add binary cross entropy
This commit is contained in:
parent
2eefb94fee
commit
aa9ea1707c
|
@ -0,0 +1,28 @@
|
||||||
|
/**
|
||||||
|
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
*
|
||||||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
* you may not use this file except in compliance with the License.
|
||||||
|
* You may obtain a copy of the License at
|
||||||
|
*
|
||||||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
*
|
||||||
|
* Unless required by applicable law or agreed to in writing, software
|
||||||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
* See the License for the specific language governing permissions and
|
||||||
|
* limitations under the License.
|
||||||
|
*/
|
||||||
|
#include "backend/kernel_compiler/gpu/nn/binary_cross_entropy_gpu_kernel.h"
|
||||||
|
|
||||||
|
namespace mindspore {
|
||||||
|
namespace kernel {
|
||||||
|
MS_REG_GPU_KERNEL_ONE(BinaryCrossEntropy,
|
||||||
|
KernelAttr()
|
||||||
|
.AddInputAttr(kNumberTypeFloat32)
|
||||||
|
.AddInputAttr(kNumberTypeFloat32)
|
||||||
|
.AddInputAttr(kNumberTypeFloat32)
|
||||||
|
.AddOutputAttr(kNumberTypeFloat32),
|
||||||
|
BinaryCrossEntropyGpuKernel, float)
|
||||||
|
} // namespace kernel
|
||||||
|
} // namespace mindspore
|
|
@ -0,0 +1,89 @@
|
||||||
|
/**
|
||||||
|
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
*
|
||||||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
* you may not use this file except in compliance with the License.
|
||||||
|
* You may obtain a copy of the License at
|
||||||
|
*
|
||||||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
*
|
||||||
|
* Unless required by applicable law or agreed to in writing, software
|
||||||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
* See the License for the specific language governing permissions and
|
||||||
|
* limitations under the License.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_BINARY_CROSS_ENTROPY_KERNEL_H
|
||||||
|
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_BINARY_CROSS_ENTROPY_KERNEL_H
|
||||||
|
|
||||||
|
#include <vector>
|
||||||
|
#include <string>
|
||||||
|
#include "backend/kernel_compiler/gpu/gpu_kernel.h"
|
||||||
|
#include "backend/kernel_compiler/gpu/gpu_kernel_factory.h"
|
||||||
|
#include "backend/kernel_compiler/gpu/cuda_impl/loss_with_reduction_impl.cuh"
|
||||||
|
|
||||||
|
namespace mindspore {
|
||||||
|
namespace kernel {
|
||||||
|
template <typename T>
|
||||||
|
class BinaryCrossEntropyGpuKernel : public GpuKernel {
|
||||||
|
public:
|
||||||
|
BinaryCrossEntropyGpuKernel() : input_size_(1), reduction_(1) {}
|
||||||
|
~BinaryCrossEntropyGpuKernel() override = default;
|
||||||
|
|
||||||
|
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; }
|
||||||
|
const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; }
|
||||||
|
const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; }
|
||||||
|
|
||||||
|
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &,
|
||||||
|
const std::vector<AddressPtr> &outputs, void *stream_ptr) override {
|
||||||
|
T *input_x = GetDeviceAddress<T>(inputs, 0);
|
||||||
|
T *input_y = GetDeviceAddress<T>(inputs, 1);
|
||||||
|
T *weight = GetDeviceAddress<T>(inputs, 2);
|
||||||
|
T *loss = GetDeviceAddress<T>(outputs, 0);
|
||||||
|
|
||||||
|
BinaryCrossEntropyLoss(input_size_, reduction_, input_x, input_y, weight, loss,
|
||||||
|
reinterpret_cast<cudaStream_t>(stream_ptr));
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
bool Init(const CNodePtr &kernel_node) override {
|
||||||
|
auto input_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
|
||||||
|
for (size_t i = 0; i < input_shape.size(); i++) {
|
||||||
|
input_size_ *= input_shape[i];
|
||||||
|
}
|
||||||
|
|
||||||
|
string reduction = GetAttr<string>(kernel_node, "reduction");
|
||||||
|
if (reduction == "none") {
|
||||||
|
reduction_ = 0;
|
||||||
|
} else if (reduction == "sum") {
|
||||||
|
reduction_ = 2;
|
||||||
|
}
|
||||||
|
InitSizeLists();
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
protected:
|
||||||
|
void InitSizeLists() override {
|
||||||
|
input_size_list_.push_back(input_size_ * sizeof(T));
|
||||||
|
input_size_list_.push_back(input_size_ * sizeof(T));
|
||||||
|
input_size_list_.push_back(input_size_ * sizeof(T));
|
||||||
|
if (reduction_ == 0) {
|
||||||
|
output_size_list_.push_back(input_size_ * sizeof(T));
|
||||||
|
} else {
|
||||||
|
output_size_list_.push_back(sizeof(T));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
private:
|
||||||
|
size_t input_size_;
|
||||||
|
int reduction_;
|
||||||
|
|
||||||
|
std::vector<size_t> input_size_list_;
|
||||||
|
std::vector<size_t> output_size_list_;
|
||||||
|
std::vector<size_t> workspace_size_list_;
|
||||||
|
};
|
||||||
|
} // namespace kernel
|
||||||
|
} // namespace mindspore
|
||||||
|
|
||||||
|
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_BINARY_CROSS_ENTROPY_H
|
|
@ -0,0 +1,30 @@
|
||||||
|
/**
|
||||||
|
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
*
|
||||||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
* you may not use this file except in compliance with the License.
|
||||||
|
* You may obtain a copy of the License at
|
||||||
|
*
|
||||||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
*
|
||||||
|
* Unless required by applicable law or agreed to in writing, software
|
||||||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
* See the License for the specific language governing permissions and
|
||||||
|
* limitations under the License.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#include "backend/kernel_compiler/gpu/nn/binary_cross_entropy_grad_kernel.h"
|
||||||
|
|
||||||
|
namespace mindspore {
|
||||||
|
namespace kernel {
|
||||||
|
MS_REG_GPU_KERNEL_ONE(BinaryCrossEntropyGrad,
|
||||||
|
KernelAttr()
|
||||||
|
.AddInputAttr(kNumberTypeFloat32)
|
||||||
|
.AddInputAttr(kNumberTypeFloat32)
|
||||||
|
.AddInputAttr(kNumberTypeFloat32)
|
||||||
|
.AddInputAttr(kNumberTypeFloat32)
|
||||||
|
.AddOutputAttr(kNumberTypeFloat32),
|
||||||
|
BinaryCrossEntropyGradGpuKernel, float)
|
||||||
|
} // namespace kernel
|
||||||
|
} // namespace mindspore
|
|
@ -0,0 +1,90 @@
|
||||||
|
/**
|
||||||
|
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
*
|
||||||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
* you may not use this file except in compliance with the License.
|
||||||
|
* You may obtain a copy of the License at
|
||||||
|
*
|
||||||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
*
|
||||||
|
* Unless required by applicable law or agreed to in writing, software
|
||||||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
* See the License for the specific language governing permissions and
|
||||||
|
* limitations under the License.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_BINARY_CROSS_ENTROPY_GRAD_KERNEL_H
|
||||||
|
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_BINARY_CROSS_ENTROPY_GRAD_KERNEL_H
|
||||||
|
|
||||||
|
#include <string>
|
||||||
|
#include <vector>
|
||||||
|
#include "backend/kernel_compiler/gpu/gpu_kernel.h"
|
||||||
|
#include "backend/kernel_compiler/gpu/gpu_kernel_factory.h"
|
||||||
|
#include "backend/kernel_compiler/gpu/cuda_impl/loss_with_reduction_impl.cuh"
|
||||||
|
|
||||||
|
namespace mindspore {
|
||||||
|
namespace kernel {
|
||||||
|
template <typename T>
|
||||||
|
class BinaryCrossEntropyGradGpuKernel : public GpuKernel {
|
||||||
|
public:
|
||||||
|
BinaryCrossEntropyGradGpuKernel() : input_size_(1), reduction_(1) {}
|
||||||
|
~BinaryCrossEntropyGradGpuKernel() override = default;
|
||||||
|
|
||||||
|
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; }
|
||||||
|
const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; }
|
||||||
|
const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; }
|
||||||
|
|
||||||
|
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &,
|
||||||
|
const std::vector<AddressPtr> &outputs, void *stream_ptr) override {
|
||||||
|
T *input_x = GetDeviceAddress<T>(inputs, 0);
|
||||||
|
T *input_y = GetDeviceAddress<T>(inputs, 1);
|
||||||
|
T *dloss = GetDeviceAddress<T>(inputs, 2);
|
||||||
|
T *weight = GetDeviceAddress<T>(inputs, 3);
|
||||||
|
T *dx = GetDeviceAddress<T>(outputs, 0);
|
||||||
|
BinaryCrossEntropyLossGrad(input_size_, reduction_, input_x, input_y, weight, dloss, dx,
|
||||||
|
reinterpret_cast<cudaStream_t>(stream_ptr));
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
bool Init(const CNodePtr &kernel_node) override {
|
||||||
|
auto input_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
|
||||||
|
for (size_t i = 0; i < input_shape.size(); i++) {
|
||||||
|
input_size_ *= input_shape[i];
|
||||||
|
}
|
||||||
|
|
||||||
|
string reduction = GetAttr<string>(kernel_node, "reduction");
|
||||||
|
if (reduction == "none") {
|
||||||
|
reduction_ = 0;
|
||||||
|
} else if (reduction == "sum") {
|
||||||
|
reduction_ = 2;
|
||||||
|
}
|
||||||
|
InitSizeLists();
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
protected:
|
||||||
|
void InitSizeLists() override {
|
||||||
|
input_size_list_.push_back(input_size_ * sizeof(T));
|
||||||
|
input_size_list_.push_back(input_size_ * sizeof(T));
|
||||||
|
input_size_list_.push_back(input_size_ * sizeof(T));
|
||||||
|
if (reduction_ == 0) {
|
||||||
|
input_size_list_.push_back(input_size_ * sizeof(T));
|
||||||
|
output_size_list_.push_back(input_size_ * sizeof(T));
|
||||||
|
} else {
|
||||||
|
input_size_list_.push_back(sizeof(T));
|
||||||
|
output_size_list_.push_back(sizeof(T));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
private:
|
||||||
|
size_t input_size_;
|
||||||
|
int reduction_;
|
||||||
|
|
||||||
|
std::vector<size_t> input_size_list_;
|
||||||
|
std::vector<size_t> output_size_list_;
|
||||||
|
std::vector<size_t> workspace_size_list_;
|
||||||
|
};
|
||||||
|
} // namespace kernel
|
||||||
|
} // namespace mindspore
|
||||||
|
#endif // MINDSPORE_BINARY_CROSS_ENTROPY_GRAD_KERNEL_H
|
|
@ -0,0 +1,83 @@
|
||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import pytest
|
||||||
|
|
||||||
|
import mindspore.context as context
|
||||||
|
import mindspore.nn as nn
|
||||||
|
from mindspore import Tensor
|
||||||
|
from mindspore.ops import composite as C
|
||||||
|
from mindspore.ops import operations as P
|
||||||
|
|
||||||
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||||
|
|
||||||
|
|
||||||
|
class Net(nn.Cell):
|
||||||
|
def __init__(self, reduction="none"):
|
||||||
|
super(Net, self).__init__()
|
||||||
|
self.BinaryCrossEntropy = P.BinaryCrossEntropy("none")
|
||||||
|
|
||||||
|
def construct(self, x, y, weight):
|
||||||
|
return self.BinaryCrossEntropy(x, y, weight)
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.level0
|
||||||
|
@pytest.mark.platform_x86_gpu_training
|
||||||
|
@pytest.mark.env_onecard
|
||||||
|
def test_binary_cross_entropy_loss():
|
||||||
|
np.random.seed(42)
|
||||||
|
prediction = np.random.rand(20).astype(np.float32)
|
||||||
|
target = np.random.rand(20).astype(np.float32)
|
||||||
|
weight = np.random.rand(20).astype(np.float32)
|
||||||
|
net = Net()
|
||||||
|
loss = net(Tensor(prediction), Tensor(target), Tensor(weight))
|
||||||
|
expect = [0.09555826, 1.2861121, 0.03518666, 0.6969416, 0.24313456, 0.99062896,
|
||||||
|
0.19205657, 0.5465214, 0.36964455, 0.21999404, 2.2953863, 2.2566645,
|
||||||
|
1.5803775, 1.3266402, 0.9883408, 1.2997618, 0.05439841, 0.14389999,
|
||||||
|
0.03405444, 0.23934692]
|
||||||
|
assert np.allclose(loss.asnumpy(), expect)
|
||||||
|
|
||||||
|
|
||||||
|
class Grad(nn.Cell):
|
||||||
|
def __init__(self, network):
|
||||||
|
super(Grad, self).__init__()
|
||||||
|
self.grad = C.GradOperation(name="get_all", get_all=True, sens_param=True)
|
||||||
|
self.network = network
|
||||||
|
|
||||||
|
def construct(self, x1, x2, sens, weight):
|
||||||
|
gout = self.grad(self.network)(x1, x2, sens, weight)
|
||||||
|
return gout
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.level0
|
||||||
|
@pytest.mark.platform_x86_gpu_training
|
||||||
|
@pytest.mark.env_onecard
|
||||||
|
def test_binary_cross_entropy_loss_grad():
|
||||||
|
np.random.seed(42)
|
||||||
|
prediction = np.random.rand(20).astype(np.float32)
|
||||||
|
target = np.random.rand(20).astype(np.float32)
|
||||||
|
sens = np.random.rand(20).astype(np.float32)
|
||||||
|
weight = np.random.rand(20).astype(np.float32)
|
||||||
|
grad = Grad(Net())
|
||||||
|
dx = grad(Tensor(prediction), Tensor(target), Tensor(sens), Tensor(weight))
|
||||||
|
|
||||||
|
dx1_expect = [-4.80516590e-02, 2.32625079e+00, 6.38972521e-02, 3.13642323e-01,
|
||||||
|
-1.65661633e-01, -1.71821892e+00, -1.13685496e-01, 1.26669514e+00,
|
||||||
|
1.47891801e-03, 5.83921909e-01, -2.17992840e+01, 4.21899414e+00,
|
||||||
|
2.85430793e-02, -3.21346498e+00, -2.22674108e+00, -2.80453944e+00,
|
||||||
|
-1.19787852e-04, 2.48514321e-02, -1.66696273e-02, -2.71965731e-02]
|
||||||
|
|
||||||
|
assert np.allclose(dx[0].asnumpy(), dx1_expect)
|
Loading…
Reference in New Issue