!9778 fix the example in doc has something error (mindspore.compression)
From: @xiaoyisd Reviewed-by: @zhoufeng54,@guoqi1024 Signed-off-by: @guoqi1024
This commit is contained in:
commit
ae301eff0f
|
@ -142,33 +142,33 @@ class QuantizationAwareTraining(Quantizer):
|
|||
|
||||
Examples:
|
||||
>>> class LeNet5(nn.Cell):
|
||||
>>> def __init__(self, num_class=10, channel=1):
|
||||
>>> super(LeNet5, self).__init__()
|
||||
>>> self.type = "fusion"
|
||||
>>> self.num_class = num_class
|
||||
>>>
|
||||
>>> # change `nn.Conv2d` to `nn.Conv2dBnAct`
|
||||
>>> self.conv1 = nn.Conv2dBnAct(channel, 6, 5, pad_mode='valid', activation='relu')
|
||||
>>> self.conv2 = nn.Conv2dBnAct(6, 16, 5, pad_mode='valid', activation='relu')
|
||||
>>> # change `nn.Dense` to `nn.DenseBnAct`
|
||||
>>> self.fc1 = nn.DenseBnAct(16 * 5 * 5, 120, activation='relu')
|
||||
>>> self.fc2 = nn.DenseBnAct(120, 84, activation='relu')
|
||||
>>> self.fc3 = nn.DenseBnAct(84, self.num_class)
|
||||
>>>
|
||||
>>> self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
|
||||
>>> self.flatten = nn.Flatten()
|
||||
>>>
|
||||
>>> def construct(self, x):
|
||||
>>> x = self.conv1(x)
|
||||
>>> x = self.max_pool2d(x)
|
||||
>>> x = self.conv2(x)
|
||||
>>> x = self.max_pool2d(x)
|
||||
>>> x = self.flatten(x)
|
||||
>>> x = self.fc1(x)
|
||||
>>> x = self.fc2(x)
|
||||
>>> x = self.fc3(x)
|
||||
>>> return x
|
||||
>>>
|
||||
... def __init__(self, num_class=10, channel=1):
|
||||
... super(LeNet5, self).__init__()
|
||||
... self.type = "fusion"
|
||||
... self.num_class = num_class
|
||||
...
|
||||
... # change `nn.Conv2d` to `nn.Conv2dBnAct`
|
||||
... self.conv1 = nn.Conv2dBnAct(channel, 6, 5, pad_mode='valid', activation='relu')
|
||||
... self.conv2 = nn.Conv2dBnAct(6, 16, 5, pad_mode='valid', activation='relu')
|
||||
... # change `nn.Dense` to `nn.DenseBnAct`
|
||||
... self.fc1 = nn.DenseBnAct(16 * 5 * 5, 120, activation='relu')
|
||||
... self.fc2 = nn.DenseBnAct(120, 84, activation='relu')
|
||||
... self.fc3 = nn.DenseBnAct(84, self.num_class)
|
||||
...
|
||||
... self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
|
||||
... self.flatten = nn.Flatten()
|
||||
...
|
||||
... def construct(self, x):
|
||||
... x = self.conv1(x)
|
||||
... x = self.max_pool2d(x)
|
||||
... x = self.conv2(x)
|
||||
... x = self.max_pool2d(x)
|
||||
... x = self.flatten(x)
|
||||
... x = self.fc1(x)
|
||||
... x = self.fc2(x)
|
||||
... x = self.fc3(x)
|
||||
... return x
|
||||
...
|
||||
>>> net = LeNet5()
|
||||
>>> quantizer = QuantizationAwareTraining(bn_fold=False, per_channel=[True, False], symmetric=[True, False])
|
||||
>>> net_qat = quantizer.quantize(net)
|
||||
|
|
Loading…
Reference in New Issue