solve the problem of sudden increases in losses for fasterrcnn model
This commit is contained in:
parent
7404db6737
commit
a7847cb612
|
@ -19,6 +19,7 @@ import argparse
|
|||
import time
|
||||
import numpy as np
|
||||
from pycocotools.coco import COCO
|
||||
import mindspore.common.dtype as mstype
|
||||
from mindspore import context
|
||||
from mindspore.train.serialization import load_checkpoint, load_param_into_net
|
||||
from mindspore.common import set_seed, Parameter
|
||||
|
@ -51,7 +52,11 @@ def fasterrcnn_eval(dataset_path, ckpt_path, ann_file):
|
|||
tensor = value.asnumpy().astype(np.float32)
|
||||
param_dict[key] = Parameter(tensor, key)
|
||||
load_param_into_net(net, param_dict)
|
||||
|
||||
net.set_train(False)
|
||||
device_type = "Ascend" if context.get_context("device_target") == "Ascend" else "Others"
|
||||
if device_type == "Ascend":
|
||||
net.to_float(mstype.float16)
|
||||
|
||||
eval_iter = 0
|
||||
total = ds.get_dataset_size()
|
||||
|
|
|
@ -16,6 +16,7 @@
|
|||
|
||||
import numpy as np
|
||||
import mindspore.nn as nn
|
||||
from mindspore import context
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.common.tensor import Tensor
|
||||
import mindspore.common.dtype as mstype
|
||||
|
@ -144,6 +145,7 @@ class Faster_Rcnn_Resnet50(nn.Cell):
|
|||
|
||||
# Init tensor
|
||||
self.init_tensor(config)
|
||||
self.device_type = "Ascend" if context.get_context("device_target") == "Ascend" else "Others"
|
||||
|
||||
def roi_init(self, config):
|
||||
self.roi_align = SingleRoIExtractor(config,
|
||||
|
@ -267,6 +269,8 @@ class Faster_Rcnn_Resnet50(nn.Cell):
|
|||
bboxes_all = self.concat(bboxes_tuple)
|
||||
else:
|
||||
bboxes_all = bboxes_tuple[0]
|
||||
if self.device_type == "Ascend":
|
||||
bboxes_all = self.cast(bboxes_all, mstype.float16)
|
||||
rois = self.concat_1((self.roi_align_index_test_tensor, bboxes_all))
|
||||
|
||||
rois = self.cast(rois, mstype.float32)
|
||||
|
|
|
@ -40,7 +40,7 @@ class DenseNoTranpose(nn.Cell):
|
|||
if self.device_type == "Ascend":
|
||||
x = self.cast(x, mstype.float16)
|
||||
weight = self.cast(self.weight, mstype.float16)
|
||||
output = self.bias_add(self.cast(self.matmul(x, weight), mstype.float32), self.bias)
|
||||
output = self.bias_add(self.matmul(x, weight), self.bias)
|
||||
else:
|
||||
output = self.bias_add(self.matmul(x, self.weight), self.bias)
|
||||
return output
|
||||
|
|
|
@ -16,7 +16,7 @@
|
|||
import numpy as np
|
||||
import mindspore.nn as nn
|
||||
import mindspore.common.dtype as mstype
|
||||
from mindspore import Tensor
|
||||
from mindspore import context, Tensor
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.ops import functional as F
|
||||
from mindspore.common.initializer import initializer
|
||||
|
@ -102,6 +102,7 @@ class RPN(nn.Cell):
|
|||
cfg_rpn = config
|
||||
self.dtype = np.float32
|
||||
self.ms_type = mstype.float32
|
||||
self.device_type = "Ascend" if context.get_context("device_target") == "Ascend" else "Others"
|
||||
self.num_bboxes = cfg_rpn.num_bboxes
|
||||
self.slice_index = ()
|
||||
self.feature_anchor_shape = ()
|
||||
|
@ -180,9 +181,12 @@ class RPN(nn.Cell):
|
|||
bias_reg = initializer(0, shape=shp_bias_reg, dtype=self.ms_type).to_tensor()
|
||||
|
||||
for i in range(num_layers):
|
||||
rpn_layer.append(RpnRegClsBlock(in_channels, feat_channels, num_anchors, cls_out_channels, \
|
||||
rpn_reg_cls_block = RpnRegClsBlock(in_channels, feat_channels, num_anchors, cls_out_channels, \
|
||||
weight_conv, bias_conv, weight_cls, \
|
||||
bias_cls, weight_reg, bias_reg))
|
||||
bias_cls, weight_reg, bias_reg)
|
||||
if self.device_type == "Ascend":
|
||||
rpn_reg_cls_block.to_float(mstype.float16)
|
||||
rpn_layer.append(rpn_reg_cls_block)
|
||||
|
||||
for i in range(1, num_layers):
|
||||
rpn_layer[i].rpn_conv.weight = rpn_layer[0].rpn_conv.weight
|
||||
|
@ -250,6 +254,7 @@ class RPN(nn.Cell):
|
|||
mstype.bool_),
|
||||
anchor_using_list, gt_valids_i)
|
||||
|
||||
bbox_target = self.cast(bbox_target, self.ms_type)
|
||||
bbox_weight = self.cast(bbox_weight, self.ms_type)
|
||||
label = self.cast(label, self.ms_type)
|
||||
label_weight = self.cast(label_weight, self.ms_type)
|
||||
|
@ -286,8 +291,8 @@ class RPN(nn.Cell):
|
|||
label_ = F.stop_gradient(label_with_batchsize)
|
||||
label_weight_ = F.stop_gradient(label_weight_with_batchsize)
|
||||
|
||||
cls_score_i = rpn_cls_score[i]
|
||||
reg_score_i = rpn_bbox_pred[i]
|
||||
cls_score_i = self.cast(rpn_cls_score[i], self.ms_type)
|
||||
reg_score_i = self.cast(rpn_bbox_pred[i], self.ms_type)
|
||||
|
||||
loss_cls = self.loss_cls(cls_score_i, label_)
|
||||
loss_cls_item = loss_cls * label_weight_
|
||||
|
|
|
@ -152,6 +152,10 @@ if __name__ == '__main__':
|
|||
param_dict[key] = Parameter(tensor, key)
|
||||
load_param_into_net(net, param_dict)
|
||||
|
||||
device_type = "Ascend" if context.get_context("device_target") == "Ascend" else "Others"
|
||||
if device_type == "Ascend":
|
||||
net.to_float(mstype.float16)
|
||||
|
||||
loss = LossNet()
|
||||
lr = Tensor(dynamic_lr(config, dataset_size), mstype.float32)
|
||||
|
||||
|
|
Loading…
Reference in New Issue