Comprehensive API changes part 3
This commit is contained in:
parent
bc30c6541d
commit
7ca3ceb236
|
@ -1349,11 +1349,13 @@ class DepthwiseConv2dNative(PrimitiveWithInfer):
|
|||
Returns the depth-wise convolution value for the input.
|
||||
|
||||
Applies depthwise conv2d for the input, which will generate more channels with channel_multiplier.
|
||||
Given an input tensor of shape :math:`(N, C_{in}, H_{in}, W_{in})` where :math:`N` is the batch size and a
|
||||
filter tensor with kernel size :math:`(ks_{h}, ks_{w})`, containing :math:`C_{in} * \text{channel_multiplier}`
|
||||
Given an input tensor of shape :math:`(N, C_{in}, H_{in}, W_{in})` where :math:`N` is the batch size,
|
||||
:math:`C` is the channels, :math:`H` is height, :math:`W` is width and a filter tensor with kernel size
|
||||
:math:`(ks_{h}, ks_{w})`, where :math:`ks_{h}` indicates the kernel_size of height,
|
||||
:math:`ks_{w}` indicates the kernel_size of width, containing :math:`C_{in} * \text{channel_multiplier}`
|
||||
convolutional filters of depth 1; it applies different filters to each input channel (channel_multiplier channels
|
||||
for each input channel has the default value 1), then concatenates the results together. The output has
|
||||
:math:`\text{in_channels} * \text{channel_multiplier}` channels.
|
||||
:math:`C_{in} * \text{channel_multiplier}` channels.
|
||||
|
||||
Args:
|
||||
channel_multiplier (int): The multiplier for the original output convolution. Its value must be greater than 0.
|
||||
|
@ -1371,8 +1373,8 @@ class DepthwiseConv2dNative(PrimitiveWithInfer):
|
|||
|
||||
Inputs:
|
||||
- **input** (Tensor) - Tensor of shape :math:`(N, C_{in}, H_{in}, W_{in})`.
|
||||
- **weight** (Tensor) - Set the size of kernel as :math:`(K_1, K_2)`, then the shape is
|
||||
:math:`(K, C_{in}, K_1, K_2)`, `K` must be 1.
|
||||
- **weight** (Tensor) - Set the size of kernel as :math:`(ks_{h}, ks_{w})`, then the shape is
|
||||
:math:`(K, C_{in}, ks_{h}, ks_{w})`, `K` must be 1.
|
||||
|
||||
Outputs:
|
||||
Tensor of shape :math:`(N, C_{in} * \text{channel_multiplier}, H_{out}, W_{out})`.
|
||||
|
@ -1909,15 +1911,15 @@ class Conv2DBackpropInput(Primitive):
|
|||
default is 'NCHW'.
|
||||
|
||||
Inputs:
|
||||
- **dout** (Tensor) - the gradients w.r.t the output of the convolution. The shape conforms to the default
|
||||
data_format :math:`(N, C_{out}, H_{out}, W_{out})`.
|
||||
- **dout** (Tensor) - the gradients with respect to the output of the convolution.
|
||||
The shape conforms to the default. Data_format :math:`(N, C_{out}, H_{out}, W_{out})`.
|
||||
- **weight** (Tensor) - Set size of kernel is :math:`(K_1, K_2)`, then the shape is
|
||||
:math:`(C_{out}, C_{in}, K_1, K_2)`.
|
||||
- **input_size** (Tensor) - A tuple describes the shape of the input which conforms to the format
|
||||
:math:`(N, C_{in}, H_{in}, W_{in})`.
|
||||
|
||||
Outputs:
|
||||
Tensor, the gradients w.r.t the input of convolution. It has the same shape as the input.
|
||||
Tensor, the gradients with respect to the input of convolution. It has the same shape as the input.
|
||||
|
||||
Raises:
|
||||
TypeError: If `kernel_size`, `stride`, `pad` or `dilation` is neither an int nor a tuple.
|
||||
|
@ -1996,7 +1998,6 @@ class Conv2DBackpropInput(Primitive):
|
|||
validator.check_non_negative_int(x, 'element of pad_list', self.name)
|
||||
self.pad_list = pad_list
|
||||
|
||||
|
||||
class BiasAdd(PrimitiveWithCheck):
|
||||
r"""
|
||||
Returns sum of input and bias tensor.
|
||||
|
@ -2534,15 +2535,18 @@ class DataFormatDimMap(PrimitiveWithInfer):
|
|||
Returns the dimension index in the destination data format given in the source data format.
|
||||
|
||||
Args:
|
||||
src_format (string): An optional value for source data format. Default: 'NHWC'.
|
||||
dst_format (string): An optional value for destination data format. Default: 'NCHW'.
|
||||
src_format (string): An optional value for source data format. The format can be 'NHWC' and 'NCHW'.
|
||||
Default: 'NHWC'.
|
||||
dst_format (string): An optional value for destination data format. The format can be 'NHWC' and 'NCHW'.
|
||||
Default: 'NCHW'.
|
||||
|
||||
Inputs:
|
||||
- **input_x** (Tensor) - A Tensor with each element as a dimension index in source data format.
|
||||
The suggested values is in the range [-4, 4). It's type is int32.
|
||||
The suggested values is in the range [-4, 4). Only supports int32.
|
||||
|
||||
Outputs:
|
||||
Tensor, has the same type as the `input_x`.
|
||||
Tensor, Return the dimension index in the given target data format,
|
||||
has the same data type and shape as the `input_x`.
|
||||
|
||||
Raises:
|
||||
TypeError: If `src_format` or `dst_format` is not a str.
|
||||
|
@ -2552,9 +2556,9 @@ class DataFormatDimMap(PrimitiveWithInfer):
|
|||
``Ascend``
|
||||
|
||||
Examples:
|
||||
>>> x = Tensor([0, 1, 2, 3], mindspore.int32)
|
||||
>>> input_x = Tensor([0, 1, 2, 3], mindspore.int32)
|
||||
>>> dfdm = ops.DataFormatDimMap()
|
||||
>>> output = dfdm(x)
|
||||
>>> output = dfdm(input_x)
|
||||
>>> print(output)
|
||||
[0 3 1 2]
|
||||
"""
|
||||
|
@ -3050,6 +3054,13 @@ class DropoutGenMask(Primitive):
|
|||
"""
|
||||
Generates the mask value for the input shape.
|
||||
|
||||
Droupt means tha neural network units are temporarily dropped from the network according to a certain probability
|
||||
during the deep learning network training. Generally, The effect of Dropout is the same as that of DropoutGenMask
|
||||
and DropoutDoMask. The DropoutGenMask generates a mask shape that is specified based on the input. Next,
|
||||
The DropoutDoMask is a mask generated using DropoutGenMask.
|
||||
The input tensor is randomly set to zero based on the probability p.
|
||||
|
||||
|
||||
Args:
|
||||
Seed0 (int): Seed0 value for random generating. Default: 0.
|
||||
Seed1 (int): Seed1 value for random generating. Default: 0.
|
||||
|
@ -3060,7 +3071,7 @@ class DropoutGenMask(Primitive):
|
|||
means dropping out 10% of input units.
|
||||
|
||||
Outputs:
|
||||
Tensor, the value of generated mask for input shape.
|
||||
Tensor, the value of generated mask for Inputs `shape`.
|
||||
|
||||
Raises:
|
||||
TypeError: If neither `seed0` nor `seed1` is an int.
|
||||
|
@ -3094,14 +3105,20 @@ class DropoutDoMask(PrimitiveWithInfer):
|
|||
|
||||
Take the mask output of DropoutGenMask as input, and apply dropout on the input.
|
||||
|
||||
Droupt means tha neural network units are temporarily dropped from the network according to a certain probability
|
||||
during the deep learning network training. Generally, The effect of Dropout is the same as that of DropoutGenMask
|
||||
and DropoutDoMask. The DropoutGenMask generates a mask shape that is specified based on the input. Next,
|
||||
The DropoutDoMask is a mask generated using DropoutGenMask.
|
||||
The input tensor is randomly set to zero based on the probability p.
|
||||
|
||||
Inputs:
|
||||
- **input_x** (Tensor) - The input tensor.
|
||||
- **input_x** (Tensor) - The input tensor. The data type should be float32, float16 or int32
|
||||
- **mask** (Tensor) - The mask to be applied on `input_x`, which is the output of `DropoutGenMask`. And the
|
||||
shape of `input_x` must be the same as the value of `DropoutGenMask`'s input `shape`. If input wrong `mask`,
|
||||
the output of `DropoutDoMask` are unpredictable.
|
||||
- **keep_prob** (Union[Tensor, float]) - The keep rate, greater than 0 and less equal than 1, e.g. keep_prob =
|
||||
0.9, means dropping out 10% of input units. The value of `keep_prob` is the same as the input `keep_prob` of
|
||||
`DropoutGenMask`.
|
||||
the operator `DropoutGenMask`.
|
||||
|
||||
Outputs:
|
||||
Tensor, the value that applied dropout on.
|
||||
|
@ -3115,13 +3132,13 @@ class DropoutDoMask(PrimitiveWithInfer):
|
|||
``Ascend``
|
||||
|
||||
Examples:
|
||||
>>> x = Tensor(np.ones([2, 2, 3]), mindspore.float32)
|
||||
>>> input_x = Tensor(np.ones([2, 2, 3]), mindspore.float32)
|
||||
>>> shape = (2, 2, 3)
|
||||
>>> keep_prob = Tensor(0.5, mindspore.float32)
|
||||
>>> dropout_gen_mask = ops.DropoutGenMask()
|
||||
>>> dropout_do_mask = ops.DropoutDoMask()
|
||||
>>> mask = dropout_gen_mask(shape, keep_prob)
|
||||
>>> output = dropout_do_mask(x, mask, keep_prob)
|
||||
>>> output = dropout_do_mask(input_x, mask, keep_prob)
|
||||
>>> print(output.shape)
|
||||
(2, 2, 3)
|
||||
"""
|
||||
|
@ -6830,11 +6847,11 @@ class Dropout2D(PrimitiveWithInfer):
|
|||
means dropping out 20% of channels. Default: 0.5.
|
||||
|
||||
Inputs:
|
||||
- **input** (Tensor) - A 4-D tensor with shape :math:`(N, C, H, W)`.
|
||||
|
||||
- **input_x** (Tensor) - A 4-D tensor with shape :math:`(N, C, H, W)`. The data type should be int8, int16,
|
||||
int32, int64, float16 or float32
|
||||
Outputs:
|
||||
- **output** (Tensor) - with the same shape and data type as the input tensor.
|
||||
- **mask** (Tensor[bool]) - with the same shape as the input tensor.
|
||||
- **output** (Tensor) - with the same shape and data type as the `input_x` tensor.
|
||||
- **mask** (Tensor[bool]) - with the same shape as the `input_x` tensor.
|
||||
|
||||
Raises:
|
||||
TypeError: If the data type of `keep_prob` is not float.
|
||||
|
@ -6846,8 +6863,8 @@ class Dropout2D(PrimitiveWithInfer):
|
|||
|
||||
Examples:
|
||||
>>> dropout = ops.Dropout2D(keep_prob=0.5)
|
||||
>>> x = Tensor(np.random.randn(2, 1, 2, 3), mindspore.float32)
|
||||
>>> output, mask = dropout(x)
|
||||
>>> input_x = Tensor(np.random.randn(2, 1, 2, 3), mindspore.float32)
|
||||
>>> output, mask = dropout(input_x)
|
||||
>>> print(output)
|
||||
[[[[0. 0. 0.]
|
||||
[0. 0. 0.]]]
|
||||
|
@ -6886,11 +6903,12 @@ class Dropout3D(PrimitiveWithInfer):
|
|||
means dropping out 20% of channels. Default: 0.5.
|
||||
|
||||
Inputs:
|
||||
- **input** (Tensor) - A 5-D tensor with shape :math:`(N, C, D, H, W)`.
|
||||
- **input_x** (Tensor) - A 5-D tensor with shape :math:`(N, C, D, H, W)`. The data type should be int8, int16,
|
||||
int32, int64, float16 or float32
|
||||
|
||||
Outputs:
|
||||
- **output** (Tensor) - with the same shape and data type as the input tensor.
|
||||
- **mask** (Tensor[bool]) - with the same shape as the input tensor.
|
||||
- **output** (Tensor) - with the same shape and data type as the `input_x` tensor.
|
||||
- **mask** (Tensor[bool]) - with the same shape as the `input_x` tensor.
|
||||
|
||||
Raises:
|
||||
TypeError: If the data type of `keep_prob` is not float.
|
||||
|
@ -6902,8 +6920,8 @@ class Dropout3D(PrimitiveWithInfer):
|
|||
|
||||
Examples:
|
||||
>>> dropout = ops.Dropout3D(keep_prob=0.5)
|
||||
>>> x = Tensor(np.random.randn(2, 1, 2, 1, 2), mindspore.float32)
|
||||
>>> output, mask = dropout(x)
|
||||
>>> input_x = Tensor(np.random.randn(2, 1, 2, 1, 2), mindspore.float32)
|
||||
>>> output, mask = dropout(input_x)
|
||||
>>> print(output)
|
||||
[[[[[0. 0.]]
|
||||
[[0. 0.]]]]
|
||||
|
@ -6969,6 +6987,7 @@ class CTCLoss(Primitive):
|
|||
TypeError: If `preprocess_collapse_repeated`, `ctc_merge_repeated` or `ignore_longer_outputs_than_inputs`
|
||||
is not a bool.
|
||||
TypeError: If `inputs`, `labels_indices`, `labels_values` or `sequence_length` is not a Tensor.
|
||||
ValueError: If rank of `labels_indices` is not equal 2.
|
||||
TypeError: If dtype of `inputs` is not one of the following: float16, float32 or float64.
|
||||
TypeError: If dtype of `labels_indices` is not int64.
|
||||
TypeError: If dtype of `labels_values` or `sequence_length` is not int32.
|
||||
|
@ -6982,7 +7001,7 @@ class CTCLoss(Primitive):
|
|||
>>> from mindspore import Tensor
|
||||
>>> from mindspore.ops import operations as ops
|
||||
>>> inputs = Tensor(np.array([[[0.3, 0.6, 0.6],
|
||||
... [0.4, 0.3, 0.9],
|
||||
... [0.4, 0.3, 0.9]],
|
||||
...
|
||||
... [[0.9, 0.4, 0.2],
|
||||
... [0.9, 0.9, 0.1]]]).astype(np.float32))
|
||||
|
@ -7034,7 +7053,7 @@ class CTCGreedyDecoder(PrimitiveWithCheck):
|
|||
Data type is int64.
|
||||
- **decoded_values** (Tensor) - A tensor with shape of (`total_decoded_outputs`),
|
||||
it stores the decoded classes. Data type is int64.
|
||||
- **decoded_shape** (Tensor) - The value of tensor is [`batch_size`, `max_decoded_legth`].
|
||||
- **decoded_shape** (Tensor) - A tensor with shape of (`batch_size`, `max_decoded_legth`).
|
||||
Data type is int64.
|
||||
- **log_probability** (Tensor) - A tensor with shape of (`batch_size`, 1),
|
||||
containing sequence log-probability, has the same type as `inputs`.
|
||||
|
@ -7051,8 +7070,9 @@ class CTCGreedyDecoder(PrimitiveWithCheck):
|
|||
>>> inputs = Tensor(np.random.random((2, 2, 3)), mindspore.float32)
|
||||
>>> sequence_length = Tensor(np.array([2, 2]), mindspore.int32)
|
||||
>>> ctc_greedy_decoder = ops.CTCGreedyDecoder()
|
||||
>>> out1, out2, out3, out4 = ctc_greedy_decoder(inputs, sequence_length)
|
||||
>>> print(out1, out2, out3, out4)
|
||||
>>> decoded_indices, decoded_values, decoded_shape, log_probability
|
||||
... = ctc_greedy_decoder(inputs, sequence_length)
|
||||
>>> print(decoded_indices, decoded_values, decoded_shape, log_probability)
|
||||
[[0 0] [0 1] [1 0]]
|
||||
[0 1 0]
|
||||
[2 2]
|
||||
|
@ -7300,6 +7320,7 @@ class DynamicGRUV2(PrimitiveWithInfer):
|
|||
at time `t+1`, :math:`h_{t}` is the hidden state of the layer
|
||||
at time `t` or the initial hidden state at time `0`, and :math:`r_{t+1}`,
|
||||
:math:`z_{t+1}`, :math:`n_{t+1}` are the reset, update, and new gates, respectively.
|
||||
:math:`W`, :math:`b` are the weight parameter and the deviation parameter respectively.
|
||||
:math:`\sigma` is the sigmoid function, and :math:`*` is the Hadamard product.
|
||||
|
||||
Args:
|
||||
|
@ -7327,15 +7348,15 @@ class DynamicGRUV2(PrimitiveWithInfer):
|
|||
- **weight_hidden** (Tensor) - Hidden-hidden weight.
|
||||
Tensor of shape :math:`(\text{hidden_size}, 3 \times \text{hidden_size})`.
|
||||
The data type must be float16.
|
||||
- **init_h** (Tensor) - Hidden state of initial time.
|
||||
Tensor of shape :math:`(\text{batch_size}, \text{hidden_size})`.
|
||||
The data type must be float16 or float32.
|
||||
- **bias_input** (Tensor) - Input-hidden bias. Tensor of shape :math:`(3 \times \text{hidden_size})`, or None.
|
||||
Has the same data type with input `init_h`.
|
||||
- **bias_hidden** (Tensor) - Hidden-hidden bias. Tensor of shape :math:`(3 \times \text{hidden_size})`,
|
||||
or None. Has the same data type with input `init_h`.
|
||||
- **seq_length** (Tensor) - The length of each batch. Tensor of shape :math:`(\text{batch_size})`.
|
||||
Only `None` is currently supported.
|
||||
- **init_h** (Tensor) - Hidden state of initial time.
|
||||
Tensor of shape :math:`(\text{batch_size}, \text{hidden_size})`.
|
||||
The data type must be float16 or float32.
|
||||
|
||||
Outputs:
|
||||
- **y** (Tensor) - A Tensor of shape :math:
|
||||
|
@ -7935,14 +7956,15 @@ class Conv3DBackpropInput(PrimitiveWithInfer):
|
|||
Inputs:
|
||||
- **weight** (Tensor) - Set size of kernel is :math:`(D_in, K_h, K_w)`, then the shape is
|
||||
:math:`(C_{out}, C_{in}, D_{in}, K_h, K_w)`. Currently weight data type only support float16 and float32.
|
||||
- **dout** (Tensor) - the gradients w.r.t the output of the convolution. The shape conforms to the default
|
||||
- **dout** (Tensor) - the gradients with respect to the output of the convolution.
|
||||
The shape conforms to the default.
|
||||
data_format :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`. Currently dout data type only support float16
|
||||
and float32.
|
||||
- **input_size** (tuple(int)) - A tuple describes the shape of the input which conforms to the format
|
||||
:math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`.
|
||||
|
||||
Outputs:
|
||||
Tensor, the gradients w.r.t the input of convolution 3D. It has the same shape as the input.
|
||||
Tensor, the gradients with respect to the input of convolution 3D. It has the same shape as the input.
|
||||
|
||||
Raises:
|
||||
TypeError: If `out_channel` or `group` is not an int.
|
||||
|
@ -7958,8 +7980,8 @@ class Conv3DBackpropInput(PrimitiveWithInfer):
|
|||
``Ascend``
|
||||
|
||||
Examples:
|
||||
>>> dout = Tensor(np.ones([16, 32, 10, 32, 32]), mindspore.float16)
|
||||
>>> weight = Tensor(np.ones([32, 32, 4, 6, 2]), mindspore.float16)
|
||||
>>> dout = Tensor(np.ones([16, 32, 10, 32, 32]), mstype.float16)
|
||||
>>> weight = Tensor(np.ones([32, 32, 4, 6, 2]), mstype.float16)
|
||||
>>> x = Tensor(np.ones([16, 32, 13, 37, 33]))
|
||||
>>> conv3d_backprop_input = P.Conv3DBackpropInput(out_channel=4, kernel_size=(4, 6, 2))
|
||||
>>> output = conv3d_backprop_input(dout, weight, F.shape(x))
|
||||
|
@ -8071,12 +8093,13 @@ def _deconv_output_length(input_length, kernel_size, stride_size, dilation_size)
|
|||
|
||||
class Conv3DTranspose(PrimitiveWithInfer):
|
||||
r"""
|
||||
Compute a 3D transposed convolution, which is also known as a deconvolution
|
||||
Computes a 3D transposed convolution, which is also known as a deconvolution
|
||||
(although it is not an actual deconvolution).
|
||||
|
||||
Input is typically of shape :math:`(N, C, D, H, W)`, where :math:`N` is batch size and :math:`C` is channel number.
|
||||
Input is typically of shape :math:`(N, C, D, H, W)`, where :math:`N` is batch size, :math:`C` is channel number,
|
||||
:math:`D` is depth, :math:`H` is height, :math:`W` is width.
|
||||
|
||||
If the 'pad_mode' is set to be "pad", the height and width of output are defined as:
|
||||
If the 'pad_mode' is set to be "pad", the depth, height and width of output are defined as:
|
||||
|
||||
.. math::
|
||||
D_{out} = (D_{in} - 1) \times \text{stride_d} - 2 \times \text{padding_d} + \text{dilation_d} \times
|
||||
|
@ -8088,11 +8111,17 @@ class Conv3DTranspose(PrimitiveWithInfer):
|
|||
W_{out} = (W_{in} - 1) \times \text{stride_w} - 2 \times \text{padding_w} + \text{dilation_w} \times
|
||||
(\text{kernel_size_w} - 1) + \text{output_padding_w} + 1
|
||||
|
||||
Where :math:`kernel_size_d` is kernel size of depth, :math:`kernel_size_h` is kernel size of height
|
||||
and :math:`kernel_size_w` is kernel size of width. The same below:
|
||||
:math:`dialtion` is Spacing between kernel elements,
|
||||
:math:`stride` is The step length of each step,
|
||||
:math:`padding` is zero-padding added to both sides of the input.
|
||||
|
||||
Args:
|
||||
in_channel (int): The channel of the input x.
|
||||
out_channel (int): The channel of the weight x.
|
||||
kernel_size (Union[int, tuple[int]]): The kernel size of the 3D convolution.
|
||||
mode (int): Modes for different convolutions. Default is 1. Not currently used.
|
||||
mode (int): Modes for different convolutions. Default is 1. It is currently not used.
|
||||
pad_mode (str): Specifies padding mode. The optional values are
|
||||
"same", "valid", "pad". Default: "valid".
|
||||
|
||||
|
@ -8117,19 +8146,22 @@ class Conv3DTranspose(PrimitiveWithInfer):
|
|||
dilation (Union(int, tuple[int])): Specifies the space to use between kernel elements. Default: 1.
|
||||
group (int): Splits input into groups. Default: 1. Only 1 is currently supported.
|
||||
output_padding (Union(int, tuple[int])): Add extra size to each dimension of the output. Default: 0.
|
||||
data_format (str): The optional value for data format. Currently only support 'NCDHW'.
|
||||
data_format (str): The optional value for data format. Currently only 'NCDHW' is supported.
|
||||
|
||||
Inputs:
|
||||
- **dout** (Tensor) - the gradients w.r.t the output of the convolution. The shape conforms to the default
|
||||
data_format :math:`(N, C_{in}, D_{out}, H_{out}, W_{out})`. Currently dout data type only support float16
|
||||
and float32.
|
||||
- **weight** (Tensor) - Set size of kernel is :math:`(k_d, K_h, K_w)`, then the shape is
|
||||
:math:`(C_{in}, C_{out}//groups, k_d, K_h, K_w)`. Currently weight data type only support float16
|
||||
- **dout** (Tensor) - the gradients with respect to the output of the convolution.
|
||||
The shape conforms to the default.
|
||||
data_format :math:`(N, C_{in}, D_{out}, H_{out}, W_{out})`. Currently dout data type only supports float16
|
||||
and float32.
|
||||
- **weight** (Tensor) - Set size of kernel is :math:`(K_d, K_h, K_w)`, then the shape is
|
||||
:math:`(C_{in}, C_{out}//group, K_d, K_h, K_w)`. Where :math:`group` is the Args parameter.
|
||||
Currently weight data type only supports float16 and float32.
|
||||
- **bias** (Tensor) - Tensor of shape :math:`C_{out}`. Currently, only support none.
|
||||
|
||||
Outputs:
|
||||
Tensor, the gradients w.r.t the input of convolution 3D. It has the same shape as the input.
|
||||
Tensor, the gradients with respect to the input of convolution 3D.
|
||||
Tensor of shape math:`(N, C_{out}//group, D_{out}, H_{out}, W_{out})`,
|
||||
where :math:`group` is the Args parameter.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend``
|
||||
|
@ -8143,13 +8175,17 @@ class Conv3DTranspose(PrimitiveWithInfer):
|
|||
ValueError: If `pad` is a tuple whose length is not equal to 6.
|
||||
ValueError: If `pad_mode` is not equal to 'pad' and `pad` is not equal to (0, 0, 0, 0, 0, 0).
|
||||
ValueError: If `data_format` is not 'NCDHW'.
|
||||
TypeError: If dout and weight data type not float16.
|
||||
ValueError: If bias not none. The rank of dout and weight is not 5.
|
||||
TypeError: If dout and weight data type is not float16.
|
||||
ValueError: If bias is not none. The rank of dout and weight is not 5.
|
||||
|
||||
Examples:
|
||||
>>> input_x = Tensor(np.ones([32, 16, 10, 32, 32]), mindspore.float16)
|
||||
>>> weight = Tensor(np.ones([16, 3, 4, 6, 2]), mindspore.float16)
|
||||
>>> conv3d_transpose = P.Conv3DTranspose(in_channel=16, out_channel=3, kernel_size=(4, 6, 2))
|
||||
>>> import numpy as np
|
||||
>>> from mindspore import Tensor
|
||||
>>> from mindspore.common import dtype as mstype
|
||||
>>> import mindspore.ops as ops
|
||||
>>> input_x = Tensor(np.ones([32, 16, 10, 32, 32]), mstype.float16)
|
||||
>>> weight = Tensor(np.ones([16, 3, 4, 6, 2]), mstype.float16)
|
||||
>>> conv3d_transpose = ops.Conv3DTranspose(in_channel=16, out_channel=3, kernel_size=(4, 6, 2))
|
||||
>>> output = conv3d_transpose(input_x, weight)
|
||||
>>> print(output.shape)
|
||||
(32, 3, 13, 37, 33)
|
||||
|
|
Loading…
Reference in New Issue