Increase default level of parallelism in mindddata pipeline to 8.
Adjust memory usage to not increase as parallelism increases. it will stay at same level it would be with 4 parallelism
This commit is contained in:
parent
9add98350e
commit
a0e75b845a
|
@ -87,7 +87,7 @@ constexpr int64_t kDeMaxFreq = std::numeric_limits<int64_t>::max(); // 92233720
|
|||
constexpr int64_t kDeMaxTopk = std::numeric_limits<int64_t>::max();
|
||||
|
||||
constexpr uint32_t kCfgRowsPerBuffer = 1;
|
||||
constexpr uint32_t kCfgParallelWorkers = 4;
|
||||
constexpr uint32_t kCfgParallelWorkers = 8;
|
||||
constexpr uint32_t kCfgWorkerConnectorSize = 16;
|
||||
constexpr uint32_t kCfgOpConnectorSize = 16;
|
||||
constexpr int32_t kCfgDefaultRankId = -1;
|
||||
|
|
|
@ -77,7 +77,15 @@ BatchOp::BatchOp(int32_t batch_size, bool drop, bool pad, int32_t op_queue_size,
|
|||
pad_info_(pad_map),
|
||||
batch_num_(0),
|
||||
batch_cnt_(0) {
|
||||
worker_queues_.Init(num_workers, op_queue_size);
|
||||
// Adjust connector queue size. After batch each row is batch_size times larger
|
||||
int32_t queue_size;
|
||||
queue_size = std::max(1, op_queue_size / start_batch_size_);
|
||||
if (num_workers == 1) {
|
||||
// ensure there is at least 2 queue slots for whole operation.. If only 1 worker, incrase it to 2
|
||||
queue_size = std::max(2, queue_size);
|
||||
}
|
||||
|
||||
worker_queues_.Init(num_workers, queue_size);
|
||||
}
|
||||
// if PYTHON is disabled. per_batch_map can't be used
|
||||
#else
|
||||
|
@ -88,8 +96,16 @@ BatchOp::BatchOp(int32_t batch_size, bool drop, bool pad, int32_t op_queue_size,
|
|||
drop_(drop),
|
||||
pad_(pad),
|
||||
in_col_names_(cols_to_map),
|
||||
pad_info_(pad_map) {
|
||||
worker_queues_.Init(num_workers, op_queue_size);
|
||||
pad_info_(pad_map),
|
||||
batch_num_(0),
|
||||
batch_cnt_(0) {
|
||||
int32_t queue_size;
|
||||
queue_size = std::max(1, op_queue_size / start_batch_size_);
|
||||
if (num_workers == 1) {
|
||||
// ensure there is at least 2 queue slots for whole operation.. If only 1 worker, incrase it to 2
|
||||
queue_size = std::max(2, queue_size);
|
||||
}
|
||||
worker_queues_.Init(num_workers, queue_size);
|
||||
}
|
||||
#endif
|
||||
|
||||
|
|
|
@ -33,7 +33,13 @@ ParallelOp::ParallelOp(int32_t num_workers, int32_t op_connector_size, std::shar
|
|||
worker_connector_size_(1),
|
||||
worker_connector_(nullptr),
|
||||
num_workers_paused_(0),
|
||||
epoch_sync_flag_(false) {}
|
||||
epoch_sync_flag_(false) {
|
||||
// reduce excessive memory usage with high parallelism
|
||||
// when num_workers > 4, reduce op_connector_size to have similar total size if there were only 4 workers
|
||||
if (num_workers_ > 4) {
|
||||
oc_queue_size_ = std::max(1, op_connector_size * 4 / num_workers_);
|
||||
}
|
||||
}
|
||||
|
||||
// Creates the internal worker connector for the parallel op if the derived class wants to use it
|
||||
Status ParallelOp::CreateWorkerConnector(int32_t worker_connector_size) {
|
||||
|
|
|
@ -112,11 +112,16 @@ def set_prefetch_size(size):
|
|||
Set the number of rows to be prefetched.
|
||||
|
||||
Args:
|
||||
size (int): Total number of rows to be prefetched.
|
||||
size (int): Total number of rows to be prefetched per operator per parallel worker.
|
||||
|
||||
Raises:
|
||||
ValueError: If prefetch_size is invalid (<= 0 or > MAX_INT_32).
|
||||
|
||||
Note:
|
||||
Since total memory used for prefetch can grow very large with high number of workers,
|
||||
when number of workers is > 4, the per worker prefetch size will be reduced. The actual
|
||||
prefetch size at runtime per worker will be prefetchsize * (4 / num_parallel_workers).
|
||||
|
||||
Examples:
|
||||
>>> # Set a new global configuration value for the prefetch size.
|
||||
>>> ds.config.set_prefetch_size(1000)
|
||||
|
|
|
@ -42,7 +42,7 @@ TEST_F(MindDataTestPipeline, TestConfigSetting) {
|
|||
EXPECT_EQ(load_status, true);
|
||||
|
||||
// Test configuration loaded
|
||||
EXPECT_EQ(config::get_num_parallel_workers(), 4);
|
||||
EXPECT_EQ(config::get_num_parallel_workers(), 8);
|
||||
EXPECT_EQ(config::get_prefetch_size(), 16);
|
||||
EXPECT_EQ(config::get_seed(), 5489);
|
||||
EXPECT_EQ(config::get_monitor_sampling_interval(), 15);
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
{
|
||||
"logFilePath": "/tmp",
|
||||
"rowsPerBuffer": 1,
|
||||
"numParallelWorkers": 4,
|
||||
"numParallelWorkers": 8,
|
||||
"workerConnectorSize": 16,
|
||||
"opConnectorSize": 16,
|
||||
"seed": 5489,
|
||||
|
|
|
@ -44,7 +44,7 @@ def test_basic():
|
|||
ds.config.load('../data/dataset/declient.cfg')
|
||||
|
||||
# assert ds.config.get_rows_per_buffer() == 32
|
||||
assert ds.config.get_num_parallel_workers() == 4
|
||||
assert ds.config.get_num_parallel_workers() == 8
|
||||
# assert ds.config.get_worker_connector_size() == 16
|
||||
assert ds.config.get_prefetch_size() == 16
|
||||
assert ds.config.get_seed() == 5489
|
||||
|
@ -348,7 +348,7 @@ def test_deterministic_python_seed_multi_thread():
|
|||
try:
|
||||
np.testing.assert_equal(data1_output, data2_output)
|
||||
except Exception as e:
|
||||
# expect output to not match during multi-threaded excution
|
||||
# expect output to not match during multi-threaded execution
|
||||
logger.info("Got an exception in DE: {}".format(str(e)))
|
||||
assert "Array" in str(e)
|
||||
|
||||
|
|
Loading…
Reference in New Issue