clean pylint
This commit is contained in:
parent
a193d0977a
commit
5e43edc474
|
@ -16,8 +16,8 @@ Some basic function for nlp
|
||||||
"""
|
"""
|
||||||
from enum import IntEnum
|
from enum import IntEnum
|
||||||
|
|
||||||
import mindspore._c_dataengine as cde
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
import mindspore._c_dataengine as cde
|
||||||
|
|
||||||
from .validators import check_from_file, check_from_list, check_from_dict
|
from .validators import check_from_file, check_from_list, check_from_dict
|
||||||
|
|
||||||
|
|
|
@ -13,16 +13,17 @@
|
||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
# ============================================================================
|
# ============================================================================
|
||||||
"""lstm"""
|
"""lstm"""
|
||||||
from mindspore.ops import operations as P
|
|
||||||
from mindspore.nn.cell import Cell
|
|
||||||
from mindspore.common.parameter import Parameter, ParameterTuple
|
|
||||||
from mindspore.common.initializer import initializer
|
|
||||||
from mindspore._checkparam import Validator as validator
|
|
||||||
from mindspore import context
|
|
||||||
import mindspore.nn as nn
|
|
||||||
from mindspore.common.tensor import Tensor
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
|
import mindspore.nn as nn
|
||||||
|
from mindspore import context
|
||||||
|
from mindspore._checkparam import Validator as validator
|
||||||
|
from mindspore.common.initializer import initializer
|
||||||
|
from mindspore.common.parameter import Parameter, ParameterTuple
|
||||||
|
from mindspore.common.tensor import Tensor
|
||||||
|
from mindspore.nn.cell import Cell
|
||||||
|
from mindspore.ops import operations as P
|
||||||
|
|
||||||
__all__ = ['LSTM', 'LSTMCell']
|
__all__ = ['LSTM', 'LSTMCell']
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -18,8 +18,8 @@
|
||||||
|
|
||||||
from typing import Callable, List, Any
|
from typing import Callable, List, Any
|
||||||
|
|
||||||
import mindspore._c_expression as _c_expression
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
import mindspore._c_expression as _c_expression
|
||||||
|
|
||||||
from mindspore import ParameterTuple
|
from mindspore import ParameterTuple
|
||||||
from mindspore import Tensor
|
from mindspore import Tensor
|
||||||
|
|
|
@ -22,9 +22,9 @@ import os
|
||||||
import mindspore.common.dtype as mstype
|
import mindspore.common.dtype as mstype
|
||||||
import mindspore.context as context
|
import mindspore.context as context
|
||||||
from mindspore import Tensor
|
from mindspore import Tensor
|
||||||
from model_zoo.bert.src import BertConfig, BertNetworkWithLoss, BertTrainOneStepCell, BertTrainOneStepWithLossScaleCell
|
|
||||||
from mindspore.nn.optim import AdamWeightDecayDynamicLR
|
from mindspore.nn.optim import AdamWeightDecayDynamicLR
|
||||||
from mindspore.train.loss_scale_manager import DynamicLossScaleManager
|
from mindspore.train.loss_scale_manager import DynamicLossScaleManager
|
||||||
|
from model_zoo.bert.src import BertConfig, BertNetworkWithLoss, BertTrainOneStepCell, BertTrainOneStepWithLossScaleCell
|
||||||
from ...dataset_mock import MindData
|
from ...dataset_mock import MindData
|
||||||
from ...ops_common import nn, np, batch_tuple_tensor, build_construct_graph
|
from ...ops_common import nn, np, batch_tuple_tensor, build_construct_graph
|
||||||
|
|
||||||
|
|
|
@ -91,10 +91,10 @@ class Net2(nn.Cell):
|
||||||
self.all_reduce3 = P.AllReduce(self.op2, group=NCCL_WORLD_COMM_GROUP)
|
self.all_reduce3 = P.AllReduce(self.op2, group=NCCL_WORLD_COMM_GROUP)
|
||||||
|
|
||||||
def construct(self):
|
def construct(self):
|
||||||
x = self.all_reduce1(self.x1)
|
x_ = self.all_reduce1(self.x1)
|
||||||
y = self.all_reduce2(x)
|
y = self.all_reduce2(x_)
|
||||||
z = self.all_reduce3(y)
|
z = self.all_reduce3(y)
|
||||||
return (x, y, z)
|
return (x_, y, z)
|
||||||
|
|
||||||
|
|
||||||
def test_AllReduce2():
|
def test_AllReduce2():
|
||||||
|
|
|
@ -17,8 +17,11 @@
|
||||||
|
|
||||||
import os
|
import os
|
||||||
import time
|
import time
|
||||||
import pytest
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
import pytest
|
||||||
|
from src.bert_for_pre_training import BertNetworkWithLoss, BertTrainOneStepWithLossScaleCell
|
||||||
|
from src.bert_model import BertConfig
|
||||||
|
|
||||||
import mindspore.common.dtype as mstype
|
import mindspore.common.dtype as mstype
|
||||||
import mindspore.dataset.engine.datasets as de
|
import mindspore.dataset.engine.datasets as de
|
||||||
|
@ -26,8 +29,6 @@ import mindspore.dataset.transforms.c_transforms as C
|
||||||
from mindspore import context
|
from mindspore import context
|
||||||
from mindspore import log as logger
|
from mindspore import log as logger
|
||||||
from mindspore.common.tensor import Tensor
|
from mindspore.common.tensor import Tensor
|
||||||
from src.bert_model import BertConfig
|
|
||||||
from src.bert_for_pre_training import BertNetworkWithLoss, BertTrainOneStepWithLossScaleCell
|
|
||||||
from mindspore.nn.optim import Lamb
|
from mindspore.nn.optim import Lamb
|
||||||
from mindspore.train.callback import Callback
|
from mindspore.train.callback import Callback
|
||||||
from mindspore.train.loss_scale_manager import DynamicLossScaleManager
|
from mindspore.train.loss_scale_manager import DynamicLossScaleManager
|
||||||
|
|
|
@ -13,8 +13,9 @@
|
||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
# ============================================================================
|
# ============================================================================
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
import os
|
import os
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
import pytest
|
import pytest
|
||||||
|
|
||||||
import mindspore.context as context
|
import mindspore.context as context
|
||||||
|
|
|
@ -397,5 +397,5 @@ def test_trainTensor_amp(num_classes=10, epoch=18, batch_size=16):
|
||||||
loss = train_network(data, label)
|
loss = train_network(data, label)
|
||||||
losses.append(loss)
|
losses.append(loss)
|
||||||
assert (losses[-1][0].asnumpy() < 1)
|
assert (losses[-1][0].asnumpy() < 1)
|
||||||
assert (losses[-1][1].asnumpy() == False)
|
assert not losses[-1][1].asnumpy()
|
||||||
assert (losses[-1][2].asnumpy() > 1)
|
assert (losses[-1][2].asnumpy() > 1)
|
||||||
|
|
|
@ -19,9 +19,8 @@ Usage:
|
||||||
python test_network_main.py --net lenet --target Ascend
|
python test_network_main.py --net lenet --target Ascend
|
||||||
"""
|
"""
|
||||||
import argparse
|
import argparse
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import os
|
|
||||||
import time
|
|
||||||
from models.alexnet import AlexNet
|
from models.alexnet import AlexNet
|
||||||
from models.lenet import LeNet
|
from models.lenet import LeNet
|
||||||
from models.resnetv1_5 import resnet50
|
from models.resnetv1_5 import resnet50
|
||||||
|
|
|
@ -41,4 +41,4 @@ def test_clip_by_norm_const():
|
||||||
|
|
||||||
net = Network()
|
net = Network()
|
||||||
x = Tensor(np.array([[-2, 0, 0], [0, 3, 4]]).astype(np.float32))
|
x = Tensor(np.array([[-2, 0, 0], [0, 3, 4]]).astype(np.float32))
|
||||||
output = net(x)
|
net(x)
|
||||||
|
|
|
@ -14,6 +14,7 @@
|
||||||
# ============================================================================
|
# ============================================================================
|
||||||
""" test ops """
|
""" test ops """
|
||||||
import functools
|
import functools
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
import mindspore.nn as nn
|
import mindspore.nn as nn
|
||||||
|
@ -898,7 +899,7 @@ test_case_nn_ops = [
|
||||||
'skip': ['backward']}),
|
'skip': ['backward']}),
|
||||||
('BasicLSTMCell', {
|
('BasicLSTMCell', {
|
||||||
'block': P.BasicLSTMCell(keep_prob=1.0, forget_bias=1.0, state_is_tuple=True, activation='tanh'),
|
'block': P.BasicLSTMCell(keep_prob=1.0, forget_bias=1.0, state_is_tuple=True, activation='tanh'),
|
||||||
'desc_inputs': [[128, 128], [128, 128], [128, 128], [512, 256, 1, 1],[512, 1, 1, 1]],
|
'desc_inputs': [[128, 128], [128, 128], [128, 128], [512, 256, 1, 1], [512, 1, 1, 1]],
|
||||||
'desc_bprop': [[128, 128], [128, 128], [128, 128], [128, 128], [128, 128], [128, 128], [128, 128]],
|
'desc_bprop': [[128, 128], [128, 128], [128, 128], [128, 128], [128, 128], [128, 128], [128, 128]],
|
||||||
'skip': []}),
|
'skip': []}),
|
||||||
('TopK', {
|
('TopK', {
|
||||||
|
@ -1324,7 +1325,7 @@ test_case_array_ops = [
|
||||||
'desc_inputs': [(Tensor(np.array([1], np.float32)),
|
'desc_inputs': [(Tensor(np.array([1], np.float32)),
|
||||||
Tensor(np.array([1], np.float32)),
|
Tensor(np.array([1], np.float32)),
|
||||||
Tensor(np.array([1], np.float32)))],
|
Tensor(np.array([1], np.float32)))],
|
||||||
'desc_bprop': [[3, ]]}),
|
'desc_bprop': [[3,]]}),
|
||||||
('Pack_0', {
|
('Pack_0', {
|
||||||
'block': NetForPackInput(P.Pack()),
|
'block': NetForPackInput(P.Pack()),
|
||||||
'desc_inputs': [[2, 2], [2, 2], [2, 2]],
|
'desc_inputs': [[2, 2], [2, 2], [2, 2]],
|
||||||
|
@ -1486,8 +1487,7 @@ test_case = functools.reduce(lambda x, y: x + y, test_case_lists)
|
||||||
|
|
||||||
test_exec_case = test_case
|
test_exec_case = test_case
|
||||||
|
|
||||||
test_backward_exec_case = filter(lambda x: 'skip' not in x[1] or
|
test_backward_exec_case = filter(lambda x: 'skip' not in x[1] or 'backward' not in x[1]['skip'], test_case)
|
||||||
'backward' not in x[1]['skip'], test_case)
|
|
||||||
|
|
||||||
|
|
||||||
@non_graph_engine
|
@non_graph_engine
|
||||||
|
|
|
@ -144,7 +144,7 @@ def test_op_forward_infererror():
|
||||||
input_np = np.random.randn(2, 3, 4, 5).astype(np.float32)
|
input_np = np.random.randn(2, 3, 4, 5).astype(np.float32)
|
||||||
input_me = Tensor(input_np)
|
input_me = Tensor(input_np)
|
||||||
net = Net3()
|
net = Net3()
|
||||||
with pytest.raises(TypeError) as e:
|
with pytest.raises(TypeError):
|
||||||
net(input_me)
|
net(input_me)
|
||||||
|
|
||||||
|
|
||||||
|
@ -162,7 +162,7 @@ def test_sequential_resolve_error():
|
||||||
input_np = np.random.randn(2, 3, 4, 5).astype(np.float32)
|
input_np = np.random.randn(2, 3, 4, 5).astype(np.float32)
|
||||||
input_me = Tensor(input_np)
|
input_me = Tensor(input_np)
|
||||||
net = SequenceNet()
|
net = SequenceNet()
|
||||||
with pytest.raises(RuntimeError) as e:
|
with pytest.raises(RuntimeError):
|
||||||
net(input_me)
|
net(input_me)
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -19,7 +19,6 @@ import mindspore.nn as nn
|
||||||
from mindspore import Tensor
|
from mindspore import Tensor
|
||||||
from mindspore import context
|
from mindspore import context
|
||||||
from mindspore import dtype as mstype
|
from mindspore import dtype as mstype
|
||||||
from mindspore.common.api import _executor
|
|
||||||
|
|
||||||
context.set_context(device_target="Ascend")
|
context.set_context(device_target="Ascend")
|
||||||
|
|
||||||
|
|
|
@ -44,7 +44,7 @@ class ChooseInitParameterWithInput(nn.Cell):
|
||||||
self.x = Parameter(Tensor(np.ones(2), dtype=mstype.int32), name='x')
|
self.x = Parameter(Tensor(np.ones(2), dtype=mstype.int32), name='x')
|
||||||
|
|
||||||
@ms_function
|
@ms_function
|
||||||
def construct(self, input):
|
def construct(self, input_data):
|
||||||
return self.x
|
return self.x
|
||||||
|
|
||||||
|
|
||||||
|
@ -57,7 +57,7 @@ def test_choose_init_param():
|
||||||
|
|
||||||
def test_choose_param_with_input():
|
def test_choose_param_with_input():
|
||||||
choose = ChooseInitParameterWithInput()
|
choose = ChooseInitParameterWithInput()
|
||||||
input = Tensor(np.zeros(2), dtype=mstype.int32)
|
input_data = Tensor(np.zeros(2), dtype=mstype.int32)
|
||||||
expect = Tensor(np.ones(2), dtype=mstype.int32)
|
expect = Tensor(np.ones(2), dtype=mstype.int32)
|
||||||
out = choose(input)
|
out = choose(input_data)
|
||||||
assert np.allclose(expect.asnumpy(), out.asnumpy())
|
assert np.allclose(expect.asnumpy(), out.asnumpy())
|
||||||
|
|
|
@ -1,10 +1,11 @@
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
import mindspore.nn as nn
|
import mindspore.nn as nn
|
||||||
import mindspore.ops.operations as P
|
import mindspore.ops.operations as P
|
||||||
from mindspore.ops import composite as C
|
|
||||||
from mindspore import context, Tensor, ParameterTuple
|
from mindspore import context, Tensor, ParameterTuple
|
||||||
from mindspore.common.initializer import TruncatedNormal
|
from mindspore.common.initializer import TruncatedNormal
|
||||||
from mindspore.nn import WithLossCell, Momentum
|
from mindspore.nn import WithLossCell, Momentum
|
||||||
|
from mindspore.ops import composite as C
|
||||||
|
|
||||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
|
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
|
||||||
|
|
||||||
|
@ -45,7 +46,6 @@ class LeNet5(nn.Cell):
|
||||||
Lenet network
|
Lenet network
|
||||||
Args:
|
Args:
|
||||||
num_class (int): Num classes. Default: 10.
|
num_class (int): Num classes. Default: 10.
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
Tensor, output tensor
|
Tensor, output tensor
|
||||||
|
|
||||||
|
|
|
@ -21,7 +21,6 @@ from mindspore import Tensor
|
||||||
from mindspore import context
|
from mindspore import context
|
||||||
from mindspore.common.api import ms_function
|
from mindspore.common.api import ms_function
|
||||||
from mindspore.ops import composite as C
|
from mindspore.ops import composite as C
|
||||||
from mindspore.ops import functional as F
|
|
||||||
from mindspore.ops import operations as P
|
from mindspore.ops import operations as P
|
||||||
from ....mindspore_test_framework.utils.bprop_util import bprop
|
from ....mindspore_test_framework.utils.bprop_util import bprop
|
||||||
from ....mindspore_test_framework.utils.debug_util import PrintShapeTypeCell, PrintGradShapeTypeCell
|
from ....mindspore_test_framework.utils.debug_util import PrintShapeTypeCell, PrintGradShapeTypeCell
|
||||||
|
|
|
@ -19,9 +19,10 @@
|
||||||
@Desc : test parse the object's method
|
@Desc : test parse the object's method
|
||||||
"""
|
"""
|
||||||
import logging
|
import logging
|
||||||
|
from dataclasses import dataclass
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import pytest
|
import pytest
|
||||||
from dataclasses import dataclass
|
|
||||||
|
|
||||||
import mindspore.nn as nn
|
import mindspore.nn as nn
|
||||||
from mindspore import context
|
from mindspore import context
|
||||||
|
|
|
@ -19,9 +19,7 @@ import mindspore.nn as nn
|
||||||
from mindspore import context
|
from mindspore import context
|
||||||
from mindspore.common.tensor import Tensor
|
from mindspore.common.tensor import Tensor
|
||||||
from mindspore.nn import WithGradCell, WithLossCell
|
from mindspore.nn import WithGradCell, WithLossCell
|
||||||
from mindspore.nn.optim import Momentum
|
|
||||||
from mindspore.ops import operations as P
|
from mindspore.ops import operations as P
|
||||||
from mindspore.train.model import Model
|
|
||||||
from ..ut_filter import non_graph_engine
|
from ..ut_filter import non_graph_engine
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -13,14 +13,9 @@
|
||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
# ============================================================================
|
# ============================================================================
|
||||||
""" tests for quant """
|
""" tests for quant """
|
||||||
import numpy as np
|
|
||||||
from mobilenetv2_combined import MobileNetV2
|
|
||||||
|
|
||||||
import mindspore.context as context
|
import mindspore.context as context
|
||||||
from mindspore import Tensor
|
|
||||||
from mindspore import nn
|
from mindspore import nn
|
||||||
from mindspore.nn.layer import combined
|
from mindspore.nn.layer import combined
|
||||||
from mindspore.train.quant import quant as qat
|
|
||||||
|
|
||||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||||
|
|
||||||
|
|
|
@ -74,7 +74,7 @@ class LossNet(nn.Cell):
|
||||||
return out
|
return out
|
||||||
|
|
||||||
|
|
||||||
def test_Model_Checkpoint_prefix_invalid():
|
def test_model_checkpoint_prefix_invalid():
|
||||||
"""Test ModelCheckpoint prefix invalid."""
|
"""Test ModelCheckpoint prefix invalid."""
|
||||||
with pytest.raises(ValueError):
|
with pytest.raises(ValueError):
|
||||||
ModelCheckpoint(123)
|
ModelCheckpoint(123)
|
||||||
|
@ -338,9 +338,9 @@ def test_step_end_save_graph():
|
||||||
ckpoint_cb.begin(run_context)
|
ckpoint_cb.begin(run_context)
|
||||||
# import pdb;pdb.set_trace()
|
# import pdb;pdb.set_trace()
|
||||||
ckpoint_cb.step_end(run_context)
|
ckpoint_cb.step_end(run_context)
|
||||||
assert os.path.exists('./test_files/test-graph.meta') == True
|
assert os.path.exists('./test_files/test-graph.meta')
|
||||||
if os.path.exists('./test_files/test-graph.meta'):
|
if os.path.exists('./test_files/test-graph.meta'):
|
||||||
os.chmod('./test_files/test-graph.meta', stat.S_IWRITE)
|
os.chmod('./test_files/test-graph.meta', stat.S_IWRITE)
|
||||||
os.remove('./test_files/test-graph.meta')
|
os.remove('./test_files/test-graph.meta')
|
||||||
ckpoint_cb.step_end(run_context)
|
ckpoint_cb.step_end(run_context)
|
||||||
assert os.path.exists('./test_files/test-graph.meta') == False
|
assert not os.path.exists('./test_files/test-graph.meta')
|
||||||
|
|
|
@ -71,16 +71,16 @@ def setup_module():
|
||||||
def test_save_graph():
|
def test_save_graph():
|
||||||
""" test_exec_save_graph """
|
""" test_exec_save_graph """
|
||||||
|
|
||||||
class Net(nn.Cell):
|
class Net1(nn.Cell):
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
super(Net, self).__init__()
|
super(Net1, self).__init__()
|
||||||
self.add = P.TensorAdd()
|
self.add = P.TensorAdd()
|
||||||
|
|
||||||
def construct(self, x, y):
|
def construct(self, x, y):
|
||||||
z = self.add(x, y)
|
z = self.add(x, y)
|
||||||
return z
|
return z
|
||||||
|
|
||||||
net = Net()
|
net = Net1()
|
||||||
net.set_train()
|
net.set_train()
|
||||||
out_me_list = []
|
out_me_list = []
|
||||||
x = Tensor(np.random.rand(2, 1, 2, 3).astype(np.float32))
|
x = Tensor(np.random.rand(2, 1, 2, 3).astype(np.float32))
|
||||||
|
|
Loading…
Reference in New Issue