|
|
|
@ -0,0 +1,240 @@
|
|
|
|
|
# Copyright 2024 Huawei Technologies Co., Ltd
|
|
|
|
|
#
|
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
|
#
|
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
|
#
|
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
|
# limitations under the License.
|
|
|
|
|
# ============================================================================
|
|
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
|
import pytest
|
|
|
|
|
import mindspore as ms
|
|
|
|
|
import mindspore.context as context
|
|
|
|
|
from mindspore.common.tensor import Tensor
|
|
|
|
|
from mindspore.ops import operations as P
|
|
|
|
|
from mindspore.nn import Cell
|
|
|
|
|
from mindspore.common.api import _pynative_executor
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0
|
|
|
|
|
@pytest.mark.parametrize('context_mode', [ms.GRAPH_MODE, ms.PYNATIVE_MODE])
|
|
|
|
|
@pytest.mark.platform_x86_cpu
|
|
|
|
|
@pytest.mark.platform_arm_cpu
|
|
|
|
|
@pytest.mark.platform_x86_gpu_training
|
|
|
|
|
@pytest.mark.platform_arm_ascend_training
|
|
|
|
|
@pytest.mark.platform_x86_ascend_training
|
|
|
|
|
@pytest.mark.env_onecard
|
|
|
|
|
def test_broadcast(context_mode):
|
|
|
|
|
"""
|
|
|
|
|
Feature: pyboost function.
|
|
|
|
|
Description: test function broadcast_to forward.
|
|
|
|
|
Expectation: expect correct result.
|
|
|
|
|
"""
|
|
|
|
|
context.set_context(mode=context_mode)
|
|
|
|
|
|
|
|
|
|
shape = (4, 5, 2, 3, 4, 5, 6)
|
|
|
|
|
x_np = np.random.rand(2, 3, 1, 5, 1).astype(np.float32)
|
|
|
|
|
output = P.BroadcastTo(shape)(Tensor(x_np))
|
|
|
|
|
expect = np.broadcast_to(x_np, shape)
|
|
|
|
|
assert np.allclose(output.asnumpy(), expect)
|
|
|
|
|
|
|
|
|
|
shape = (3, 5, 7, 4, 5, 6)
|
|
|
|
|
x_np = np.arange(20).reshape((4, 5, 1)).astype(np.int32)
|
|
|
|
|
output = P.BroadcastTo(shape)(Tensor(x_np))
|
|
|
|
|
expect = np.broadcast_to(x_np, shape)
|
|
|
|
|
assert np.allclose(output.asnumpy(), expect)
|
|
|
|
|
|
|
|
|
|
shape = (8, 5, 7, 4, 5, 6)
|
|
|
|
|
x_np = np.arange(24).reshape((1, 4, 1, 6)).astype(np.bool)
|
|
|
|
|
output = P.BroadcastTo(shape)(Tensor(x_np))
|
|
|
|
|
expect = np.broadcast_to(x_np, shape)
|
|
|
|
|
assert np.allclose(output.asnumpy(), expect)
|
|
|
|
|
|
|
|
|
|
shape = (3, 4, 5, 2, 3, 4, 5, 7)
|
|
|
|
|
x_np = np.random.rand(2, 3, 1, 5, 1).astype(np.float16)
|
|
|
|
|
output = P.BroadcastTo(shape)(Tensor(x_np))
|
|
|
|
|
expect = np.broadcast_to(x_np, shape)
|
|
|
|
|
assert np.allclose(output.asnumpy(), expect)
|
|
|
|
|
|
|
|
|
|
shape = (3, 4, 5, 6)
|
|
|
|
|
x_np = np.random.rand(3, 1, 5, 1).astype(np.float32)
|
|
|
|
|
output = P.BroadcastTo(shape)(Tensor(x_np))
|
|
|
|
|
expect = np.broadcast_to(x_np, shape)
|
|
|
|
|
assert np.allclose(output.asnumpy(), expect)
|
|
|
|
|
|
|
|
|
|
x1_np = np.random.rand(3, 1, 5, 1).astype(np.float16)
|
|
|
|
|
output = P.BroadcastTo(shape)(Tensor(x1_np))
|
|
|
|
|
expect = np.broadcast_to(x1_np, shape)
|
|
|
|
|
assert np.allclose(output.asnumpy(), expect)
|
|
|
|
|
|
|
|
|
|
shape = (2, 3, 4, 5)
|
|
|
|
|
x1_np = np.random.rand(4, 5).astype(np.float32)
|
|
|
|
|
output = P.BroadcastTo(shape)(Tensor(x1_np))
|
|
|
|
|
expect = np.broadcast_to(x1_np, shape)
|
|
|
|
|
assert np.allclose(output.asnumpy(), expect)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def broadcast_to_dtype(dtype):
|
|
|
|
|
"""
|
|
|
|
|
Basic function to test data type of BroadcastTo.
|
|
|
|
|
"""
|
|
|
|
|
shape = (2, 3, 4, 5)
|
|
|
|
|
x1_np = np.random.rand(4, 5).astype(dtype)
|
|
|
|
|
output = P.BroadcastTo(shape)(Tensor(x1_np))
|
|
|
|
|
expect = np.broadcast_to(x1_np, shape)
|
|
|
|
|
assert np.allclose(output.asnumpy(), expect)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level1
|
|
|
|
|
@pytest.mark.parametrize('context_mode', [ms.GRAPH_MODE, ms.PYNATIVE_MODE])
|
|
|
|
|
@pytest.mark.platform_x86_cpu
|
|
|
|
|
@pytest.mark.platform_arm_cpu
|
|
|
|
|
@pytest.mark.platform_x86_gpu_training
|
|
|
|
|
@pytest.mark.platform_arm_ascend_training
|
|
|
|
|
@pytest.mark.platform_x86_ascend_training
|
|
|
|
|
@pytest.mark.env_onecard
|
|
|
|
|
def test_broadcast_to_dtype(context_mode):
|
|
|
|
|
"""
|
|
|
|
|
Feature: Test supported data types of BroadCastTo.
|
|
|
|
|
Description: all data types
|
|
|
|
|
Expectation: success.
|
|
|
|
|
"""
|
|
|
|
|
context.set_context(mode=context_mode)
|
|
|
|
|
types = [np.float16, np.float32, np.float64, np.int8, np.int16, np.int32, np.int64,
|
|
|
|
|
np.uint8, np.uint16, np.uint32, np.uint64, np.complex64, np.complex128]
|
|
|
|
|
for dtype in types:
|
|
|
|
|
broadcast_to_dtype(dtype=dtype)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level1
|
|
|
|
|
@pytest.mark.parametrize('context_mode', [ms.GRAPH_MODE, ms.PYNATIVE_MODE])
|
|
|
|
|
@pytest.mark.platform_x86_cpu
|
|
|
|
|
@pytest.mark.platform_arm_cpu
|
|
|
|
|
@pytest.mark.platform_x86_gpu_training
|
|
|
|
|
@pytest.mark.platform_arm_ascend_training
|
|
|
|
|
@pytest.mark.platform_x86_ascend_training
|
|
|
|
|
@pytest.mark.env_onecard
|
|
|
|
|
def test_broadcast_dyn_init(context_mode):
|
|
|
|
|
"""
|
|
|
|
|
Feature: pyboost function.
|
|
|
|
|
Description: Test running the op with -1's in the init shape to support varied inputs.
|
|
|
|
|
Expectation: expect correct result.
|
|
|
|
|
"""
|
|
|
|
|
context.set_context(mode=context_mode)
|
|
|
|
|
|
|
|
|
|
ms_shape = (-1, -1, 5, 6)
|
|
|
|
|
np_shape = (3, 4, 5, 6)
|
|
|
|
|
x_np = np.random.rand(3, 1, 5, 1).astype(np.float32)
|
|
|
|
|
output = P.BroadcastTo(ms_shape)(Tensor(x_np))
|
|
|
|
|
expect = np.broadcast_to(x_np, np_shape)
|
|
|
|
|
assert np.allclose(output.asnumpy(), expect)
|
|
|
|
|
|
|
|
|
|
x1_np = np.random.rand(3, 1, 5, 1).astype(np.float16)
|
|
|
|
|
output = P.BroadcastTo(ms_shape)(Tensor(x1_np))
|
|
|
|
|
expect = np.broadcast_to(x1_np, np_shape)
|
|
|
|
|
assert np.allclose(output.asnumpy(), expect)
|
|
|
|
|
|
|
|
|
|
ms_shape = (2, 3, -1, -1)
|
|
|
|
|
np_shape = (2, 3, 4, 5)
|
|
|
|
|
x1_np = np.random.rand(4, 5).astype(np.float32)
|
|
|
|
|
output = P.BroadcastTo(ms_shape)(Tensor(x1_np))
|
|
|
|
|
expect = np.broadcast_to(x1_np, np_shape)
|
|
|
|
|
assert np.allclose(output.asnumpy(), expect)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level1
|
|
|
|
|
@pytest.mark.parametrize('context_mode', [ms.GRAPH_MODE, ms.PYNATIVE_MODE])
|
|
|
|
|
@pytest.mark.platform_x86_cpu
|
|
|
|
|
@pytest.mark.platform_arm_cpu
|
|
|
|
|
@pytest.mark.platform_x86_gpu_training
|
|
|
|
|
@pytest.mark.platform_arm_ascend_training
|
|
|
|
|
@pytest.mark.platform_x86_ascend_training
|
|
|
|
|
@pytest.mark.env_onecard
|
|
|
|
|
def test_broadcast_dyn_invalid_init(context_mode):
|
|
|
|
|
"""
|
|
|
|
|
Feature: pyboost function.
|
|
|
|
|
Description: Test running the op with -1's in the init shape in incorrect positions.
|
|
|
|
|
Expectation: Expected to fail.
|
|
|
|
|
"""
|
|
|
|
|
context.set_context(mode=context_mode)
|
|
|
|
|
ms_shape = (2, -1, 4, 5)
|
|
|
|
|
x_np = np.random.rand(4, 5).astype(np.float32)
|
|
|
|
|
with pytest.raises(ValueError):
|
|
|
|
|
P.BroadcastTo(ms_shape)(Tensor(x_np))
|
|
|
|
|
_pynative_executor.sync()
|
|
|
|
|
|
|
|
|
|
ms_shape = (-1, 1, -1, -1)
|
|
|
|
|
x_np = np.random.rand(4, 5).astype(np.float32)
|
|
|
|
|
with pytest.raises(ValueError):
|
|
|
|
|
P.BroadcastTo(ms_shape)(Tensor(x_np))
|
|
|
|
|
_pynative_executor.sync()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class BroadcastToNet(Cell):
|
|
|
|
|
"""
|
|
|
|
|
Construct of dynamic input for BroadcastTo.
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
def __init__(self, shape):
|
|
|
|
|
super().__init__()
|
|
|
|
|
self.broadcastto = P.BroadcastTo(shape)
|
|
|
|
|
|
|
|
|
|
def construct(self, input_x):
|
|
|
|
|
return self.broadcastto(input_x)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level1
|
|
|
|
|
@pytest.mark.parametrize('context_mode', [ms.GRAPH_MODE, ms.PYNATIVE_MODE])
|
|
|
|
|
@pytest.mark.platform_x86_cpu
|
|
|
|
|
@pytest.mark.platform_arm_cpu
|
|
|
|
|
@pytest.mark.platform_x86_gpu_training
|
|
|
|
|
@pytest.mark.platform_arm_ascend_training
|
|
|
|
|
@pytest.mark.platform_x86_ascend_training
|
|
|
|
|
@pytest.mark.env_onecard
|
|
|
|
|
def test_broadcast_to_dynamic_shape(context_mode):
|
|
|
|
|
"""
|
|
|
|
|
Feature: Test dynamic shape of BroadcastTo operator
|
|
|
|
|
Description: dynamic input
|
|
|
|
|
Expectation: success.
|
|
|
|
|
"""
|
|
|
|
|
context.set_context(mode=context_mode)
|
|
|
|
|
shape = (2, 2, 3)
|
|
|
|
|
input_x_np = np.random.randn(2, 3).astype(np.float32)
|
|
|
|
|
input_x = Tensor(input_x_np)
|
|
|
|
|
input_dyn = Tensor(shape=[None, 3], dtype=input_x.dtype)
|
|
|
|
|
broadcast_to_net = BroadcastToNet(shape)
|
|
|
|
|
broadcast_to_net.set_inputs(input_dyn)
|
|
|
|
|
output = broadcast_to_net(input_x)
|
|
|
|
|
expect = np.broadcast_to(input_x_np, shape)
|
|
|
|
|
assert np.allclose(output.asnumpy(), expect)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level1
|
|
|
|
|
@pytest.mark.parametrize('context_mode', [ms.GRAPH_MODE, ms.PYNATIVE_MODE])
|
|
|
|
|
@pytest.mark.platform_x86_cpu
|
|
|
|
|
@pytest.mark.platform_arm_cpu
|
|
|
|
|
@pytest.mark.platform_x86_gpu_training
|
|
|
|
|
@pytest.mark.platform_arm_ascend_training
|
|
|
|
|
@pytest.mark.platform_x86_ascend_training
|
|
|
|
|
@pytest.mark.env_onecard
|
|
|
|
|
def test_broadcast_exception(context_mode):
|
|
|
|
|
"""
|
|
|
|
|
Feature: Test invalid input and target shape in of BroadcastTo.
|
|
|
|
|
Description: target shape is empty, but input shape is not empty.
|
|
|
|
|
Expectation: the result match with expected result.
|
|
|
|
|
"""
|
|
|
|
|
with pytest.raises(Exception) as info:
|
|
|
|
|
context.set_context(mode=context_mode)
|
|
|
|
|
shape = (0,)
|
|
|
|
|
x_np = np.random.randint(1, 4)
|
|
|
|
|
P.BroadcastTo(shape)(Tensor(x_np))
|
|
|
|
|
assert "ValueError: For 'BroadcastTo', each dimension pair, input_x shape and target shape must be equal or \
|
|
|
|
|
input dimension is 1 or target dimension is -1. But got input_x shape: [const vector][], target shape: \
|
|
|
|
|
[const vector][0]." in str(info.value)
|