fix coding style
This commit is contained in:
parent
b6dc6f974e
commit
a949a11af5
|
@ -16,7 +16,7 @@
|
|||
#include "nnacl/fp32/prelu_fp32.h"
|
||||
|
||||
#ifdef ENABLE_ARM64
|
||||
inline void PRelu4x16(const float *in, float *out, float *cur_slope, size_t step) {
|
||||
static inline void PRelu4x16(const float *in, float *out, float *cur_slope, size_t step) {
|
||||
asm volatile(
|
||||
"mov x10, %[in]\n"
|
||||
"mov x11, %[out]\n"
|
||||
|
|
|
@ -13,11 +13,11 @@
|
|||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "include/api/cell.h"
|
||||
#include "src/common/log_adapter.h"
|
||||
|
||||
namespace mindspore {
|
||||
|
||||
class GraphImpl {};
|
||||
|
||||
std::vector<Output> CellBase::operator()(const std::vector<Input> &inputs) const {
|
||||
|
@ -90,5 +90,4 @@ InputAndOutput::InputAndOutput(const std::shared_ptr<CellBase> &cell, const std:
|
|||
int32_t index) {
|
||||
MS_LOG(ERROR) << "Unsupported feature.";
|
||||
}
|
||||
|
||||
} // namespace mindspore
|
||||
|
|
|
@ -13,6 +13,7 @@
|
|||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "include/api/context.h"
|
||||
#include <string>
|
||||
#include <memory>
|
||||
|
@ -262,5 +263,4 @@ enum DataType Ascend310DeviceInfo::GetOutputType() const {
|
|||
MS_LOG(ERROR) << "Unsupported Feature.";
|
||||
return DataType::kTypeUnknown;
|
||||
}
|
||||
|
||||
} // namespace mindspore
|
||||
|
|
|
@ -19,7 +19,6 @@
|
|||
#include "src/cxx_api/graph/graph_data.h"
|
||||
|
||||
namespace mindspore {
|
||||
|
||||
Graph::Graph() : graph_data_(nullptr) {}
|
||||
|
||||
Graph::Graph(const std::shared_ptr<GraphData> &graph_data) : graph_data_(graph_data) {}
|
||||
|
|
|
@ -13,6 +13,7 @@
|
|||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_LITE_SRC_CXX_API_GRAPH_GRAPH_DATA_H
|
||||
#define MINDSPORE_LITE_SRC_CXX_API_GRAPH_GRAPH_DATA_H
|
||||
|
||||
|
@ -39,4 +40,5 @@ class Graph::GraphData {
|
|||
std::shared_ptr<lite::Model> lite_model_;
|
||||
};
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_LITE_SRC_CXX_API_GRAPH_GRAPH_DATA_H
|
||||
|
|
|
@ -13,6 +13,7 @@
|
|||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "include/api/model.h"
|
||||
#include "include/api/types.h"
|
||||
#include "include/api/context.h"
|
||||
|
@ -21,7 +22,6 @@
|
|||
#include "src/common/log_adapter.h"
|
||||
|
||||
namespace mindspore {
|
||||
|
||||
Status Model::Build(GraphCell graph, const std::shared_ptr<Context> &model_context) {
|
||||
if (impl_ != nullptr) {
|
||||
MS_LOG(DEBUG) << "Model has been already built.";
|
||||
|
|
|
@ -150,6 +150,11 @@ Status ModelImpl::Predict(const std::vector<MSTensor> &inputs, std::vector<MSTen
|
|||
<< ".";
|
||||
return kLiteInputTensorError;
|
||||
}
|
||||
if (user_input.Data() == nullptr) {
|
||||
ResetTensorData(old_data, input_tensors);
|
||||
MS_LOG(ERROR) << "Tensor " << user_input.Name() << " has no data.";
|
||||
return kLiteInputTensorError;
|
||||
}
|
||||
if (user_input.Name() != input->tensor_name()) {
|
||||
MS_LOG(WARNING) << "Tensor " << user_input.Name() << " has a different name from input" << input->tensor_name()
|
||||
<< ".";
|
||||
|
@ -384,5 +389,4 @@ Status ModelImpl::Resize(const std::vector<MSTensor> &inputs, const std::vector<
|
|||
auto ret = session_->Resize(inner_input, truncated_shape);
|
||||
return static_cast<StatusCode>(ret);
|
||||
}
|
||||
|
||||
} // namespace mindspore
|
||||
|
|
|
@ -13,8 +13,10 @@
|
|||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_LITE_SRC_CXX_API_MODEL_MODEL_IMPL_H
|
||||
#define MINDSPORE_LITE_SRC_CXX_API_MODEL_MODEL_IMPL_H
|
||||
|
||||
#include <functional>
|
||||
#include <map>
|
||||
#include <string>
|
||||
|
|
|
@ -27,7 +27,6 @@
|
|||
#include "src/common/log_adapter.h"
|
||||
|
||||
namespace mindspore {
|
||||
|
||||
Status Serialization::Load(const void *model_data, size_t data_size, ModelType model_type, Graph *graph) {
|
||||
if (model_type != kMindIR) {
|
||||
MS_LOG(ERROR) << "Unsupported IR.";
|
||||
|
|
|
@ -13,6 +13,7 @@
|
|||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include <cstddef>
|
||||
#include <numeric>
|
||||
#include <memory>
|
||||
|
@ -33,8 +34,9 @@
|
|||
namespace mindspore {
|
||||
using mindspore::lite::RET_OK;
|
||||
|
||||
MSTensor::Impl *MSTensor::Impl::CreateTensorImpl(const std::string &name, enum DataType type,
|
||||
const std::vector<int64_t> &shape, const void *data, size_t data_len) {
|
||||
std::shared_ptr<MSTensor::Impl> MSTensor::Impl::CreateTensorImpl(const std::string &name, enum DataType type,
|
||||
const std::vector<int64_t> &shape, const void *data,
|
||||
size_t data_len) {
|
||||
std::vector<int32_t> truncated_shape = TruncateShape(shape, static_cast<enum TypeId>(type), data_len, true);
|
||||
if (truncated_shape.empty() && !(shape.empty())) {
|
||||
MS_LOG(ERROR) << "Invalid shape for creating tensor.";
|
||||
|
@ -45,7 +47,7 @@ MSTensor::Impl *MSTensor::Impl::CreateTensorImpl(const std::string &name, enum D
|
|||
MS_LOG(ERROR) << "Failed to allocate lite tensor.";
|
||||
return nullptr;
|
||||
}
|
||||
auto impl = new (std::nothrow) Impl(lite_tensor);
|
||||
auto impl = std::shared_ptr<MSTensor::Impl>(new (std::nothrow) Impl(lite_tensor));
|
||||
if (impl == nullptr) {
|
||||
MS_LOG(ERROR) << "Failed to allocate tensor impl.";
|
||||
return nullptr;
|
||||
|
@ -54,7 +56,8 @@ MSTensor::Impl *MSTensor::Impl::CreateTensorImpl(const std::string &name, enum D
|
|||
return impl;
|
||||
}
|
||||
|
||||
MSTensor::Impl *MSTensor::Impl::StringsToTensorImpl(const std::string &name, const std::vector<std::string> &str) {
|
||||
std::shared_ptr<MSTensor::Impl> MSTensor::Impl::StringsToTensorImpl(const std::string &name,
|
||||
const std::vector<std::string> &str) {
|
||||
auto lite_tensor = new (std::nothrow) lite::Tensor();
|
||||
if (lite_tensor == nullptr) {
|
||||
MS_LOG(ERROR) << "Failed to allocate lite tensor.";
|
||||
|
@ -67,7 +70,7 @@ MSTensor::Impl *MSTensor::Impl::StringsToTensorImpl(const std::string &name, con
|
|||
delete lite_tensor;
|
||||
return nullptr;
|
||||
}
|
||||
auto impl = new (std::nothrow) Impl(lite_tensor);
|
||||
auto impl = std::shared_ptr<MSTensor::Impl>(new (std::nothrow) Impl(lite_tensor));
|
||||
if (impl == nullptr) {
|
||||
delete lite_tensor;
|
||||
MS_LOG(ERROR) << "Failed to allocate tensor impl.";
|
||||
|
@ -77,5 +80,4 @@ MSTensor::Impl *MSTensor::Impl::StringsToTensorImpl(const std::string &name, con
|
|||
impl->set_from_session(false);
|
||||
return impl;
|
||||
}
|
||||
|
||||
} // namespace mindspore
|
||||
|
|
|
@ -13,6 +13,10 @@
|
|||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_LITE_SRC_CXX_API_TENSOR_TENSOR_IMPL_H
|
||||
#define MINDSPORE_LITE_SRC_CXX_API_TENSOR_TENSOR_IMPL_H
|
||||
|
||||
#include <cstddef>
|
||||
#include <numeric>
|
||||
#include <memory>
|
||||
|
@ -53,10 +57,10 @@ class MSTensor::Impl {
|
|||
}
|
||||
}
|
||||
|
||||
static Impl *CreateTensorImpl(const std::string &name, enum DataType type, const std::vector<int64_t> &shape,
|
||||
const void *data, size_t data_len);
|
||||
static std::shared_ptr<Impl> CreateTensorImpl(const std::string &name, enum DataType type,
|
||||
const std::vector<int64_t> &shape, const void *data, size_t data_len);
|
||||
|
||||
static Impl *StringsToTensorImpl(const std::string &name, const std::vector<std::string> &str);
|
||||
static std::shared_ptr<Impl> StringsToTensorImpl(const std::string &name, const std::vector<std::string> &str);
|
||||
|
||||
static std::vector<std::string> TensorImplToStrings(const std::shared_ptr<Impl> &impl) {
|
||||
std::vector<std::string> empty;
|
||||
|
@ -116,7 +120,7 @@ class MSTensor::Impl {
|
|||
return nullptr;
|
||||
}
|
||||
|
||||
return std::shared_ptr<const void>(lite_tensor_->MutableData(), [](const void *) {});
|
||||
return std::shared_ptr<const void>(lite_tensor_->data(), [](const void *) {});
|
||||
}
|
||||
|
||||
virtual void *MutableData() {
|
||||
|
@ -158,5 +162,6 @@ class MSTensor::Impl {
|
|||
bool own_data_ = false;
|
||||
bool from_session_ = false;
|
||||
};
|
||||
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_LITE_SRC_CXX_API_TENSOR_TENSOR_IMPL_H
|
||||
|
|
|
@ -13,6 +13,10 @@
|
|||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_LITE_SRC_CXX_API_TENSOR_UTILS_H
|
||||
#define MINDSPORE_LITE_SRC_CXX_API_TENSOR_UTILS_H
|
||||
|
||||
#include <limits.h>
|
||||
#include <vector>
|
||||
#include "ir/dtype/type_id.h"
|
||||
|
@ -45,5 +49,6 @@ static std::vector<int32_t> TruncateShape(const std::vector<int64_t> &shape, enu
|
|||
}
|
||||
return truncated_shape;
|
||||
}
|
||||
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_LITE_SRC_CXX_API_TENSOR_UTILS_H
|
||||
|
|
|
@ -13,6 +13,7 @@
|
|||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "include/api/types.h"
|
||||
#include <string.h>
|
||||
#include <limits.h>
|
||||
|
@ -25,7 +26,6 @@
|
|||
#include "src/common/log_adapter.h"
|
||||
|
||||
namespace mindspore {
|
||||
|
||||
class Buffer::Impl {
|
||||
public:
|
||||
Impl() : data_() { MS_LOG(ERROR) << "Unsupported feature."; }
|
||||
|
@ -64,7 +64,7 @@ MSTensor::MSTensor(std::nullptr_t) : impl_(nullptr) {}
|
|||
MSTensor::MSTensor(const std::shared_ptr<Impl> &impl) : impl_(impl) {}
|
||||
MSTensor::MSTensor(const std::vector<char> &name, enum DataType type, const std::vector<int64_t> &shape,
|
||||
const void *data, size_t data_len)
|
||||
: impl_(std::shared_ptr<Impl>(Impl::CreateTensorImpl(CharToString(name), type, shape, data, data_len))) {}
|
||||
: impl_(Impl::CreateTensorImpl(CharToString(name), type, shape, data, data_len)) {}
|
||||
MSTensor::~MSTensor() = default;
|
||||
|
||||
bool MSTensor::operator==(std::nullptr_t) const { return impl_ == nullptr; }
|
||||
|
@ -79,7 +79,7 @@ MSTensor *MSTensor::CreateTensor(const std::vector<char> &name, enum DataType ty
|
|||
return nullptr;
|
||||
}
|
||||
::memcpy(new_data, data, data_len);
|
||||
auto impl = std::shared_ptr<Impl>(Impl::CreateTensorImpl(CharToString(name), type, shape, new_data, data_len));
|
||||
auto impl = Impl::CreateTensorImpl(CharToString(name), type, shape, new_data, data_len);
|
||||
if (impl == nullptr) {
|
||||
MS_LOG(ERROR) << "Allocate tensor impl failed.";
|
||||
free(new_data);
|
||||
|
@ -97,7 +97,7 @@ MSTensor *MSTensor::CreateTensor(const std::vector<char> &name, enum DataType ty
|
|||
|
||||
MSTensor *MSTensor::CreateRefTensor(const std::vector<char> &name, enum DataType type,
|
||||
const std::vector<int64_t> &shape, const void *data, size_t data_len) noexcept {
|
||||
auto impl = std::shared_ptr<Impl>(Impl::CreateTensorImpl(CharToString(name), type, shape, data, data_len));
|
||||
auto impl = Impl::CreateTensorImpl(CharToString(name), type, shape, data, data_len);
|
||||
if (impl == nullptr) {
|
||||
MS_LOG(ERROR) << "Allocate tensor impl failed.";
|
||||
return nullptr;
|
||||
|
@ -111,7 +111,7 @@ MSTensor *MSTensor::CreateRefTensor(const std::vector<char> &name, enum DataType
|
|||
}
|
||||
|
||||
MSTensor *MSTensor::CharStringsToTensor(const std::vector<char> &name, const std::vector<std::vector<char>> &inputs) {
|
||||
auto impl = std::shared_ptr<Impl>(Impl::StringsToTensorImpl(CharToString(name), VectorCharToString(inputs)));
|
||||
auto impl = Impl::StringsToTensorImpl(CharToString(name), VectorCharToString(inputs));
|
||||
if (impl == nullptr) {
|
||||
MS_LOG(ERROR) << "Allocate tensor impl failed.";
|
||||
return nullptr;
|
||||
|
@ -148,8 +148,7 @@ MSTensor *MSTensor::Clone() const {
|
|||
MS_LOG(ERROR) << "Allocate data failed.";
|
||||
return nullptr;
|
||||
}
|
||||
auto impl =
|
||||
std::shared_ptr<Impl>(Impl::CreateTensorImpl(this->Name(), this->DataType(), this->Shape(), new_data, data_len));
|
||||
auto impl = Impl::CreateTensorImpl(this->Name(), this->DataType(), this->Shape(), new_data, data_len);
|
||||
if (impl == nullptr) {
|
||||
MS_LOG(ERROR) << "Allocate tensor impl failed.";
|
||||
free(new_data);
|
||||
|
|
Loading…
Reference in New Issue