add lite op PriorBox
This commit is contained in:
parent
5338128283
commit
90553fef08
|
@ -173,7 +173,8 @@ union PrimitiveType {
|
|||
Div,
|
||||
Where,
|
||||
OneHot,
|
||||
Lstm
|
||||
Lstm,
|
||||
PriorBox
|
||||
}
|
||||
|
||||
enum QuantType: int {
|
||||
|
|
|
@ -722,3 +722,17 @@ table OneHot {
|
|||
table Lstm{
|
||||
bidirection: bool = false;
|
||||
}
|
||||
|
||||
table PriorBox {
|
||||
min_sizes: [int];
|
||||
max_sizes: [int];
|
||||
aspect_ratios: [float];
|
||||
variances: [float];
|
||||
image_size_w: int;
|
||||
image_size_h: int;
|
||||
step_w: float;
|
||||
step_h: float;
|
||||
clip: bool = true;
|
||||
flip: bool = true;
|
||||
offset: float;
|
||||
}
|
||||
|
|
|
@ -131,6 +131,8 @@ Primitive *Primitive::CreatePrimitive(schema::Primitive *primitive) {
|
|||
return new lite::Resize(const_cast<schema::Primitive *>(primitive));
|
||||
case schema::PrimitiveType_OneHot:
|
||||
return new lite::OneHot(const_cast<schema::Primitive *>(primitive));
|
||||
case schema::PrimitiveType_PriorBox:
|
||||
return new lite::PriorBox(const_cast<schema::Primitive *>(primitive));
|
||||
default:
|
||||
break;
|
||||
}
|
||||
|
|
|
@ -660,7 +660,14 @@ class StridedSlice : public Primitive {
|
|||
std::vector<int> new_axis_mask_;
|
||||
std::vector<int> shrink_axis_mask_;
|
||||
};
|
||||
|
||||
class PriorBox : public Primitive {
|
||||
public:
|
||||
explicit PriorBox(schema::Primitive *primitive) : Primitive(primitive) {}
|
||||
const schema::PriorBox *GetAttrbute() const { return this->primitive->value_as_PriorBox(); }
|
||||
int InferShape(std::vector<tensor::Tensor *> inputs, std::vector<tensor::Tensor *> outputs) override;
|
||||
};
|
||||
|
||||
} // namespace lite
|
||||
} // namespace mindspore
|
||||
#endif // MINDSPORE_LITE_SRC_OPS_OPS_H_
|
||||
|
||||
|
|
|
@ -0,0 +1,62 @@
|
|||
/**
|
||||
* Copyright 2019-2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "src/ops/ops.h"
|
||||
#include "include/errorcode.h"
|
||||
#include "utils/log_adapter.h"
|
||||
#include "src/ir/tensor.h"
|
||||
|
||||
namespace mindspore::lite {
|
||||
namespace {
|
||||
constexpr int kPriorBoxPoints = 4;
|
||||
constexpr int kPriorBoxN = 1;
|
||||
constexpr int kPriorBoxW = 1;
|
||||
constexpr int kPriorBoxC = 2;
|
||||
} // namespace
|
||||
|
||||
int PriorBox::InferShape(std::vector<tensor::Tensor *> inputs_, std::vector<tensor::Tensor *> outputs_) {
|
||||
auto param = GetAttrbute();
|
||||
MS_ASSERT(param != nullptr);
|
||||
std::vector<float> different_aspect_ratios{1.0f};
|
||||
auto aspect_ratios = param->aspect_ratios();
|
||||
MS_ASSERT(aspect_ratios != nullptr);
|
||||
for (auto i = 0; i < aspect_ratios->size(); i++) {
|
||||
float ratio = (*aspect_ratios)[i];
|
||||
bool exist = std::any_of(different_aspect_ratios.begin(), different_aspect_ratios.end(), [&](float v) {
|
||||
return abs(ratio - v) < 1e-6;
|
||||
});
|
||||
if (!exist) {
|
||||
different_aspect_ratios.emplace_back(ratio);
|
||||
if (param->flip()) {
|
||||
different_aspect_ratios.emplace_back(1.0f / ratio);
|
||||
}
|
||||
}
|
||||
}
|
||||
int32_t num_priors_box = param->min_sizes()->size() * different_aspect_ratios.size() + param->max_sizes()->size();
|
||||
auto input = inputs_.at(0);
|
||||
MS_ASSERT(input != nullptr);
|
||||
int32_t h = input->Height() * input->Width() * num_priors_box * kPriorBoxPoints;
|
||||
|
||||
std::vector<int> output_shape{kPriorBoxN, h, kPriorBoxW, kPriorBoxC};
|
||||
auto output = outputs_.at(0);
|
||||
MS_ASSERT(output != nullptr);
|
||||
|
||||
output->set_shape(output_shape);
|
||||
output->set_data_type(kNumberTypeFloat32);
|
||||
output->SetFormat(input->GetFormat());
|
||||
return RET_OK;
|
||||
}
|
||||
} // namespace mindspore::lite
|
|
@ -62,6 +62,7 @@
|
|||
#include "src/runtime/kernel/arm/opclib/fp32/unsqueeze.h"
|
||||
#include "src/runtime/kernel/arm/opclib/fp32/one_hot.h"
|
||||
#include "src/runtime/kernel/arm/opclib/fp32/strided_slice.h"
|
||||
#include "src/runtime/kernel/arm/base/prior_box.h"
|
||||
|
||||
namespace mindspore::kernel {
|
||||
FillParameter *PopulateFillParam(const lite::Primitive *primitive) {
|
||||
|
@ -990,6 +991,60 @@ OpParameter *PopulateAddNParam(const lite::Primitive *primitive) {
|
|||
return parameter;
|
||||
}
|
||||
|
||||
PriorBoxParameter *PopulatePriorBoxParameter(const lite::Primitive *primitive) {
|
||||
PriorBoxParameter *param = new (std::nothrow) PriorBoxParameter();
|
||||
if (param == nullptr) {
|
||||
MS_LOG(ERROR) << "new PriorBoxParameter failed.";
|
||||
return nullptr;
|
||||
}
|
||||
param->op_parameter_.type_ = primitive->Type();
|
||||
auto prior_box_param = primitive->Value()->value_as_PriorBox();
|
||||
|
||||
if (prior_box_param->min_sizes()->size() > PRIOR_BOX_MAX_NUM) {
|
||||
MS_LOG(ERROR) << "PriorBox min_sizes size exceeds max num " << PRIOR_BOX_MAX_NUM << ", got "
|
||||
<< prior_box_param->min_sizes();
|
||||
delete (param);
|
||||
return nullptr;
|
||||
}
|
||||
param->min_sizes_size = prior_box_param->min_sizes()->size();
|
||||
if (prior_box_param->max_sizes()->size() > PRIOR_BOX_MAX_NUM) {
|
||||
MS_LOG(ERROR) << "PriorBox max_sizes size exceeds max num " << PRIOR_BOX_MAX_NUM << ", got "
|
||||
<< prior_box_param->max_sizes();
|
||||
delete (param);
|
||||
return nullptr;
|
||||
}
|
||||
param->max_sizes_size = prior_box_param->max_sizes()->size();
|
||||
(void)memcpy(param->max_sizes, prior_box_param->max_sizes()->data(),
|
||||
prior_box_param->max_sizes()->size() * sizeof(int32_t));
|
||||
(void)memcpy(param->min_sizes, prior_box_param->min_sizes()->data(),
|
||||
prior_box_param->min_sizes()->size() * sizeof(int32_t));
|
||||
|
||||
if (prior_box_param->aspect_ratios()->size() > PRIOR_BOX_MAX_NUM) {
|
||||
MS_LOG(ERROR) << "PriorBox aspect_ratios size exceeds max num " << PRIOR_BOX_MAX_NUM << ", got "
|
||||
<< prior_box_param->aspect_ratios();
|
||||
delete (param);
|
||||
return nullptr;
|
||||
}
|
||||
param->aspect_ratios_size = prior_box_param->aspect_ratios()->size();
|
||||
(void)memcpy(param->aspect_ratios, prior_box_param->aspect_ratios()->data(),
|
||||
prior_box_param->aspect_ratios()->size() * sizeof(float));
|
||||
if (prior_box_param->variances()->size() != PRIOR_BOX_VAR_NUM) {
|
||||
MS_LOG(ERROR) << "PriorBox variances size should be " << PRIOR_BOX_VAR_NUM << ", got "
|
||||
<< prior_box_param->variances()->size();
|
||||
delete (param);
|
||||
return nullptr;
|
||||
}
|
||||
(void)memcpy(param->variances, prior_box_param->variances()->data(), PRIOR_BOX_VAR_NUM * sizeof(float));
|
||||
param->flip = prior_box_param->flip();
|
||||
param->clip = prior_box_param->clip();
|
||||
param->offset = prior_box_param->offset();
|
||||
param->image_size_h = prior_box_param->image_size_h();
|
||||
param->image_size_w = prior_box_param->image_size_w();
|
||||
param->step_h = prior_box_param->step_h();
|
||||
param->step_w = prior_box_param->step_w();
|
||||
return param;
|
||||
}
|
||||
|
||||
OpParameter *PopulateParameter(const lite::Primitive *primitive) {
|
||||
MS_EXCEPTION_IF_NULL(primitive);
|
||||
auto op_type = primitive->Type();
|
||||
|
@ -1109,6 +1164,8 @@ OpParameter *PopulateParameter(const lite::Primitive *primitive) {
|
|||
return reinterpret_cast<OpParameter *>(PopulateOneHotParameter(primitive));
|
||||
case schema::PrimitiveType_AddN:
|
||||
return reinterpret_cast<OpParameter *>(PopulateAddNParam(primitive));
|
||||
case schema::PrimitiveType_PriorBox:
|
||||
return reinterpret_cast<OpParameter *>(PopulatePriorBoxParameter(primitive));
|
||||
default:
|
||||
break;
|
||||
}
|
||||
|
|
|
@ -0,0 +1,193 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include <vector>
|
||||
#include <cmath>
|
||||
#include "src/runtime/kernel/arm/base/prior_box.h"
|
||||
#include "schema/model_generated.h"
|
||||
#include "src/kernel_factory.h"
|
||||
#include "include/errorcode.h"
|
||||
#include "include/context.h"
|
||||
#include "src/runtime/runtime_api.h"
|
||||
|
||||
using mindspore::lite::KernelRegistrar;
|
||||
using mindspore::lite::RET_ERROR;
|
||||
using mindspore::lite::RET_NULL_PTR;
|
||||
using mindspore::lite::RET_OK;
|
||||
using mindspore::schema::PrimitiveType_PriorBox;
|
||||
|
||||
namespace mindspore::kernel {
|
||||
namespace {
|
||||
constexpr int kInputNum = 2;
|
||||
constexpr int kOutputNum = 1;
|
||||
} // namespace
|
||||
int PriorBoxCPUKernel::Init() {
|
||||
if (prior_box_param_ == nullptr) {
|
||||
MS_LOG(ERROR) << "PriorBoxParameter nullptr";
|
||||
return RET_NULL_PTR;
|
||||
}
|
||||
MS_ASSERT(inputs_.size() == kInputNum);
|
||||
MS_ASSERT(outputs_.size() == kOutputNum);
|
||||
|
||||
auto ret = GeneratePriorBox();
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
int PriorBoxCPUKernel::GeneratePriorBox() {
|
||||
const int fmap_w = inputs_[0]->Width();
|
||||
const int fmap_h = inputs_[0]->Height();
|
||||
|
||||
const int image_w = prior_box_param_->image_size_w > 0 ? prior_box_param_->image_size_w : inputs_[1]->Width();
|
||||
const int image_h = prior_box_param_->image_size_h > 0 ? prior_box_param_->image_size_h : inputs_[1]->Height();
|
||||
|
||||
const float step_w =
|
||||
prior_box_param_->step_w > 0.0f ? prior_box_param_->step_w : static_cast<float>(image_w) / fmap_w;
|
||||
const float step_h =
|
||||
prior_box_param_->step_h > 0.0f ? prior_box_param_->step_h : static_cast<float>(image_h) / fmap_h;
|
||||
|
||||
std::vector<float> different_aspect_ratios{1.0f};
|
||||
auto aspect_ratios = prior_box_param_->aspect_ratios;
|
||||
MS_ASSERT(aspect_ratios != nullptr);
|
||||
for (auto i = 0; i < prior_box_param_->aspect_ratios_size; i++) {
|
||||
float ratio = aspect_ratios[i];
|
||||
bool exist = std::any_of(different_aspect_ratios.begin(), different_aspect_ratios.end(),
|
||||
[&](float v) { return abs(ratio - v) < 1e-6; });
|
||||
if (!exist) {
|
||||
different_aspect_ratios.emplace_back(ratio);
|
||||
if (prior_box_param_->flip) {
|
||||
different_aspect_ratios.emplace_back(1.0f / ratio);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for (int i = 0; i < fmap_h; i++) {
|
||||
float cy = i + prior_box_param_->offset;
|
||||
for (int j = 0; j < fmap_w; j++) {
|
||||
float cx = j + prior_box_param_->offset;
|
||||
for (auto k = 0; k < prior_box_param_->min_sizes_size; k++) {
|
||||
float min_size = prior_box_param_->min_sizes[k];
|
||||
output_.emplace_back((cx - min_size / step_w * 0.5f) / fmap_w);
|
||||
output_.emplace_back((cy - min_size / step_h * 0.5f) / fmap_h);
|
||||
output_.emplace_back((cx + min_size / step_w * 0.5f) / fmap_w);
|
||||
output_.emplace_back((cy + min_size / step_h * 0.5f) / fmap_h);
|
||||
|
||||
if (prior_box_param_->max_sizes_size > 0) {
|
||||
float max_size = prior_box_param_->max_sizes[k];
|
||||
float prime = sqrt(min_size * max_size);
|
||||
output_.emplace_back((cx - prime / step_w * 0.5f) / fmap_w);
|
||||
output_.emplace_back((cy - prime / step_h * 0.5f) / fmap_h);
|
||||
output_.emplace_back((cx + prime / step_w * 0.5f) / fmap_w);
|
||||
output_.emplace_back((cy + prime / step_h * 0.5f) / fmap_h);
|
||||
}
|
||||
|
||||
for (auto v : different_aspect_ratios) {
|
||||
if (abs(v - 1.0f) < 1e-6) {
|
||||
continue;
|
||||
}
|
||||
float as_square_root = sqrt(v);
|
||||
float box_w = min_size * as_square_root;
|
||||
float box_h = min_size / as_square_root;
|
||||
output_.emplace_back((cx - box_w / step_w * 0.5f) / fmap_w);
|
||||
output_.emplace_back((cy - box_h / step_h * 0.5f) / fmap_h);
|
||||
output_.emplace_back((cx + box_w / step_w * 0.5f) / fmap_w);
|
||||
output_.emplace_back((cy + box_h / step_h * 0.5f) / fmap_h);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// do clip
|
||||
if (prior_box_param_->clip) {
|
||||
for (auto item : output_) {
|
||||
if (item > 1.0f) {
|
||||
item = 1.0f;
|
||||
}
|
||||
if (item < 0.0f) {
|
||||
item = 0.0f;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// variance
|
||||
for (auto i = 0; i < outputs_[0]->Height() / PRIOR_BOX_VAR_NUM; i++) {
|
||||
for (auto j = 0; j < PRIOR_BOX_VAR_NUM; j++) {
|
||||
output_.emplace_back(prior_box_param_->variances[j]);
|
||||
}
|
||||
}
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
int PriorBoxCPUKernel::PriorBoxImpl(int task_id) {
|
||||
auto src = output_.data();
|
||||
auto output = outputs_.at(0);
|
||||
if (output == nullptr) {
|
||||
return RET_NULL_PTR;
|
||||
}
|
||||
auto ret = PriorBox(src, reinterpret_cast<float *>(output->Data()), output_.size(), task_id, thread_count_);
|
||||
return ret;
|
||||
}
|
||||
|
||||
int RunPriorBox(int task_id, LiteParallelGroupEnv *penv, void *cdata) {
|
||||
auto prior_box = reinterpret_cast<PriorBoxCPUKernel *>(cdata);
|
||||
|
||||
auto error_code = prior_box->PriorBoxImpl(task_id);
|
||||
if (error_code != RET_OK) {
|
||||
MS_LOG(ERROR) << "Resize Run error task_id[" << task_id << "] error_code[" << error_code << "]";
|
||||
return RET_ERROR;
|
||||
}
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
int PriorBoxCPUKernel::Run() {
|
||||
int error_code = LiteBackendParallelLaunch(RunPriorBox, this, thread_count_);
|
||||
if (error_code != RET_OK) {
|
||||
MS_LOG(ERROR) << "PriorBox run error, error_code[" << error_code << "]";
|
||||
return RET_ERROR;
|
||||
}
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
kernel::LiteKernel *CpuPriorBoxKernelCreator(const std::vector<lite::tensor::Tensor *> &inputs,
|
||||
const std::vector<lite::tensor::Tensor *> &outputs,
|
||||
OpParameter *opParameter, const Context *ctx,
|
||||
const kernel::KernelKey &desc) {
|
||||
if (opParameter == nullptr) {
|
||||
MS_LOG(ERROR) << "Input opParameter is nullptr!";
|
||||
return nullptr;
|
||||
}
|
||||
if (desc.type != schema::PrimitiveType_PriorBox) {
|
||||
MS_LOG(ERROR) << "PriorBox invalid desc type " << desc.type;
|
||||
return nullptr;
|
||||
}
|
||||
auto *kernel = new (std::nothrow) PriorBoxCPUKernel(opParameter, inputs, outputs, ctx);
|
||||
if (kernel == nullptr) {
|
||||
MS_LOG(ERROR) << "new PriorBoxCPUKernel fail!";
|
||||
return nullptr;
|
||||
}
|
||||
auto ret = kernel->Init();
|
||||
if (ret != RET_OK) {
|
||||
delete kernel;
|
||||
MS_LOG(ERROR) << "Init kernel failed, name: " << opParameter->name_ << ", type: "
|
||||
<< schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(opParameter->type_));
|
||||
return nullptr;
|
||||
}
|
||||
return kernel;
|
||||
}
|
||||
|
||||
REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_PriorBox, CpuPriorBoxKernelCreator)
|
||||
REG_KERNEL(kCPU, kNumberTypeInt8, PrimitiveType_PriorBox, CpuPriorBoxKernelCreator)
|
||||
} // namespace mindspore::kernel
|
|
@ -0,0 +1,53 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_BASE_PRIOR_BOX_H_
|
||||
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_BASE_PRIOR_BOX_H_
|
||||
|
||||
#include <vector>
|
||||
#include "src/lite_kernel.h"
|
||||
#include "src/runtime/kernel/arm/opclib/reshape_parameter.h"
|
||||
#include "src/runtime/kernel/arm/opclib/prior_box.h"
|
||||
|
||||
using mindspore::lite::Context;
|
||||
|
||||
namespace mindspore::kernel {
|
||||
class PriorBoxCPUKernel : public LiteKernel {
|
||||
public:
|
||||
PriorBoxCPUKernel(OpParameter *parameter, const std::vector<lite::tensor::Tensor *> &inputs,
|
||||
const std::vector<lite::tensor::Tensor *> &outputs, const Context *ctx)
|
||||
: LiteKernel(parameter, inputs, outputs), ctx_(ctx), thread_count_(ctx->threadNum) {
|
||||
prior_box_param_ = reinterpret_cast<PriorBoxParameter *>(opParameter);
|
||||
}
|
||||
~PriorBoxCPUKernel() = default;
|
||||
|
||||
int Init() override;
|
||||
int ReSize() override { return 0; }
|
||||
int Run() override;
|
||||
int PriorBoxImpl(int task_id);
|
||||
|
||||
protected:
|
||||
int thread_count_;
|
||||
const Context *ctx_;
|
||||
|
||||
private:
|
||||
std::vector<float> output_;
|
||||
PriorBoxParameter *prior_box_param_;
|
||||
int GeneratePriorBox();
|
||||
};
|
||||
} // namespace mindspore::kernel
|
||||
|
||||
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_BASE_PRIOR_BOX_H_
|
|
@ -0,0 +1,30 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include <memory.h>
|
||||
#include "src/runtime/kernel/arm/opclib/errorcode.h"
|
||||
#include "src/runtime/kernel/arm/opclib/prior_box.h"
|
||||
|
||||
int PriorBox(const float *input_data, float *output_data, const size_t size, const int tid, const int thread_num) {
|
||||
size_t unit_size = size / thread_num;
|
||||
if (tid == thread_num - 1) {
|
||||
size_t tail_size = size - unit_size * tid;
|
||||
(void)memcpy(output_data + tid * unit_size, input_data + tid * unit_size, tail_size * sizeof(float));
|
||||
} else {
|
||||
(void)memcpy(output_data + tid * unit_size, input_data + tid * unit_size, unit_size * sizeof(float));
|
||||
}
|
||||
return OPCLIB_OK;
|
||||
}
|
|
@ -0,0 +1,45 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_OPCLIB_PRIOR_BOX_H_
|
||||
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_OPCLIB_PRIOR_BOX_H_
|
||||
|
||||
#ifdef ENABLE_NEON
|
||||
#include <arm_neon.h>
|
||||
#endif
|
||||
#include <memory.h>
|
||||
#include "src/runtime/kernel/arm/opclib/op_base.h"
|
||||
#define PRIOR_BOX_MAX_NUM 8
|
||||
#define PRIOR_BOX_VAR_NUM 4
|
||||
struct PriorBoxParameter {
|
||||
OpParameter op_parameter_;
|
||||
int32_t min_sizes_size;
|
||||
int32_t min_sizes[PRIOR_BOX_MAX_NUM];
|
||||
int32_t max_sizes_size;
|
||||
int32_t max_sizes[PRIOR_BOX_MAX_NUM];
|
||||
int32_t aspect_ratios_size;
|
||||
float aspect_ratios[PRIOR_BOX_MAX_NUM];
|
||||
float variances[PRIOR_BOX_VAR_NUM];
|
||||
int32_t image_size_w;
|
||||
int32_t image_size_h;
|
||||
float step_w;
|
||||
float step_h;
|
||||
bool clip;
|
||||
bool flip;
|
||||
float offset;
|
||||
};
|
||||
|
||||
int PriorBox(const float *input_data, float *output_data, const size_t size, const int tid, const int thread_num);
|
||||
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_OPCLIB_PRIOR_BOX_H_
|
Loading…
Reference in New Issue