.array([[1, 1, 1], [1, 2, 2]]), mindspore.float32)
>>> output = loss(logits, labels)
>>> print(output)
1.0
"""
def __init__(self):
"""Initialize RMSELoss."""
@ -253,26 +302,29 @@ class RMSELoss(Loss):
class MAELoss(Loss):
r"""
MAELoss creates a standard to measure the average absolute error between :math:`x` and :math:`y`
MAELoss creates a criterion to measure the average absolute error between :math:`x` and :math:`y`
element-wise, where :math:`x` is the input and :math:`y` is the target.
For simplicity, let :math:`x` and :math:`y` be 1-dimensional Tensor with length :math:`M` and :math:`N`,
For simplicity, let :math:`x` and :math:`y` be 1-dimensional Tensor with length :math:`N`,
the unreduced loss (i.e. with argument reduction set to 'none') of :math:`x` and :math:`y` is given as:
.. math::
MAE = \begin{cases} \sqrt{\frac{1}{M}\sum_{m=1,n=1}^{M,N}{|x_m-y_n|}}, & \text {if M > N } \\\\
\sqrt{\frac{1}{N}\sum_{m=1,n=1}^{M,N}{|x_m-y_n|}}, &\text{if M < N } \end{cases}
MAE = \sqrt{\frac{1}{N}\sum_{i=1}^{N}{|x_i-y_i|}}
Args:
reduction (str): Type of reduction to be applied to loss. The optional values are "mean", "sum", and "none".
Default: "mean".
Inputs:
- **logits** (Tensor) - Tensor of shape :math:`(x_1, x_2, ..., x_M)`.
- **labels** (Tensor) - Tensor of shape :math:`(y_1, y_2, ..., y_N)`.
- **logits** (Tensor) - Tensor of shape :math:`(M, *)` where :math:`*` means, any number of
additional dimensions.
- **labels** (Tensor) - Tensor of shape :math:`(N, *)`, same shape as the `logits` in common cases.
However, it supports the shape of `logits` is different from the shape of `labels`
and they should be broadcasted to each other.
Outputs:
Tensor, weighted loss float tensor.
Tensor, weighted loss float tensor, the shape is zero if `reduction` is 'mean' or 'sum',
while the shape of output is the broadcasted shape if `reduction` is 'none'.
Raises:
ValueError: If `reduction` is not one of 'none', 'mean', 'sum'.
@ -281,12 +333,21 @@ class MAELoss(Loss):
``Ascend`` ``GPU`` ``CPU``
Examples:
# Case 1: logits.shape = labels.shape = (3,)
>>> loss = nn.MAELoss()
>>> logits = Tensor(np.array([1, 2, 3]), mindspore.float32)
>>> labels = Tensor(np.array([1, 2, 2]), mindspore.float32)
>>> output = loss(logits, labels)
>>> print(output)
0.33333334
>>> # Case 2: logits.shape = (3,), labels.shape = (2, 3)
>>> loss = nn.MAELoss(reduction='none')
>>> logits = Tensor(np.array([1, 2, 3]), mindspore.float32)
>>> labels = Tensor(np.array([[1, 1, 1], [1, 2, 2]]), mindspore.float32)
>>> output = loss(logits, labels)
>>> print(output)
[[0. 1. 2.]
[0. 0. 1.]]
"""
def __init__(self, reduction='mean'):
"""Initialize MAELoss."""
@ -328,11 +389,13 @@ class SmoothL1Loss(Loss):
quadratic to linear. Default: 1.0.
Inputs:
- **logits** (Tensor) - Tensor of shape :math:`(x_1, x_2, ..., x_R)`. Data type must be float16 or float32.
- **labels** (Tensor) - Ground truth data, with the same type and shape as `logits`.
- **logits** (Tensor) - Tensor of shape :math:`(N, *)` where :math:`*` means, any number of
additional dimensions. Data type must be float16 or float32.
- **labels** (Tensor) - Ground truth data, tensor of shape :math:`(N, *)`,
same shape and dtype as the `logits`.
Outputs:
Tensor, loss float tensor.
Tensor, loss float tensor, same shape and dtype as the `logits`.
Raises:
TypeError: If `beta` is not a float.
@ -383,7 +446,7 @@ class SoftmaxCrossEntropyWithLogits(Loss):
Note:
While the target classes are mutually exclusive, i.e., only one class is positive in the target, the predicted
probabilities need not to be exclusive. It is only required that the predicted probability distribution
probabilities does not need to be exclusive. It is only required that the predicted probability distribution
of entry is a valid one.
Args:
@ -394,7 +457,7 @@ class SoftmaxCrossEntropyWithLogits(Loss):
Inputs:
- **logits** (Tensor) - Tensor of shape (N, C). Data type must be float16 or float32.
- **labels** (Tensor) - Tensor of shape (N, ). If `sparse` is True, The type of
`labels` is int32 or int64. If `sparse` is False, the type of `labels` is the same as the type of `logits`.
`labels` is int32 or int64. Otherwise, the type of `labels` is the same as the type of `logits`.
Outputs:
Tensor, a tensor of the same shape and type as logits with the component-wise logistic losses.
@ -409,10 +472,7 @@ class SoftmaxCrossEntropyWithLogits(Loss):
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> import mindspore
>>> import numpy as np
>>> import mindspore.nn as nn
>>> from mindspore import Tensor
>>> # case 1: sparse=True
>>> loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True)
>>> logits = Tensor(np.array([[3, 5, 6, 9, 12, 33, 42, 12, 32, 72]]), mindspore.float32)
>>> labels_np = np.array([1]).astype(np.int32)
@ -420,6 +480,14 @@ class SoftmaxCrossEntropyWithLogits(Loss):
>>> output = loss(logits, labels)
>>> print(output)
[67.]
>>> # case 2: sparse=False
>>> loss = nn.SoftmaxCrossEntropyWithLogits(sparse=False)
>>> logits = Tensor(np.array([[3, 5, 6, 9, 12, 33, 42, 12, 32, 72]]), mindspore.float32)
>>> labels_np = np.array([[0, 0, 0, 0, 0, 0, 1, 0, 0, 0]]).astype(np.float32)
>>> labels = Tensor(labels_np)
>>> output = loss(logits, labels)
>>> print(output)
[30.]
"""
def __init__(self,
sparse=False,
@ -466,14 +534,16 @@ class DiceLoss(Loss):
Default: 1e-5.
Inputs:
- **logits** (Tensor) - Tensor of shape (N, ...). The data type must be float16 or float32.
- **labels** (Tensor) - Tensor of shape (N, ...). The data type must be float16 or float32.
- **logits** (Tensor) - Tensor of shape :math:`(N, *)` where :math:`*` means, any number of
additional dimensions. The data type must be float16 or float32.
- **labels** (Tensor) - Tensor of shape :math:`(N, *)`, same shape as the `logits`.
The data type must be float16 or float32.
Outputs:
Tensor, a tensor of shape with the per-example sampled Dice losses.
Raises:
ValueError: If the dimensions are different.
ValueError: If the dimension of `logits` is different from `labels`.
TypeError: If the type of `logits` or `labels` are not Tensor.
Supported Platforms:
@ -533,38 +603,38 @@ class MultiClassDiceLoss(Loss):
obtained through the binary loss of each category, and then the average value.
Args:
weights (Union[Tensor, None]): Tensor of shape `[num_classes, dim]`. The weight shape[0] should be equal to
y shape[1].
weights (Union[Tensor, None]): Tensor of shape :math:`(num_classes, dim)`. The weight shape[0] should be
equal to labels shape[1].
ignore_indiex (Union[int, None]): Class index to ignore.
activation (Union[str, Cell]): Activate function applied to the output of the fully connected layer, eg. 'ReLU'.
Default: 'softmax'. Choose from: ['softmax', 'logsoftmax', 'relu', 'relu6', 'tanh','Sigmoid']
Inputs:
- **logits** (Tensor) - Tensor of shape (N, C, ...). The logits dimension should be greater than 1. The data
type must be float16 or float32.
- **labels** (Tensor) - Tensor of shape (N, C, ...). The labels dimension should be greater than 1.
The data type must be loat16 or float32.
- **logits** (Tensor) - Tensor of shape :math:`(N, C, *)` where :math:`*` means, any number of additional
dimensions. The logits dimension should be greater than 1. The data type must be float16 or float32.
- **labels** (Tensor) - Tensor of shape :math:`(N, C, *)`, same shape as the `logits`.
The labels dimension should be greater than 1. The data type must be loat16 or float32.
Outputs:
Tensor, a tensor of shape with the per-example sampled MultiClass Dice Losses.
Raises:
ValueError: If the shapes are different.
TypeError: If the type of inputs are not Tensor.
ValueError: If the shape of `logits` is different from `labels`.
TypeError: If the type of `logits` or `labels` is not a Tensor.
ValueError: If the dimension of `logits` or `labels` is less than 2.
ValueError: If the weight shape[0] is not equal to labels.shape[1].
ValueError: If weight is a tensor, but the dimension is not 2.
ValueError: If the weights.shape[0] is not equal to labels.shape[1].
ValueError: If `weights` is a tensor, but its dimension is not 2.
Supported Platforms:
``Ascend`` ``GPU``
Examples:
>>> loss = nn.MultiClassDiceLoss(weights=None, ignore_indiex=None, activation="softmax")
>>> logits = Tensor(np.array([[0.2, 0.5], [0.3, 0.1], [0.9, 0.6]]), mstype.float32)
>>> labels = Tensor(np.array([[0, 1], [1, 0], [0, 1]]), mstype.float32)
>>> logits = Tensor(np.array([[0.2, 0.5, 0.7], [0.3, 0.1, 0.5], [0.9, 0.6, 0.3]]), mstype.float32)
>>> labels = Tensor(np.array([[0, 1, 0], [1, 0, 0], [0, 0, 1]]), mstype.float32)
>>> output = loss(logits, labels)
>>> print(output)
0.3283009
0.5918486
"""
def __init__(self, weights=None, ignore_indiex=None, activation="softmax"):
"""Initialize MultiClassDiceLoss."""
@ -608,7 +678,8 @@ class MultiClassDiceLoss(Loss):
class SampledSoftmaxLoss(Loss):
r"""
Computes the sampled softmax training loss.
Computes the sampled softmax training loss. This operator can accelerate the trainging of the softmax classifier
over a large number of classes.
Args:
num_sampled (int): The number of classes to randomly sample per batch.
@ -624,15 +695,14 @@ class SampledSoftmaxLoss(Loss):
If "none", do not perform reduction. Default: "none".
Inputs:
- **weights** (Tensor) - Tensor of shape (C, dim).
- **bias** (Tensor) - Tensor of shape (C). The class biases.
- **labels** (Tensor) - Tensor of shape (N, num_true), type `int64, int32`. The
target classes.
- **inputs** (Tensor) - Tensor of shape (N, dim). The forward activations of
the input network.
- **weights** (Tensor) - Tensor of shape :math:`(C, dim)`.
- **bias** (Tensor) - Tensor of shape :math:`(C)`. The class biases.
- **labels** (Tensor) - Tensor of shape :math:`(N, num_true)`, type `int64, int32`. The target classes.
- **logits** (Tensor) - Tensor of shape :math:`(N, dim)`. The forward activations of the input network.
Outputs:
Tensor, a tensor of shape (N) with the per-example sampled softmax losses.
Tensor or Scalar, if `reduction` is 'none', then output is a tensor with shape :math:`(N)`.
Otherwise, the output is a scalar.
Raises:
TypeError: If `sampled_values` is not a list or tuple.
@ -650,8 +720,8 @@ class SampledSoftmaxLoss(Loss):
>>> weights = Tensor(np.random.randint(0, 9, [7, 10]), mindspore.float32)
>>> biases = Tensor(np.random.randint(0, 9, [7]), mindspore.float32)
>>> labels = Tensor([0, 1, 2])
>>> inputs = Tensor(np.random.randint(0, 9, [3, 10]), mindspore.float32)
>>> output = loss(weights, biases, labels, inputs)
>>> logits = Tensor(np.random.randint(0, 9, [3, 10]), mindspore.float32)
>>> output = loss(weights, biases, labels, logits)
>>> print(output)
[4.6051701e+01 1.4000047e+01 6.1989022e-06]
"""
@ -861,8 +931,9 @@ class BCELoss(Loss):
Its value must be one of 'none', 'mean', 'sum'. Default: 'none'.
Inputs:
- **logits** (Tensor) - The input Tensor. The data type must be float16 or float32.
- **labels** (Tensor) - The label Tensor which has same shape and data type as `logits`.
- **logits** (Tensor) - The input Tensor with shape :math:`(N, *)` where :math:`*` means, any number
of additional dimensions. The data type must be float16 or float32.
- **labels** (Tensor) - The label Tensor with shape :math:`(N, *)`, same shape and data type as `logits`.
Outputs:
Tensor or Scalar, if `reduction` is 'none', then output is a tensor and has the same shape as `logits`.
@ -914,9 +985,9 @@ def _check_reduced_shape_valid(ori_shape, reduced_shape, axis, cls_name):
class CosineEmbeddingLoss(Loss):
r"""
Computes the similarity between two tensors using cosine distance.
CosineEmbeddingLoss creates a criterion to measure the similarity between two tensors using cosine distance.
Given two tensors `x1`, `x2`, and a Tensor label `y` with values 1 or -1:
Given two tensors :math:`x1`, :math:`x2`, and a Tensor label :math:`y` with values 1 or -1:
.. math::
loss(x_1, x_2, y) = \begin{cases}
@ -930,14 +1001,15 @@ class CosineEmbeddingLoss(Loss):
"none", "mean", and "sum", meaning no reduction, reduce mean and sum on output, respectively. Default "mean".
Inputs:
- **logits_x1** (Tensor) - Input tensor.
- **logits_x2** (Tensor) - Its shape and data type must be the same as `logits_x1`'s shape and data type.
- **labels** (Tensor) - Contains value 1 or -1. Suppose the shape of `logits_x1` is
:math:`(x_1, x_2, x_3,..., x_R)`, then the shape of `labels` must be :math:`(x_1, x_3, x_4, ..., x_R)`.
- **logits_x1** (Tensor) - Tensor of shape :math:`(N, *)` where :math:`*` means, any number
of additional dimensions.
- **logits_x2** (Tensor) - Tensor of shape :math:`(N, *)`, same shape and dtype as `logits_x1`.
- **labels** (Tensor) - Tensor of shape :math:`(N, *)`, same shape as logits_x1.shape[:-1].
Contains value 1 or -1. .
Outputs:
- **loss** (Tensor) - If `reduction` is "none", its shape is the same as `labels`'s shape,
otherwise a scalar value will be returned.
Tensor or Scalar, if `reduction` is "none", its shape is the same as `labels`.
Otherwise, a scalar value will be returned.
Raises:
TypeError: If `margin` is not a float.
@ -990,16 +1062,16 @@ class CosineEmbeddingLoss(Loss):
class BCEWithLogitsLoss(Loss):
r"""
Adds sigmoid activation function to input `predict`, and uses the given logits to compute binary cross entropy
between the target and the output.
Adds sigmoid activation function to input logits, and uses the given logits to compute binary cross entropy
between the labels and the output.
Sets input predict as `X`, input target as `Y`, output as `L`. Then,
Sets input `logits` as :math:`X`, input `labels` as :math:`Y`, output as :math:`L`. Then,
.. math::
p_{ij} = sigmoid(X_{ij}) = \frac{1}{1 + e^{-X_{ij}}}
.. math::
L_{ij} = -[Y_{ij} * ln(p_{ij}) + (1 - Y_{ij})ln(1 - p_{ij})]
L_{ij} = -[Y_{ij} \cdot log(p_{ij}) + (1 - Y_{ij}) \cdot log(1 - p_{ij})]
Then,
@ -1014,18 +1086,20 @@ class BCEWithLogitsLoss(Loss):
reduction (str): Type of reduction to be applied to loss. The optional values are 'mean', 'sum', and 'none'.
If 'none', do not perform reduction. Default:'mean'.
weight (Tensor, optional): A rescaling weight applied to the loss of each batch element.
If not None, it must can be broadcast to a tensor with shape of `predict`,
If not None, it must can be broadcast to a tensor with shape of `logits`,
data type must be float16 or float32. Default: None.
pos_weight (Tensor, optional): A weight of positive examples. Must be a vector with length equal to the
number of classes. If not None, it must can be broadcast to a tensor with shape of `predict`,
number of classes. If not None, it must can be broadcast to a tensor with shape of `logits`,
data type must be float16 or float32. Default: None.
Inputs:
- **logits** (Tensor) - Input logits. The data type must be float16 or float32.
- **labels** (Tensor) - Ground truth label. Has the same data type and shape with `logits`.
- **logits** (Tensor) - Input logits with shape :math:`(N, *)` where :math:`*` means, any number
of additional dimensions. The data type must be float16 or float32.
- **labels** (Tensor) - Ground truth label with shape :math:`(N, *)`, same shape and dtype as `logits`.
Outputs:
Scalar. If reduction is 'none', it's a tensor with the same shape and type as input `logits`.
Tensor or Scalar, if `reduction` is "none", its shape is the same as `logits`.
Otherwise, a scalar value will be returned.
Raises:
TypeError: If data type of `logits` or `labels` is neither float16 nor float32.
@ -1108,7 +1182,7 @@ class FocalLoss(Loss):
The loss function proposed by Kaiming team in their paper ``Focal Loss for Dense Object Detection`` improves the
effect of image object detection. It is a loss function to solve the imbalance of categories and the difference of
classification difficulty. If you want to learn more, please refer to the paper.
`https://arxiv.org/pdf/1708.02002.pdf`. The function is shown as follows:
`Focal Loss for Dense Object Detection https://arxiv.org/pdf/1708.02002.pdf`_. The function is shown as follows:
.. math::
FL(p_t) = -(1-p_t)^\gamma log(p_t)
@ -1121,23 +1195,25 @@ class FocalLoss(Loss):
If "none", do not perform reduction. Default: "mean".
Inputs:
- **logits** (Tensor) - Tensor of shape should be (B, C) or (B, C, H) or (B, C, H, W). Where C is the number
of classes. Its value is greater than 1. If the shape is (B, C, H, W) or (B, C, H), the H or product of H
and W should be the same as labels.
- **labels** (Tensor) - Tensor of shape should be (B, C) or (B, C, H) or (B, C, H, W). The value of C is 1 or
it needs to be the same as predict's C. If C is not 1, the shape of target should be the same as that of
predict, where C is the number of classes. If the shape is (B, C, H, W) or (B, C, H), the H or product of H
and W should be the same as logits.
- **logits** (Tensor) - Tensor of shape should be :math:`(B, C)` or :math:`(B, C, H)` or :math:`(B, C, H, W)`.
Where :math:`C` is the number of classes. Its value is greater than 1. If the shape is :math:`(B, C, H, W)`
or :math:`(B, C, H)`, the :math:`H` or product of :math:`H` and :math:`W` should be the same as labels.
- **labels** (Tensor) - Tensor of shape should be :math:`(B, C)` or :math:`(B, C, H)` or :math:`(B, C, H, W)`.
The value of :math:`C` is 1 or it needs to be the same as predict's :math:`C`. If :math:`C` is not 1,
the shape of target should be the same as that of predict, where :math:`C` is the number of classes.
If the shape is :math:`(B, C, H, W)` or :math:`(B, C, H)`, the :math:`H` or product of :math:`H`
and :math:`W` should be the same as logits.
Outputs:
Tensor, it's a tensor with the same shape and type as input `logits`.
Tensor or Scalar, if `reduction` is "none", its shape is the same as `logits`.
Otherwise, a scalar value will be returned.
Raises:
TypeError: If the data type of ``gamma`` is not float.
TypeError: If ``weight`` is not a Tensor.
ValueError: If ``labels`` dim different from ``logits``.
ValueError: If ``labels`` channel is not 1 and ``labels`` shape is different from ``logits``.
ValueError: If ``reduction`` is not one of 'none', 'mean', 'sum'.
TypeError: If the data type of `gamma` is not a float.
TypeError: If `weight` is not a Tensor.
ValueError: If `labels` dim is different from `logits`.
ValueError: If `labels` channel is not 1 and `labels` shape is different from `logits`.
ValueError: If `reduction` is not one of 'none', 'mean', 'sum'.
Supported Platforms:
``Ascend``