revert reimplementation of biasAdd using nnacl
This commit is contained in:
parent
6e6dacf03b
commit
a4bc6978fc
|
@ -16,8 +16,6 @@
|
|||
|
||||
#include "backend/kernel_compiler/cpu/bias_add_cpu_kernel.h"
|
||||
|
||||
#include <functional>
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
constexpr size_t kBiasAddMinDim = 2;
|
||||
|
@ -28,27 +26,19 @@ void BiasAddCPUKernel::InitKernel(const CNodePtr &kernel_node) {
|
|||
MS_EXCEPTION_IF_NULL(kernel_node);
|
||||
input_shape_ = AnfAlgo::GetInputDeviceShape(kernel_node, 0);
|
||||
bias_shape_ = AnfAlgo::GetInputDeviceShape(kernel_node, 1);
|
||||
bias_param_.ndim_ = input_shape_.size();
|
||||
if (bias_param_.ndim_ < kBiasAddMinDim || bias_param_.ndim_ > kBiasAddMaxDim) {
|
||||
data_shape_ = input_shape_.size();
|
||||
if (input_shape_.size() < kBiasAddMinDim || input_shape_.size() > kBiasAddMaxDim) {
|
||||
MS_LOG(EXCEPTION) << "Input tensor's rank must be in closed interval [2,5] for 'BiasAdd' Op,"
|
||||
"but input tensor's rank is "
|
||||
<< bias_param_.ndim_;
|
||||
<< input_shape_.size();
|
||||
}
|
||||
if (bias_shape_.size() != 1) {
|
||||
MS_LOG(EXCEPTION) << "Bias's rank must be 1 for 'BiasAdd' Op, but bias' rank is" << bias_shape_.size();
|
||||
}
|
||||
if (input_shape_[bias_param_.ndim_ - 1] != bias_shape_[0]) {
|
||||
if (input_shape_[1] != bias_shape_[0]) {
|
||||
MS_LOG(EXCEPTION) << "Bias shape [" << bias_shape_[0] << "] not match, it must equal C channel's shape:["
|
||||
<< input_shape_[bias_param_.ndim_ - 1] << "]";
|
||||
<< input_shape_[1] << "]";
|
||||
}
|
||||
|
||||
for (size_t i = 0; i < bias_param_.ndim_; ++i) {
|
||||
bias_param_.in_shape0_[i] = input_shape_[i];
|
||||
bias_param_.in_shape1_[i] = 1;
|
||||
bias_param_.out_shape_[i] = input_shape_[i];
|
||||
}
|
||||
|
||||
bias_param_.in_shape1_[bias_param_.ndim_ - 1] = input_shape_[bias_param_.ndim_ - 1];
|
||||
}
|
||||
|
||||
bool BiasAddCPUKernel::Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &,
|
||||
|
@ -61,15 +51,46 @@ bool BiasAddCPUKernel::Launch(const std::vector<AddressPtr> &inputs, const std::
|
|||
auto bias_addr = reinterpret_cast<float *>(inputs[1]->addr);
|
||||
auto output_addr = reinterpret_cast<float *>(outputs[0]->addr);
|
||||
|
||||
size_t data_num = std::accumulate(input_shape_.begin(), input_shape_.end(), 1LL, std::multiplies<int>());
|
||||
if (input_shape_.size() > 2) {
|
||||
size_t hw_size = 1;
|
||||
for (size_t i = 2; i < input_shape_.size(); ++i) {
|
||||
hw_size *= input_shape_[i];
|
||||
}
|
||||
|
||||
std::vector<float> buffer_in(data_num, 0);
|
||||
std::vector<float> buffer_bias(data_num, 0);
|
||||
float *tile_in = &buffer_in.at(0);
|
||||
float *tile_bias = &buffer_bias.at(0);
|
||||
size_t c_size = input_shape_[1];
|
||||
for (size_t n = 0; n < input_shape_[0]; ++n) {
|
||||
for (size_t c = 0; c < c_size; ++c) {
|
||||
size_t offset = n * c_size * hw_size + c * hw_size;
|
||||
size_t hw = 0;
|
||||
#ifdef ENABLE_AVX
|
||||
constexpr size_t C8NUM = 8;
|
||||
size_t hw8 = hw_size / C8NUM * C8NUM;
|
||||
const float *in_ptr = src_addr + offset;
|
||||
float *out_ptr = output_addr + offset;
|
||||
for (; hw < hw8; hw += C8NUM) {
|
||||
__m256 src_r1 = _mm256_loadu_ps(in_ptr);
|
||||
__m256 bias_r2 = _mm256_set1_ps(bias_addr[c]);
|
||||
__m256 dst_r3 = _mm256_add_ps(src_r1, bias_r2);
|
||||
_mm256_storeu_ps(out_ptr, dst_r3);
|
||||
|
||||
// BroadcastAdd always returns NNACL_OK, so no need to check return val.
|
||||
(void)BroadcastAdd(src_addr, bias_addr, tile_in, tile_bias, output_addr, data_num, &bias_param_);
|
||||
in_ptr += C8NUM;
|
||||
out_ptr += C8NUM;
|
||||
}
|
||||
#endif
|
||||
for (; hw < hw_size; ++hw) {
|
||||
output_addr[offset + hw] = src_addr[offset + hw] + bias_addr[c];
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
size_t n_offset = 0;
|
||||
for (size_t n = 0; n < input_shape_[0]; ++n) {
|
||||
for (size_t c = 0; c < input_shape_[1]; ++c) {
|
||||
output_addr[n_offset + c] = src_addr[n_offset + c] + bias_addr[c];
|
||||
}
|
||||
n_offset += input_shape_[1];
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
} // namespace kernel
|
||||
|
|
|
@ -20,7 +20,6 @@
|
|||
#include <memory>
|
||||
#include "backend/kernel_compiler/cpu/cpu_kernel.h"
|
||||
#include "backend/kernel_compiler/cpu/cpu_kernel_factory.h"
|
||||
#include "nnacl/fp32/arithmetic_fp32.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
|
@ -34,9 +33,9 @@ class BiasAddCPUKernel : public CPUKernel {
|
|||
const std::vector<AddressPtr> &outputs) override;
|
||||
|
||||
private:
|
||||
size_t data_shape_{0};
|
||||
std::vector<size_t> input_shape_;
|
||||
std::vector<size_t> bias_shape_;
|
||||
ArithmeticParameter bias_param_;
|
||||
};
|
||||
MS_REG_CPU_KERNEL(BiasAdd, KernelAttr(), BiasAddCPUKernel);
|
||||
} // namespace kernel
|
||||
|
|
|
@ -20,7 +20,7 @@ bias_add_op_info = CpuRegOp("BiasAdd") \
|
|||
.input(0, "x", "required") \
|
||||
.input(1, "bias", "required") \
|
||||
.output(0, "y", "required") \
|
||||
.dtype_format(DataType.F32_ChannelLast, DataType.F32_Default, DataType.F32_ChannelLast) \
|
||||
.dtype_format(DataType.F32_Default, DataType.F32_Default, DataType.F32_Default) \
|
||||
.get_op_info()
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue