fix bugs
This commit is contained in:
parent
bdf2082a3e
commit
98044a83d8
|
@ -220,7 +220,7 @@ class Adam(Optimizer):
|
|||
>>> group_params = [{'params': conv_params, 'weight_decay': 0.01},
|
||||
>>> {'params': no_conv_params, 'lr': 0.01},
|
||||
>>> {'order_params': net.trainable_params()}]
|
||||
>>> optm = nn.Adam(group_params, learning_rate=0.1, weight_decay=0.0)
|
||||
>>> optim = nn.Adam(group_params, learning_rate=0.1, weight_decay=0.0)
|
||||
>>> # The conv_params's parameters will use default learning rate of 0.1 and weight decay of 0.01.
|
||||
>>> # The no_conv_params's parameters will use learning rate of 0.01 and defaule weight decay of 0.0.
|
||||
>>> # The final parameters order in which the optimizer will be followed is the value of 'order_params'.
|
||||
|
|
|
@ -168,7 +168,7 @@ class LazyAdam(Optimizer):
|
|||
>>> group_params = [{'params': conv_params, 'weight_decay': 0.01},
|
||||
>>> {'params': no_conv_params, 'lr': 0.01},
|
||||
>>> {'order_params': net.trainable_params()}]
|
||||
>>> opt = nn.LazyAdam(group_params, learning_rate=0.1, weight_decay=0.0)
|
||||
>>> optim = nn.LazyAdam(group_params, learning_rate=0.1, weight_decay=0.0)
|
||||
>>> # The conv_params's parameters will use default learning rate of 0.1 and weight decay of 0.01.
|
||||
>>> # The no_conv_params's parameters will use learning rate of 0.01 and default weight decay of 0.0.
|
||||
>>> # The final parameters order in which the optimizer will be followed is the value of 'order_params'.
|
||||
|
|
|
@ -3013,12 +3013,12 @@ class DepthToSpace(PrimitiveWithInfer):
|
|||
|
||||
This is the reverse operation of SpaceToDepth.
|
||||
|
||||
The depth of output tensor is :math:`input\_depth / (block\_size * block\_size)`.
|
||||
|
||||
The output tensor's `height` dimension is :math:`height * block\_size`.
|
||||
|
||||
The output tensor's `weight` dimension is :math:`weight * block\_size`.
|
||||
|
||||
The depth of output tensor is :math:`input\_depth / (block\_size * block\_size)`.
|
||||
|
||||
The input tensor's depth must be divisible by `block_size * block_size`.
|
||||
The data format is "NCHW".
|
||||
|
||||
|
@ -3029,7 +3029,7 @@ class DepthToSpace(PrimitiveWithInfer):
|
|||
- **x** (Tensor) - The target tensor. It must be a 4-D tensor.
|
||||
|
||||
Outputs:
|
||||
Tensor, the same type as `x`.
|
||||
Tensor, has the same shape and dtype as the 'x'.
|
||||
|
||||
Examples:
|
||||
>>> x = Tensor(np.random.rand(1,12,1,1), mindspore.float32)
|
||||
|
|
|
@ -741,6 +741,7 @@ class CumSum(PrimitiveWithInfer):
|
|||
Inputs:
|
||||
- **input** (Tensor) - The input tensor to accumulate.
|
||||
- **axis** (int) - The axis to accumulate the tensor's value. Only constant value is allowed.
|
||||
Must be in the range [-rank(input), rank(input)).
|
||||
|
||||
Outputs:
|
||||
Tensor, the shape of the output tensor is consistent with the input tensor's.
|
||||
|
@ -1764,6 +1765,7 @@ class Div(_MathBinaryOp):
|
|||
>>> input_y = Tensor(np.array([3.0, 2.0, 3.0]), mindspore.float32)
|
||||
>>> div = P.Div()
|
||||
>>> div(input_x, input_y)
|
||||
[-1.3, 2.5, 2.0]
|
||||
"""
|
||||
|
||||
def infer_value(self, x, y):
|
||||
|
|
Loading…
Reference in New Issue