!9334 Modify the input names to make them shown in the same pattern

From: @peixu_ren
Reviewed-by: @sunnybeike,@zichun_ye
Signed-off-by: @zichun_ye
This commit is contained in:
mindspore-ci-bot 2020-12-02 10:09:51 +08:00 committed by Gitee
commit 7284f8db46
1 changed files with 26 additions and 29 deletions

View File

@ -48,10 +48,10 @@ class ReduceLogSumExp(Cell):
Default : False.
Inputs:
- **input_x** (Tensor) - The input tensor. With float16 or float32 data type.
- **x** (Tensor) - The input tensor. With float16 or float32 data type.
Outputs:
Tensor, has the same dtype as the `input_x`.
Tensor, has the same dtype as the `x`.
- If axis is (), and keep_dims is False,
the output is a 0-D tensor representing the sum of all elements in the input tensor.
@ -80,8 +80,8 @@ class ReduceLogSumExp(Cell):
self.sum = P.ReduceSum(keep_dims)
self.log = P.Log()
def construct(self, input_x):
exp = self.exp(input_x)
def construct(self, x):
exp = self.exp(x)
sumexp = self.sum(exp, self.axis)
logsumexp = self.log(sumexp)
return logsumexp
@ -231,10 +231,10 @@ class LGamma(Cell):
``Ascend`` ``GPU``
Inputs:
- **input_x** (Tensor) - The input tensor. Only float16, float32 are supported.
- **x** (Tensor) - The input tensor. Only float16, float32 are supported.
Outputs:
Tensor, has the same shape and dtype as the `input_x`.
Tensor, has the same shape and dtype as the `x`.
Supported Platforms:
``Ascend``
@ -287,14 +287,14 @@ class LGamma(Cell):
self.sin = P.Sin()
self.isfinite = P.IsFinite()
def construct(self, input_x):
input_dtype = self.dtype(input_x)
def construct(self, x):
input_dtype = self.dtype(x)
_check_input_dtype("input", input_dtype, [mstype.float16, mstype.float32], self.cls_name)
infinity = self.fill(input_dtype, self.shape(input_x), self.inf)
infinity = self.fill(input_dtype, self.shape(x), self.inf)
need_to_reflect = self.less(input_x, 0.5)
neg_input = -input_x
z = self.select(need_to_reflect, neg_input, input_x - 1)
need_to_reflect = self.less(x, 0.5)
neg_input = -x
z = self.select(need_to_reflect, neg_input, x - 1)
@constexpr
def _calculate_x(z, k_base_lanczos_coeff, k_lanczos_coefficients):
@ -310,12 +310,9 @@ class LGamma(Cell):
log_y = self.log(x) + (z + self.one_half - t / log_t) * log_t + self.log_sqrt_two_pi
abs_input = self.abs(input_x)
abs_input = self.abs(x)
abs_frac_input = abs_input - self.floor(abs_input)
input_x = self.select(self.lessequal(input_x, 0.0),
self.select(self.equal(abs_frac_input, 0.0),
infinity, input_x),
input_x)
x = self.select(self.lessequal(x, 0.0), self.select(self.equal(abs_frac_input, 0.0), infinity, x), x)
reduced_frac_input = self.select(self.greater(abs_frac_input, 0.5),
1 - abs_frac_input, abs_frac_input)
reflection_denom = self.log(self.sin(self.pi * reduced_frac_input))
@ -326,7 +323,7 @@ class LGamma(Cell):
result = self.select(need_to_reflect, reflection, log_y)
return self.select(self.isfinite(input_x), result, infinity)
return self.select(self.isfinite(x), result, infinity)
class DiGamma(Cell):
@ -353,10 +350,10 @@ class DiGamma(Cell):
``Ascend`` ``GPU``
Inputs:
- **input_x** (Tensor[Number]) - The input tensor. Only float16, float32 are supported.
- **x** (Tensor[Number]) - The input tensor. Only float16, float32 are supported.
Outputs:
Tensor, has the same shape and dtype as the `input_x`.
Tensor, has the same shape and dtype as the `x`.
Examples:
>>> input_x = Tensor(np.array([2, 3, 4]).astype(np.float32))
@ -397,12 +394,12 @@ class DiGamma(Cell):
self.cos = P.Cos()
self.logicaland = P.LogicalAnd()
def construct(self, input_x):
input_dtype = self.dtype(input_x)
_check_input_dtype("input x", input_dtype, [mstype.float16, mstype.float32], self.cls_name)
need_to_reflect = self.less(input_x, 0.5)
neg_input = -input_x
z = self.select(need_to_reflect, neg_input, input_x - 1)
def construct(self, x):
input_dtype = self.dtype(x)
_check_input_dtype("input_x", input_dtype, [mstype.float16, mstype.float32], self.cls_name)
need_to_reflect = self.less(x, 0.5)
neg_input = -x
z = self.select(need_to_reflect, neg_input, x - 1)
@constexpr
def _calculate_num_denom(z, k_base_lanczos_coeff, k_lanczos_coefficients):
@ -419,12 +416,12 @@ class DiGamma(Cell):
y = log_t + num / denom - self.k_lanczos_gamma / t
reduced_input = input_x + self.abs(self.floor(input_x + 0.5))
reduced_input = x + self.abs(self.floor(x + 0.5))
reflection = y - self.pi * self.cos(self.pi * reduced_input) / self.sin(self.pi * reduced_input)
real_result = self.select(need_to_reflect, reflection, y)
nan = self.fill(self.dtype(input_x), self.shape(input_x), np.nan)
nan = self.fill(self.dtype(x), self.shape(x), np.nan)
return self.select(self.logicaland(self.less(input_x, 0), self.equal(input_x, self.floor(input_x))),
return self.select(self.logicaland(self.less(x, 0), self.equal(x, self.floor(x))),
nan, real_result)