optimizeMatmul

This commit is contained in:
lingyunli63 2021-03-30 12:18:27 +08:00
parent 782cac9119
commit 8b3823b22c
4 changed files with 166 additions and 2 deletions

View File

@ -30,6 +30,7 @@
#include "backend/optimizer/graph_kernel/tensor_promotion.h"
#include "backend/optimizer/graph_kernel/graph_kernel_splitter.h"
#include "backend/optimizer/graph_kernel/graph_kernel_expander.h"
#include "backend/optimizer/graph_kernel/optimize_matmul.h"
#include "backend/optimizer/graph_kernel/raise_reduction_precision.h"
#include "backend/optimizer/graph_kernel/graph_kernel_cse.h"
#include "backend/optimizer/graph_kernel/shape_ops_splitter.h"
@ -49,8 +50,11 @@ PassManagerPtr GraphKernelOptimizer::PreProcess() {
// Change Assign(p, a, U) to Assign(Depend(p, U), a)
pm->AddPass(std::make_shared<SplitAssign>());
// Reorder TransData-Cast to Cast-TransData,
if (is_ascend) {
// Remove redundant Cast(bias, fp16) for Matmul input
pm->AddPass(std::make_shared<OptimizeMatmul>());
// Reorder TransData-Cast to Cast-TransData
pm->AddPass(std::make_shared<ReorderOps>());
}
@ -81,7 +85,7 @@ PassManagerPtr GraphKernelOptimizer::HighLevelOpt1() {
pm->AddPass(std::make_shared<OptimizeAssign>());
pm->AddPass(std::make_shared<EliminateRedundantOutput>());
// Cast the input of ReduceSum from float16 to float32 for higher precision*/
// Cast the input of ReduceSum from float16 to float32 for higher precision
pm->AddPass(std::make_shared<RaiseReductionPrecision>());
// Universal arithmetic simplify

View File

@ -0,0 +1,64 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "backend/optimizer/graph_kernel/optimize_matmul.h"
#include <tuple>
#include "backend/session/anf_runtime_algorithm.h"
#include "backend/kernel_compiler/common_utils.h"
#include "backend/optimizer/graph_kernel/graph_kernel_helper.h"
namespace mindspore {
namespace opt {
/* MatMul supports fp32 bias, so remove the redundant cast when cast only used by MatMul
*
* %0 = cast(bias_fp32, fp16)
* %1 = MatMul(A_fp16, B_fp16, %0)
* ------>
* %1 = MatMul(A_fp16, B_fp16, bias_fp32)
*/
bool OptimizeMatmul::Run(const FuncGraphPtr &func_graph) {
MS_EXCEPTION_IF_NULL(func_graph);
auto mng = func_graph->manager();
if (mng == nullptr) {
mng = Manage(func_graph, true);
func_graph->set_manager(mng);
}
auto changed = false;
auto nodes = TopoSort(func_graph->get_return());
for (auto node : nodes) {
if (!IsPrimitiveCNode(node, prim::kPrimMatMul)) {
continue;
}
auto cnode = node->cast<CNodePtr>();
if (cnode->size() != 4) {
continue;
}
auto cast_node = cnode->input(3);
if (!IsPrimitiveCNode(cast_node, prim::kPrimCast)) {
continue;
}
auto cast_input_type = AnfAlgo::GetInputDeviceDataType(cast_node, 0);
auto cast_output_type = AnfAlgo::GetOutputDeviceDataType(cast_node, 0);
if (cast_input_type == kNumberTypeFloat32 && cast_output_type == kNumberTypeFloat16 &&
mng->node_users()[cast_node].size() == 1) {
mng->Replace(cast_node, (cast_node->cast<CNodePtr>())->input(1));
changed = true;
}
}
return changed;
}
} // namespace opt
} // namespace mindspore

View File

@ -0,0 +1,36 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_BACKEND_OPTIMIZER_GRAPH_KERNEL_OPTIMIZE_MATMUL_H_
#define MINDSPORE_CCSRC_BACKEND_OPTIMIZER_GRAPH_KERNEL_OPTIMIZE_MATMUL_H_
#include <map>
#include <memory>
#include "backend/optimizer/common/pass.h"
#include "ir/func_graph.h"
namespace mindspore {
namespace opt {
class OptimizeMatmul : public Pass {
public:
OptimizeMatmul() : Pass("optimize_matmul") {}
~OptimizeMatmul() override = default;
bool Run(const FuncGraphPtr &graph) override;
};
using OptimizeMatmulPtr = std::shared_ptr<OptimizeMatmul>;
} // namespace opt
} // namespace mindspore
#endif // MINDSPORE_CCSRC_BACKEND_OPTIMIZER_GRAPH_KERNEL_OPTIMIZE_MATMUL_H_

View File

@ -0,0 +1,60 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.context as context
from mindspore import Tensor
from mindspore.nn import Cell
import mindspore.ops.operations as P
from mindspore.common import dtype as mstype
class Net(Cell):
def __init__(self):
super(Net, self).__init__()
self.matmul = P.MatMul(transpose_a=True, transpose_b=True)
self.add = P.BiasAdd()
self.cast = P.Cast()
def construct(self, x, y, b):
xy = self.matmul(x, y)
b16 = self.cast(b, mstype.float16)
res = self.add(xy, b16)
return self.cast(res, mstype.float32)
def get_output(i0, i1, i2, enable_graph_kernel=False):
if enable_graph_kernel:
context.set_context(enable_graph_kernel=True, save_graphs=False)
net = Net()
output = net(i0, i1, i2)
return output
def test_basic():
i0 = Tensor(np.random.normal(1, 0.01, [800, 96]).astype(np.float16))
i1 = Tensor(np.random.normal(1, 0.01, [128, 800]).astype(np.float16))
i2 = Tensor(np.random.normal(100, 0.1, [128,]).astype(np.float32))
expect = get_output(i0, i1, i2, False)
output = get_output(i0, i1, i2, True)
expect_np = expect.asnumpy().copy()
output_np = output.asnumpy().copy()
assert np.allclose(expect_np, output_np, 1.e-4, 1.e-7)
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_basic_ascend():
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
test_basic()