!3253 update docstring for compose/randomAppply/randomChoice to stay consistent with py_transforms
Merge pull request !3253 from ZiruiWu/master
This commit is contained in:
commit
74f2c89d01
|
@ -240,42 +240,47 @@ class Compose(cde.ComposeOp):
|
|||
|
||||
Args:
|
||||
transforms (list): List of transformations to be applied.
|
||||
Example:
|
||||
|
||||
Examples:
|
||||
>>> compose = Compose([vision.Decode(), vision.RandomCrop()])
|
||||
>>> dataset = ds.map(operations=compose)
|
||||
"""
|
||||
|
||||
@check_random_transform_ops
|
||||
def __init__(self, op_list):
|
||||
super().__init__(op_list)
|
||||
def __init__(self, transforms):
|
||||
super().__init__(transforms)
|
||||
|
||||
|
||||
class RandomApply(cde.RandomApplyOp):
|
||||
"""
|
||||
Randomly performs a series of transforms with a given probability.
|
||||
|
||||
Args:
|
||||
transforms (list): List of transformations to be applied.
|
||||
prob (float, optional): The probability to apply the transformation list (default=0.5)
|
||||
Example:
|
||||
|
||||
Examples:
|
||||
>>> rand_apply = RandomApply([vision.RandomCrop()])
|
||||
>>> dataset = ds.map(operations=rand_apply)
|
||||
"""
|
||||
|
||||
@check_random_transform_ops
|
||||
def __init__(self, op_list, prob=0.5):
|
||||
super().__init__(prob, op_list)
|
||||
def __init__(self, transforms, prob=0.5):
|
||||
super().__init__(prob, transforms)
|
||||
|
||||
|
||||
class RandomChoice(cde.RandomChoiceOp):
|
||||
"""
|
||||
Randomly selects one transform from a list of transforms to perform operation.
|
||||
|
||||
Args:
|
||||
transforms (list): List of transformations to be chosen from to apply.
|
||||
Example:
|
||||
|
||||
Examples:
|
||||
>>> rand_choice = RandomChoice([vision.CenterCrop(), vision.RandomCrop()])
|
||||
>>> dataset = ds.map(operations=rand_choice)
|
||||
"""
|
||||
|
||||
@check_random_transform_ops
|
||||
def __init__(self, op_list):
|
||||
super().__init__(op_list)
|
||||
def __init__(self, transforms):
|
||||
super().__init__(transforms)
|
||||
|
|
|
@ -738,6 +738,21 @@ class UniformAugment(cde.UniformAugOp):
|
|||
|
||||
|
||||
class RandomSelectSubpolicy(cde.RandomSelectSubpolicyOp):
|
||||
"""
|
||||
Choose a random sub-policy from a list to be applied on the input image. A sub-policy is a list of tuples
|
||||
(op, prob), where op is a TensorOp operation and prob is the probability that this op will be applied. Once
|
||||
a sub-policy is selected, each op within the subpolicy with be applied in sequence according to its probability
|
||||
|
||||
Args:
|
||||
policy (list(list(tuple(TensorOp,float))): List of sub-policies to choose from.
|
||||
|
||||
Examples:
|
||||
>>> policy = [[(c_vision.RandomRotation((45, 45))), (c_transforms.RandomVerticalFlip()),
|
||||
>>> (c_transforms.RandomColorAdjust())],
|
||||
>>> [(c_vision.RandomRotation((90, 90))), (c_transforms.RandomColorAdjust())]]
|
||||
>>> ds_policy = ds.map(input_columns=["image"], operations=visions.RandomSelectSubpolicy(policy))
|
||||
"""
|
||||
|
||||
@check_random_select_subpolicy_op
|
||||
def __init__(self, policy):
|
||||
super().__init__(policy)
|
||||
|
|
Loading…
Reference in New Issue