Implementation for mindspore debugger

This commit is contained in:
Shida He 2020-06-11 10:42:57 -04:00
parent 73f440a54d
commit 4c056855e0
49 changed files with 2818 additions and 9 deletions

View File

@ -25,7 +25,7 @@ usage()
echo "Usage:" echo "Usage:"
echo "bash build.sh [-d] [-r] [-v] [-c on|off] [-t on|off] [-g on|off] [-h] [-b ge] [-m infer|train] \\" echo "bash build.sh [-d] [-r] [-v] [-c on|off] [-t on|off] [-g on|off] [-h] [-b ge] [-m infer|train] \\"
echo " [-a on|off] [-Q on|off] [-p on|off] [-i] [-L] [-R] [-D on|off] [-j[n]] [-e gpu|d|cpu] \\" echo " [-a on|off] [-Q on|off] [-p on|off] [-i] [-L] [-R] [-D on|off] [-j[n]] [-e gpu|d|cpu] \\"
echo " [-P on|off] [-z [on|off]] [-M on|off] [-V 9.2|10.1] [-I] [-K]" echo " [-P on|off] [-z [on|off]] [-M on|off] [-V 9.2|10.1] [-I] [-K] [-B on|off]"
echo "" echo ""
echo "Options:" echo "Options:"
echo " -d Debug mode" echo " -d Debug mode"
@ -54,6 +54,7 @@ usage()
echo " -I Compile predict, default off" echo " -I Compile predict, default off"
echo " -K Compile with AKG, default off" echo " -K Compile with AKG, default off"
echo " -s Enable serving module, default off" echo " -s Enable serving module, default off"
echo " -B Enable debugger, default off"
} }
# check value of input is 'on' or 'off' # check value of input is 'on' or 'off'
@ -94,8 +95,10 @@ checkopts()
PREDICT_PLATFORM="" PREDICT_PLATFORM=""
ENABLE_AKG="on" ENABLE_AKG="on"
ENABLE_SERVING="off" ENABLE_SERVING="off"
ENABLE_DEBUGGER="off"
# Process the options # Process the options
while getopts 'drvj:c:t:hsb:a:g:p:ie:m:I:LRP:Q:D:zM:V:K:s' opt while getopts 'drvj:c:t:hsb:a:g:p:ie:m:I:LRP:Q:D:zM:V:K:sB:' opt
do do
OPTARG=$(echo ${OPTARG} | tr '[A-Z]' '[a-z]') OPTARG=$(echo ${OPTARG} | tr '[A-Z]' '[a-z]')
case "${opt}" in case "${opt}" in
@ -240,6 +243,11 @@ checkopts()
ENABLE_SERVING="on" ENABLE_SERVING="on"
echo "enable serving" echo "enable serving"
;; ;;
B)
check_on_off $OPTARG B
ENABLE_DEBUGGER="on"
echo "enable debugger"
;;
*) *)
echo "Unknown option ${opt}!" echo "Unknown option ${opt}!"
usage usage
@ -322,6 +330,9 @@ build_mindspore()
if [[ "X$ENABLE_SERVING" = "Xon" ]]; then if [[ "X$ENABLE_SERVING" = "Xon" ]]; then
CMAKE_ARGS="${CMAKE_ARGS} -DENABLE_SERVING=ON" CMAKE_ARGS="${CMAKE_ARGS} -DENABLE_SERVING=ON"
fi fi
if [[ "X$ENABLE_DEBUGGER" = "Xon" ]]; then
CMAKE_ARGS="${CMAKE_ARGS} -DENABLE_DEBUGGER=ON"
fi
echo "${CMAKE_ARGS}" echo "${CMAKE_ARGS}"
if [[ "X$INC_BUILD" = "Xoff" ]]; then if [[ "X$INC_BUILD" = "Xoff" ]]; then

View File

@ -0,0 +1,14 @@
mindspore_add_pkg(absl
VER 20200225.2
LIBS absl_strings absl_throw_delegate absl_raw_logging_internal absl_int128 absl_bad_optional_access
URL https://github.com/abseil/abseil-cpp/archive/20200225.2.tar.gz
MD5 73f2b6e72f1599a9139170c29482ddc4
CMAKE_OPTION -DCMAKE_BUILD_TYPE:STRING=Release -DCMAKE_POSITION_INDEPENDENT_CODE:BOOL=TRUE)
include_directories(${absl_INC})
add_library(mindspore::absl_strings ALIAS absl::absl_strings)
add_library(mindspore::absl_throw_delegate ALIAS absl::absl_throw_delegate)
add_library(mindspore::absl_raw_logging_internal ALIAS absl::absl_raw_logging_internal)
add_library(mindspore::absl_int128 ALIAS absl::absl_int128)
add_library(mindspore::absl_bad_optional_access ALIAS absl::absl_bad_optional_access)

View File

@ -0,0 +1,12 @@
mindspore_add_pkg(c-ares
VER 1.15.0
LIBS cares
URL https://github.com/c-ares/c-ares/releases/download/cares-1_15_0/c-ares-1.15.0.tar.gz
MD5 d2391da274653f7643270623e822dff7
CMAKE_OPTION -DCMAKE_BUILD_TYPE:STRING=Release
-DCARES_SHARED:BOOL=OFF
-DCARES_STATIC:BOOL=ON
-DCARES_STATIC_PIC:BOOL=ON)
include_directories(${c-ares_INC})
add_library(mindspore::cares ALIAS c-ares::cares)

View File

@ -0,0 +1,110 @@
set(grpc_USE_STATIC_LIBS ON)
if (${CMAKE_SYSTEM_NAME} MATCHES "Darwin")
set(grpc_CXXFLAGS "-fstack-protector-all -Wno-uninitialized -Wno-unused-parameter -fPIC -fvisibility=hidden -D_FORTIFY_SOURCE=2 -O2")
elseif (${CMAKE_SYSTEM_NAME} MATCHES "Windows")
set(grpc_CXXFLAGS "-fstack-protector-all -Wno-maybe-uninitialized -Wno-unused-parameter -fPIC -fvisibility=hidden -D_FORTIFY_SOURCE=2 -O2")
else()
set(grpc_CXXFLAGS "-fstack-protector-all -Wno-maybe-uninitialized -Wno-unused-parameter -fPIC -fvisibility=hidden -D_FORTIFY_SOURCE=2 -D_GLIBCXX_USE_CXX11_ABI=0 -O2")
endif()
set(grpc_LDFLAGS "-Wl,-z,relro,-z,now,-z,noexecstack")
if (EXISTS ${protobuf_ROOT}/lib64)
set(_FINDPACKAGE_PROTOBUF_CONFIG_DIR "${protobuf_ROOT}/lib64/cmake/protobuf")
else()
set(_FINDPACKAGE_PROTOBUF_CONFIG_DIR "${protobuf_ROOT}/lib/cmake/protobuf")
endif()
message("grpc using Protobuf_DIR : " ${_FINDPACKAGE_PROTOBUF_CONFIG_DIR})
if (EXISTS ${absl_ROOT}/lib64)
set(_FINDPACKAGE_ABSL_CONFIG_DIR "${absl_ROOT}/lib64/cmake/absl")
else()
set(_FINDPACKAGE_ABSL_CONFIG_DIR "${absl_ROOT}/lib/cmake/absl")
endif()
message("grpc using absl_DIR : " ${_FINDPACKAGE_ABSL_CONFIG_DIR})
set(_CMAKE_ARGS_OPENSSL_ROOT_DIR "")
if (OPENSSL_ROOT_DIR)
set(_CMAKE_ARGS_OPENSSL_ROOT_DIR "-DOPENSSL_ROOT_DIR:PATH=${OPENSSL_ROOT_DIR}")
endif()
mindspore_add_pkg(grpc
VER 1.27.3
LIBS grpc++ grpc gpr upb address_sorting
EXE grpc_cpp_plugin
URL https://github.com/grpc/grpc/archive/v1.27.3.tar.gz
MD5 0c6c3fc8682d4262dd0e5e6fabe1a7e2
CMAKE_OPTION -DCMAKE_BUILD_TYPE:STRING=Release
-DgRPC_INSTALL:BOOL=ON
-DgRPC_BUILD_TESTS:BOOL=OFF
-DgRPC_PROTOBUF_PROVIDER:STRING=package
-DgRPC_PROTOBUF_PACKAGE_TYPE:STRING=CONFIG
-DProtobuf_DIR:PATH=${_FINDPACKAGE_PROTOBUF_CONFIG_DIR}
-DgRPC_ZLIB_PROVIDER:STRING=package
-DZLIB_ROOT:PATH=${zlib_ROOT}
-DgRPC_ABSL_PROVIDER:STRING=package
-Dabsl_DIR:PATH=${_FINDPACKAGE_ABSL_CONFIG_DIR}
-DgRPC_CARES_PROVIDER:STRING=package
-Dc-ares_DIR:PATH=${c-ares_ROOT}/lib/cmake/c-ares
-DgRPC_SSL_PROVIDER:STRING=package
${_CMAKE_ARGS_OPENSSL_ROOT_DIR}
)
include_directories(${grpc_INC})
add_library(mindspore::grpc++ ALIAS grpc::grpc++)
# link other grpc libs
target_link_libraries(grpc::grpc++ INTERFACE grpc::grpc grpc::gpr grpc::upb grpc::address_sorting)
# link built dependencies
target_link_libraries(grpc::grpc++ INTERFACE mindspore::z)
target_link_libraries(grpc::grpc++ INTERFACE mindspore::cares)
target_link_libraries(grpc::grpc++ INTERFACE mindspore::absl_strings mindspore::absl_throw_delegate
mindspore::absl_raw_logging_internal mindspore::absl_int128 mindspore::absl_bad_optional_access)
# link system openssl
find_package(OpenSSL REQUIRED)
target_link_libraries(grpc::grpc++ INTERFACE OpenSSL::SSL OpenSSL::Crypto)
function(ms_grpc_generate c_var h_var)
if(NOT ARGN)
message(SEND_ERROR "Error: ms_grpc_generate() called without any proto files")
return()
endif()
set(${c_var})
set(${h_var})
foreach(file ${ARGN})
get_filename_component(abs_file ${file} ABSOLUTE)
get_filename_component(file_name ${file} NAME_WE)
get_filename_component(file_dir ${abs_file} PATH)
file(RELATIVE_PATH rel_path ${CMAKE_CURRENT_SOURCE_DIR} ${file_dir})
list(APPEND ${c_var} "${CMAKE_BINARY_DIR}/proto/${file_name}.pb.cc")
list(APPEND ${h_var} "${CMAKE_BINARY_DIR}/proto/${file_name}.pb.h")
list(APPEND ${c_var} "${CMAKE_BINARY_DIR}/proto/${file_name}.grpc.pb.cc")
list(APPEND ${h_var} "${CMAKE_BINARY_DIR}/proto/${file_name}.grpc.pb.h")
add_custom_command(
OUTPUT "${CMAKE_BINARY_DIR}/proto/${file_name}.pb.cc"
"${CMAKE_BINARY_DIR}/proto/${file_name}.pb.h"
"${CMAKE_BINARY_DIR}/proto/${file_name}.grpc.pb.cc"
"${CMAKE_BINARY_DIR}/proto/${file_name}.grpc.pb.h"
WORKING_DIRECTORY ${PROJECT_SOURCE_DIR}
COMMAND ${CMAKE_COMMAND} -E make_directory "${CMAKE_BINARY_DIR}/proto"
COMMAND protobuf::protoc --version
COMMAND protobuf::protoc -I${file_dir} --cpp_out=${CMAKE_BINARY_DIR}/proto
--grpc_out=${CMAKE_BINARY_DIR}/proto --plugin=protoc-gen-grpc=$<TARGET_FILE:grpc::grpc_cpp_plugin> ${abs_file}
DEPENDS protobuf::protoc grpc::grpc_cpp_plugin ${abs_file}
COMMENT "Running C++ gRPC compiler on ${file}" VERBATIM)
endforeach()
set_source_files_properties(${${c_var}} ${${h_var}} PROPERTIES GENERATED TRUE)
set(${c_var} ${${c_var}} PARENT_SCOPE)
set(${h_var} ${${h_var}} PARENT_SCOPE)
endfunction()

View File

@ -0,0 +1,9 @@
mindspore_add_pkg(zlib
VER 1.2.11
LIBS z
URL https://github.com/madler/zlib/archive/v1.2.11.tar.gz
MD5 0095d2d2d1f3442ce1318336637b695f
CMAKE_OPTION -DCMAKE_BUILD_TYPE:STRING=Release)
include_directories(${zlib_INC})
add_library(mindspore::z ALIAS zlib::z)

View File

@ -14,6 +14,16 @@ include(${CMAKE_SOURCE_DIR}/cmake/external_libs/eigen.cmake)
include(${CMAKE_SOURCE_DIR}/cmake/external_libs/json.cmake) include(${CMAKE_SOURCE_DIR}/cmake/external_libs/json.cmake)
include(${CMAKE_SOURCE_DIR}/cmake/dependency_securec.cmake) include(${CMAKE_SOURCE_DIR}/cmake/dependency_securec.cmake)
include(${CMAKE_SOURCE_DIR}/cmake/external_libs/protobuf.cmake) include(${CMAKE_SOURCE_DIR}/cmake/external_libs/protobuf.cmake)
if (ENABLE_DEBUGGER)
# build dependencies of gRPC
include(${CMAKE_SOURCE_DIR}/cmake/external_libs/absl.cmake)
include(${CMAKE_SOURCE_DIR}/cmake/external_libs/c-ares.cmake)
include(${CMAKE_SOURCE_DIR}/cmake/external_libs/zlib.cmake)
# build gRPC
include(${CMAKE_SOURCE_DIR}/cmake/external_libs/grpc.cmake)
endif()
include(${CMAKE_SOURCE_DIR}/cmake/external_libs/pybind11.cmake) include(${CMAKE_SOURCE_DIR}/cmake/external_libs/pybind11.cmake)
MESSAGE("go to link flatbuffers") MESSAGE("go to link flatbuffers")
include(${CMAKE_SOURCE_DIR}/cmake/external_libs/flatbuffers.cmake) include(${CMAKE_SOURCE_DIR}/cmake/external_libs/flatbuffers.cmake)

View File

@ -17,6 +17,7 @@ option(ENABLE_DUMP_E2E "Enable dump e2e file, default on" OFF)
option(ENABLE_DUMP_IR "Enable dump funciton graph ir, default on" ON) option(ENABLE_DUMP_IR "Enable dump funciton graph ir, default on" ON)
option(ENABLE_MPI "enable mpi" OFF) option(ENABLE_MPI "enable mpi" OFF)
option(ENABLE_AKG "enable akg" OFF) option(ENABLE_AKG "enable akg" OFF)
option(ENABLE_DEBUGGER "enable debugger" OFF)
if (CMAKE_CXX_COMPILER_ID STREQUAL "GNU") if (CMAKE_CXX_COMPILER_ID STREQUAL "GNU")
if (WIN32) if (WIN32)
@ -112,3 +113,7 @@ endif()
if(ENABLE_DUMP_E2E) if(ENABLE_DUMP_E2E)
add_compile_definitions(ENABLE_DUMP_E2E) add_compile_definitions(ENABLE_DUMP_E2E)
endif() endif()
if(ENABLE_DEBUGGER)
add_compile_definitions(ENABLE_DEBUGGER)
endif()

View File

@ -71,6 +71,17 @@ message("onnx proto path is :" ${ONNX_PROTO})
ms_protobuf_generate(ONNX_PROTO_SRCS ONNX_PROTO_HDRS ${ONNX_PROTO}) ms_protobuf_generate(ONNX_PROTO_SRCS ONNX_PROTO_HDRS ${ONNX_PROTO})
list(APPEND MINDSPORE_PROTO_LIST ${ONNX_PROTO_SRCS}) list(APPEND MINDSPORE_PROTO_LIST ${ONNX_PROTO_SRCS})
if (ENABLE_DEBUGGER)
# debugger: compile proto files
include_directories("${CMAKE_BINARY_DIR}/debug/debugger")
file(GLOB_RECURSE DEBUGGER_PROTO_LIST RELATIVE ${CMAKE_CURRENT_SOURCE_DIR} "debug/debugger/debug_graph.proto")
ms_protobuf_generate(DEBUGGER_PROTO_SRCS DEBUGGER_PROTO_HDRS ${DEBUGGER_PROTO_LIST})
file(GLOB_RECURSE DEBUGGER_GRPC_LIST RELATIVE ${CMAKE_CURRENT_SOURCE_DIR} "debug/debugger/debug_grpc.proto")
ms_grpc_generate(DEBUGGER_GRPC_SRCS DEBUGGER_GRPC_HDRS ${DEBUGGER_GRPC_LIST})
list(APPEND MINDSPORE_PROTO_LIST ${DEBUGGER_PROTO_SRCS})
list(APPEND MINDSPORE_PROTO_LIST ${DEBUGGER_GRPC_SRCS})
endif ()
if (ENABLE_DUMP_PROTO) if (ENABLE_DUMP_PROTO)
include_directories(${CMAKE_BINARY_DIR}) include_directories(${CMAKE_BINARY_DIR})
file(GLOB_RECURSE PROTO_LIST RELATIVE ${CMAKE_CURRENT_SOURCE_DIR} "utils/node_strategy.proto") file(GLOB_RECURSE PROTO_LIST RELATIVE ${CMAKE_CURRENT_SOURCE_DIR} "utils/node_strategy.proto")
@ -125,6 +136,14 @@ endforeach ()
set_property(SOURCE ${SUB_OBJECTS_SRC} PROPERTY COMPILE_DEFINITIONS SUBMODULE_ID=mindspore::SubModuleId::SM_ME) set_property(SOURCE ${SUB_OBJECTS_SRC} PROPERTY COMPILE_DEFINITIONS SUBMODULE_ID=mindspore::SubModuleId::SM_ME)
add_library(mindspore STATIC ${SUB_OBJECTS_SRC}) add_library(mindspore STATIC ${SUB_OBJECTS_SRC})
target_link_libraries(proto_input mindspore::protobuf)
if (ENABLE_DEBUGGER)
# debugger: link grpc
target_link_libraries(proto_input mindspore::grpc++)
endif()
target_link_libraries(mindspore proto_input) target_link_libraries(mindspore proto_input)
if (ENABLE_CPU AND ENABLE_MPI) if (ENABLE_CPU AND ENABLE_MPI)
target_link_libraries(mindspore securec mindspore::flatbuffers mindspore::ompi) target_link_libraries(mindspore securec mindspore::flatbuffers mindspore::ompi)
@ -217,6 +236,7 @@ if (USE_GLOG)
endif () endif ()
if (ENABLE_DUMP_PROTO) if (ENABLE_DUMP_PROTO)
message("add protobuf lib to c_expression")
target_link_libraries(_c_expression PRIVATE mindspore::protobuf) target_link_libraries(_c_expression PRIVATE mindspore::protobuf)
endif () endif ()

View File

@ -10,6 +10,15 @@ set(_DEBUG_SRC_LIST
"${CMAKE_CURRENT_SOURCE_DIR}/trace.cc" "${CMAKE_CURRENT_SOURCE_DIR}/trace.cc"
) )
if (ENABLE_DEBUGGER)
list(APPEND _DEBUG_SRC_LIST
"${CMAKE_CURRENT_SOURCE_DIR}/debugger/debugger.cc"
"${CMAKE_CURRENT_SOURCE_DIR}/debugger/grpc_client.cc"
"${CMAKE_CURRENT_SOURCE_DIR}/debugger/proto_exporter.cc"
"${CMAKE_CURRENT_SOURCE_DIR}/debug_services.cc"
)
endif (ENABLE_DEBUGGER)
if (ENABLE_DUMP_E2E) if (ENABLE_DUMP_E2E)
list(APPEND _DEBUG_SRC_LIST "${CMAKE_CURRENT_SOURCE_DIR}/e2e_dump.cc") list(APPEND _DEBUG_SRC_LIST "${CMAKE_CURRENT_SOURCE_DIR}/e2e_dump.cc")
endif (ENABLE_DUMP_E2E) endif (ENABLE_DUMP_E2E)

View File

@ -0,0 +1,194 @@
/**
* Copyright 2019-2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "debug/debug_services.h"
namespace mindspore {
DebugServices::DebugServices() {
tensor_loader_ = new TensorLoader();
uint32_t iter_num = -1;
tensor_loader_->set_iter_num(iter_num);
}
DebugServices::DebugServices(const DebugServices &other) {
tensor_loader_ = other.tensor_loader_;
watchpoint_table = other.watchpoint_table;
}
DebugServices &DebugServices::operator=(const DebugServices &other) {
if (this != &other) {
tensor_loader_ = other.tensor_loader_;
watchpoint_table = other.watchpoint_table;
}
return *this;
}
DebugServices::~DebugServices() { delete tensor_loader_; }
void DebugServices::add_watchpoint(unsigned int id, unsigned int watch_condition,
const std::vector<std::tuple<std::string, bool>> &check_node_list) {
std::lock_guard<std::mutex> lg(lock_);
watchpoint_t watchpoint_item;
watchpoint_item.id = id;
if (watch_condition == 0) {
watchpoint_item.conditions.nan.enabled = true;
} else if (watch_condition == 1) {
watchpoint_item.conditions.inf.enabled = true;
watchpoint_item.conditions.neg_inf.enabled = true;
}
watchpoint_item.check_node_list = check_node_list;
watchpoint_table[id] = watchpoint_item;
}
void DebugServices::remove_watchpoint(unsigned int id) {
std::lock_guard<std::mutex> lg(lock_);
watchpoint_table.erase(id);
}
void DebugServices::check_watchpoints(std::vector<std::string> *name, std::vector<std::string> *slot,
std::vector<char *> *data_ptr, std::vector<unsigned int> *data_size,
std::vector<int> *condition, std::vector<unsigned int> *wacthpoint_id) {
std::lock_guard<std::mutex> lg(lock_);
std::vector<std::shared_ptr<TensorData>> tensor_list = tensor_loader_->GetTensor();
std::string current_tensor_name;
std::unordered_map<unsigned int, watchpoint_t> watchpoints_to_check_table;
for (std::size_t i = 0; i < tensor_list.size(); i++) {
current_tensor_name = tensor_list[i]->GetName();
mindspore::tensor::TensorPtr tensor_ptr = tensor_list[i]->GetTensor();
int tensor_data_type = tensor_ptr->data_type_c();
// check if we need to analyze this node and for which watchpoints we will check
// create a list of watchpoints to check
watchpoints_to_check_table.clear();
for (auto w_table_item : watchpoint_table) {
// if the watchpoint is checking for a nan or inf and the current tensor is not of a float type, then
// don't check the watchpoint for this tensor
if (std::get<1>(w_table_item).conditions.inf.enabled || std::get<1>(w_table_item).conditions.neg_inf.enabled ||
std::get<1>(w_table_item).conditions.nan.enabled) {
if (tensor_data_type != kNumberTypeFloat16 && tensor_data_type != kNumberTypeFloat &&
tensor_data_type != kNumberTypeFloat32 && tensor_data_type != kNumberTypeFloat64) {
continue;
}
}
auto check_node_list = std::get<1>(w_table_item).check_node_list;
for (auto check_node : check_node_list) {
std::string w_name = std::get<0>(check_node);
bool w_type = std::get<1>(check_node);
// check if the current node tensor name is included the watchpoint
std::string current_node_name = current_tensor_name.substr(0, current_tensor_name.find_first_of(":"));
if ((w_type == true && (current_tensor_name.find(w_name) != string::npos || w_name == "*")) ||
(w_type == false && current_node_name == w_name)) {
watchpoints_to_check_table[w_table_item.second.id] = w_table_item.second;
break;
}
}
}
// check if no watchpoints are valid for the current tensor
if (watchpoints_to_check_table.empty()) {
continue;
}
// need to add support for float16 and float64, and other types when we support conditions beyond inf and nan
if (tensor_data_type != kNumberTypeFloat && tensor_data_type != kNumberTypeFloat32) {
continue;
}
float *start_addr = reinterpret_cast<float *>(tensor_ptr->data_c(false));
unsigned int num_elements = (tensor_ptr->data().nbytes()) / sizeof(float);
std::unordered_map<unsigned int, watchpoint_t>::iterator it_w_table_check;
std::vector<unsigned int> hit_encountered;
for (unsigned int index = 0; index < num_elements; index++) {
float x = start_addr[index];
it_w_table_check = watchpoints_to_check_table.begin();
while (it_w_table_check != watchpoints_to_check_table.end()) {
if ((it_w_table_check->second.conditions.inf.enabled || it_w_table_check->second.conditions.neg_inf.enabled) &&
isinf(x)) {
hit_encountered.push_back(it_w_table_check->second.id);
} else if (it_w_table_check->second.conditions.nan.enabled && isnan(x)) {
hit_encountered.push_back(it_w_table_check->second.id);
}
++it_w_table_check;
}
if (hit_encountered.size()) {
for (auto it_hit_id = hit_encountered.begin(); it_hit_id != hit_encountered.end(); ++it_hit_id) {
std::string name_no_slot = current_tensor_name.substr(0, current_tensor_name.find_first_of(":"));
name->push_back(name_no_slot);
slot->push_back(std::to_string(tensor_list[i]->GetSlot()));
data_ptr->push_back(reinterpret_cast<char *>(tensor_ptr->data_c(false)));
data_size->push_back(tensor_ptr->data().nbytes());
int condition_item = -1;
if (watchpoint_table[*it_hit_id].conditions.nan.enabled) {
condition_item = 0;
} else if (watchpoint_table[*it_hit_id].conditions.inf.enabled ||
watchpoint_table[*it_hit_id].conditions.neg_inf.enabled) {
condition_item = 1;
}
condition->push_back(condition_item);
wacthpoint_id->push_back(*it_hit_id);
watchpoints_to_check_table.erase(*it_hit_id);
}
hit_encountered.clear();
}
if (watchpoints_to_check_table.empty()) {
break;
}
}
}
}
void DebugServices::read_nodes_tensors(std::vector<std::string> name, std::vector<std::string> *ret_name,
std::vector<char *> *data_ptr, std::vector<unsigned int> *data_size,
std::vector<TypePtr> *dtype, std::vector<std::vector<int>> *shape) {
std::vector<std::tuple<std::string, std::shared_ptr<TensorData>>> result_list;
tensor_loader_->SearchTensors(name, &result_list);
for (auto result : result_list) {
if (!std::get<1>(result)) {
continue;
}
ret_name->push_back(std::get<0>(result));
data_ptr->push_back(reinterpret_cast<char *>(std::get<1>(result)->GetTensor()->data_c(false)));
data_size->push_back(std::get<1>(result)->GetTensor()->data().nbytes());
dtype->push_back(std::get<1>(result)->GetTensor()->Dtype());
shape->push_back(std::get<1>(result)->GetTensor()->shape());
}
}
TensorLoader *DebugServices::get_tensor_loader() const { return tensor_loader_; }
} // namespace mindspore

View File

@ -0,0 +1,95 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_DEBUG_DEBUG_SERVICES_H_
#define MINDSPORE_CCSRC_DEBUG_DEBUG_SERVICES_H_
#include <vector>
#include <string>
#include <memory>
#include <tuple>
#include <unordered_map>
#include <mutex>
#include "debug/tensor_load.h"
#include "debug/tensor_data.h"
#include "ir/dtype.h"
namespace mindspore {
class DebugServices {
public:
DebugServices();
DebugServices(const DebugServices &other);
DebugServices &operator=(const DebugServices &other);
~DebugServices();
void add_watchpoint(unsigned int id, unsigned int watch_condition,
const std::vector<std::tuple<std::string, bool>> &check_node_list);
void remove_watchpoint(unsigned int id);
void check_watchpoints(std::vector<std::string> *name, std::vector<std::string> *slot, std::vector<char *> *data_ptr,
std::vector<unsigned int> *data_size, std::vector<int> *condition,
std::vector<unsigned int> *wacthpoint_id);
void read_nodes_tensors(std::vector<std::string> name, std::vector<std::string> *ret_name,
std::vector<char *> *data_ptr, std::vector<unsigned int> *data_size,
std::vector<TypePtr> *dtype, std::vector<std::vector<int>> *shape);
TensorLoader *get_tensor_loader() const;
private:
typedef struct condition_no_param {
bool enabled = false;
} condition_no_param_t;
typedef struct condition_with_param {
bool enabled = false;
float parameter = 0;
} condition_with_param_t;
typedef struct conditions {
condition_no_param_t inf;
condition_no_param_t neg_inf;
condition_no_param_t nan;
condition_with_param_t max_below;
condition_with_param_t max_above;
condition_with_param_t min_below;
condition_with_param_t min_above;
condition_with_param_t max_minus_min_below;
condition_with_param_t max_minus_min_above;
condition_with_param_t mean_below;
condition_with_param_t mean_above;
condition_with_param_t std_dev_below;
condition_with_param_t std_dev_above;
} conditions_t;
typedef struct watchpoint {
unsigned int id;
conditions_t conditions;
std::vector<std::tuple<std::string, bool>> check_node_list;
} watchpoint_t;
std::mutex lock_;
std::unordered_map<unsigned int, watchpoint_t> watchpoint_table;
TensorLoader *tensor_loader_;
};
} // namespace mindspore
#endif // MINDSPORE_CCSRC_DEBUG_DEBUG_SERVICES_H_

View File

@ -0,0 +1,316 @@
/**
* Copyright 2019 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
syntax = "proto2";
package debugger;
// Versioning
enum Version {
// unknown version
UNKNOWWN_VERSION = 0;
// Initial version (IR VERSION 1), published on Sep 23, 2019
IR_VERSION = 0x0000000000000001;
}
// Data type definition
enum DataType {
DT_UNDEFINED = 0;
// Basic types.
DT_BOOL = 1; // bool
DT_INT8 = 2; // int8_t
DT_INT16 = 3; // int16_t
DT_INT32 = 4; // int32_t
DT_INT64 = 5; // int64_t
DT_UINT8 = 6; // uint8_t
DT_UINT16 = 7; // uint16_t
DT_UINT32 = 8; // uint32_t
DT_UINT64 = 9; // uint64_t
DT_FLOAT16 = 10; // float 16
DT_FLOAT32 = 11; // float 32
DT_FLOAT64 = 12; // float 64
DT_STRING = 13; // string
DT_TENSOR = 14; // tensor
DT_GRAPH = 15; // graph
// list type
DT_BOOLS = 16; // list of bool
DT_INTS8 = 17; // list of int8_t
DT_INTS16 = 18; // list of int16_t
DT_INTS32 = 19; // list of int32_t
DT_INTS64 = 20; // list of int64_t
DT_UINTS8 = 21; // list of uint8_t
DT_UINTS16 = 22; // list of uint16_t
DT_UINTS32 = 23; // list of uint32_t
DT_UINTS64 = 24; // list of uint64_t
DT_FLOATS16 = 25; // list of float16
DT_FLOATS32 = 26; // list of float32
DT_FLOATS64 = 27; // list of float64
DT_STRINGS = 28; // list of string
DT_TENSORS = 29; // list of tensor
DT_GRAPHS = 30; // list of graph
DT_TUPLE = 31; // tuple
DT_LIST = 32; // list
DT_DICT = 33; // dictionary
// other types
DT_NONE = 34; // None
DT_SYM_INST = 35; // Symbolic Key Instance
// type related type
DT_BASE_INT = 36; // type generic int
DT_BASE_UINT = 37; // type generate unsigned int
DT_BASE_FLOAT = 38; // type generate float
DT_TYPE = 39; // type type
DT_ANYTHING = 40; // type anything
DT_REFKEY = 41; // type refkey
DT_REF = 42; // type ref
}
// Value definition for attribute value or parameter default value
message ValueProto {
// data type of value
optional DataType dtype = 1; // discriminator that indicates which field below is in use
// Exactly ONE of the following fields must be present for this version of the IR
optional bool bool_val = 2; // bool
optional int64 int_val = 3; // int
optional uint64 uint_val = 4; // uint
optional float float_val = 5; // float
optional double double_val = 6; // double
optional string str_val = 7; // string
optional TensorProto tensor_val = 8; // tensor value
optional GraphProto graph = 9; // graph
repeated bool bool_vals = 10; // list of bool
repeated int64 int_vals = 11; // list of int
repeated uint64 uint_vals = 12; // list of uint
repeated float float_vals = 13; // list of float
repeated double double_vals = 14; // list of double
repeated string str_vals = 15; // list of string
repeated TensorProto tensor_vals = 16; // list of tensor value
repeated GraphProto graphs = 17; // list of graph
// tuple or list
repeated ValueProto values = 18; // tuple, list of value
// dictionary
repeated NamedValueProto dict_val = 19; // dictionary info
// filed for type type
optional TypeProto type_val = 20; // type type info
}
message AttributeProto {
optional string name = 1; // attribute name
optional ValueProto value = 2; // attribute value
}
message NamedValueProto {
optional string key = 1; // attribute name
optional ValueProto value = 2; // attribute value
}
// Defines a tensor shape.
message TensorShapeProto {
// One dimension of the tensor.
message Dimension {
// Size of the tensor in that dimension.
// This value must be >= -1, but values of -1 are reserved for "unknown"
// shapes (values of -1 mean "unknown" dimension).
optional int64 size = 1;
// Optional name of the tensor dimension.
optional string name = 2;
};
repeated Dimension dim = 1;
}
// Types for graph input(parameter) and output
message TypeProto {
message Tensor {
// This field MUST have a valid DataType value except DT_TENSOR
optional DataType elem_type = 1;
optional TensorShapeProto shape = 2; // for scalar, this field is not set
}
// tuple type
message Sequence {
// The type and optional shape of elements of the tuple.
repeated TypeProto elem_types = 1;
};
// data type
optional DataType data_type = 1;
oneof value {
// The type of a tensor.
Tensor tensor_type = 2;
// The type of a tuple.
Sequence sequence_type = 3;
}
}
// Defines information on graph parameters, including the name, the type, and
// the default value of parameter if exists.
message ParameterProto {
optional string name = 1; // parameter name
optional TypeProto type = 2; // parameter type
optional ValueProto default_val = 3; // default value of parameter if exists
}
// Defines graph output information
message OutputProto {
optional string name = 1; // output node name
optional TypeProto type = 2; // output node type
}
// Define node input information
message InputProto {
enum EdgeType {
DATA_EDGE = 0; // data edge
CONTROL_EDGE = 1; // control edge
}
optional string name = 1;
optional EdgeType type = 2;
}
// Nodes
//
// Computation graphs are made up of a DAG of nodes, which represent what is
// commonly called a "layer" or "pipeline stage" in machine learning frameworks.
//
// For example, it can be a node of type "Conv" that takes in an image, a filter
// tensor and a bias tensor, and produces the convolved output.
message NodeProto {
repeated InputProto input = 1; // namespace Value
optional string name = 2; // namespace Value
// The symbolic identifier of the Operator to execute.
optional string op_type = 3; // namespace Operator
// The domain of the OperatorSet that specifies the operator named by op_type.
optional string scope = 4; // namespace Domain
// Additional named attributes.
repeated AttributeProto attribute = 5;
// Optional type info of this node
optional TypeProto output_type = 6;
// other fields for debug
optional uint64 output_i = 7;
// for debugger, full name with scope
optional string debug_name = 8;
}
// Models
//
// ModelProto is a top-level file/container format for bundling a ML model and
// associating its computation graph with metadata.
//
// The semantics of the model are described by the associated GraphProto.
message ModelProto {
// ir version
optional int64 ir_version = 1;
// Domain name of the model.
// We use reverse domain names as name space indicators. For example:
// `com.facebook.fair` or `com.microsoft.cognitiveservices`
//
// Together with `model_version` and GraphProto.name, this forms the unique identity of
// the graph.
optional string domain = 2;
// The version of the graph encoded. See Version enum below.
optional int64 model_version = 3;
// The parameterized graph that is evaluated to execute the model.
optional GraphProto graph = 4;
// metadata info of opeartors
optional OperatorSetProto metadata_operators = 5;
};
message OperatorProto {
optional string name = 1; // used as key, must be distinct
optional bytes config = 2; // operator config info
optional bytes obj_info = 3; // operator related object info, e.g. content of operator binary or name
};
message OperatorSetProto {
repeated OperatorProto operators = 1;
optional string summary = 2; // summary info of operators, e.g. file position of operators file
}
// Graphs
//
// A graph defines the computational logic of a model and is comprised of a parameterized
// list of nodes that form a directed acyclic graph based on their inputs and outputs.
// This is the equivalent of the "network" or "graph" in many deep learning
// frameworks.
message GraphProto {
// The nodes in the graph, sorted topologically.
repeated NodeProto node = 1;
// The name of the graph.
optional string name = 2; // namespace Graph
// The parameters(inputs) and outputs of the graph.
repeated ParameterProto parameters = 3;
repeated OutputProto outputs = 4;
// Constants used in this graph
repeated NamedValueProto const_vals = 5;
}
// Tensors
//
// A serialized tensor value.
message TensorProto {
// The node name of the tensor.
optional string node_name = 1;
// The slot of the tensor in its node.
optional string slot = 2;
// The serialized tensor content.
optional bytes tensor_content = 3;
// The shape of the tensor.
repeated int64 dims = 4;
// The data type of the tensor.
// This field MUST have a valid DataType value except DT_TENSOR
optional DataType data_type = 5;
// If the tensor content transferring is finished.
optional bool finished = 6;
}

View File

@ -0,0 +1,81 @@
/**
* Copyright 2019 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
syntax = "proto3";
package debugger;
import "debug_graph.proto";
service EventListener {
rpc WaitCMD (Metadata) returns (EventReply) {};
rpc SendMetadata (Metadata) returns (EventReply) {};
rpc SendGraph (GraphProto) returns (EventReply) {};
rpc SendTensors (stream TensorProto) returns (EventReply) {};
rpc SendWatchpointHits (stream WatchpointHit) returns (EventReply) {};
}
message Metadata {
string device_name = 1;
int32 cur_step = 2;
}
message EventReply {
enum Status {
OK = 0;
FAILED = 1;
PENDING = 2;
}
Status status = 1;
oneof cmd {
bool exit = 2;
int32 run_cmd = 3;
SetCMD set_cmd = 4;
ViewCMD view_cmd = 5;
}
}
message SetCMD {
repeated WatchNode watch_nodes = 1;
WatchCondition watch_condition = 2;
bool delete = 3;
int32 id = 4;
}
message ViewCMD {
repeated TensorProto tensors = 1;
}
message WatchCondition {
enum Condition {
nan = 0;
inf = 1;
}
Condition condition = 1;
}
message WatchNode {
string node_name = 1;
string node_type = 2;
}
message WatchpointHit {
TensorProto tensor = 1;
WatchCondition watch_condition = 2;
int32 id = 3;
}

View File

@ -0,0 +1,488 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <fstream>
#include <tuple>
#include <vector>
#include <algorithm>
#include "debug/debugger/debugger.h"
#include "pipeline/pipeline.h"
#include "session/anf_runtime_algorithm.h"
using debugger::EventReply;
using debugger::GraphProto;
using debugger::ModelProto;
using debugger::TensorProto;
using debugger::WatchCondition;
using debugger::WatchCondition_Condition_inf;
using debugger::WatchCondition_Condition_nan;
using debugger::WatchNode;
using debugger::WatchpointHit;
namespace mindspore {
DebuggerPtr Debugger::debugger_ = nullptr;
std::mutex Debugger::instance_lock_;
Debugger::Debugger()
: grpc_client_(nullptr),
debug_services_(nullptr),
device_id_(0),
num_step_(0),
debugger_enabled_(false),
is_dataset_graph_(false) {}
void Debugger::Init(const uint32_t device_id) {
// access lock for public method
std::lock_guard<std::mutex> a_lock(access_lock_);
// save device_id
MS_LOG(INFO) << "Debugger got device_id: " << device_id;
device_id_ = device_id;
}
void Debugger::EnableDebugger() {
// reset some of the class members
num_step_ = 0;
debugger_enabled_ = false;
grpc_client_ = nullptr;
debug_services_ = nullptr;
// get env variables to configure debugger
const char *env_enable_str = std::getenv("ENABLE_MS_DEBUGGER");
if (env_enable_str != nullptr) {
MS_LOG(INFO) << "Getenv ENABLE_MS_DEBUGGER: " << env_enable_str;
if (std::strcmp(env_enable_str, "1") == 0) {
debugger_enabled_ = true;
}
}
if (!debugger_enabled_) {
MS_LOG(WARNING) << "Not enabling debugger. Set environment variable ENABLE_MS_DEBUGGER=1 to enable debugger.";
return;
}
// configure host
const char *env_host_str = std::getenv("MS_DEBUGGER_HOST");
std::string host;
if (env_host_str != nullptr) {
MS_LOG(INFO) << "Getenv MS_DEBUGGER_HOST: " << env_host_str;
host = std::string(env_host_str);
} else {
MS_LOG(WARNING) << "Environment variable MS_DEBUGGER_HOST doesn't exist. Using default debugger host: localhost";
host = "localhost";
}
// configure port
const char *env_port_str = std::getenv("MS_DEBUGGER_PORT");
std::string port;
if (env_port_str != nullptr) {
MS_LOG(INFO) << "Getenv MS_DEBUGGER_PORT: " << env_port_str;
port = std::string(env_port_str);
} else {
MS_LOG(WARNING) << "Environment variable MS_DEBUGGER_PORT doesn't exist. Using default debugger port: 50051";
port = "50051";
}
// initialize grpc client
grpc_client_ = std::make_unique<GrpcClient>(host, port);
debug_services_ = std::make_unique<DebugServices>();
}
void Debugger::Reset() {
// access lock for public method
std::lock_guard<std::mutex> a_lock(access_lock_);
// reset components
device_id_ = 0;
num_step_ = 0;
debugger_enabled_ = false;
is_dataset_graph_ = false;
graph_ptr_ = nullptr;
grpc_client_ = nullptr;
debug_services_ = nullptr;
}
void Debugger::PreExecute(const KernelGraphPtr &graph_ptr) {
// access lock for public method
std::lock_guard<std::mutex> a_lock(access_lock_);
// check and save graph_ptr, suspend if graph is new
CheckGraphPtr(graph_ptr);
}
void Debugger::PostExecute() {
// access lock for public method
std::lock_guard<std::mutex> a_lock(access_lock_);
// analyze tensor data and send the watchpoints been hit
if (debugger_enabled_ && !is_dataset_graph_) {
num_step_++;
MS_LOG(INFO) << "Debugger suspend at end of step; number of steps executed: " << num_step_;
SendWatchpointsAndSuspend(CheckWatchpoints());
}
}
void Debugger::PostDebugOp() {
// access lock for public method
std::lock_guard<std::mutex> a_lock(access_lock_);
// suspend if debugger is enabled
if (debugger_enabled_ && !is_dataset_graph_) {
MS_LOG(INFO) << "Debugger suspend at debug_op";
CommandLoop();
}
}
void Debugger::CheckGraphPtr(const KernelGraphPtr &graph_ptr) {
if (graph_ptr_ != graph_ptr) {
MS_LOG(INFO) << "Debugger got new graph: " << graph_ptr->graph_id();
// save new graph_ptr
graph_ptr_ = graph_ptr;
// check if it is dataset graph
CheckDatasetGraph();
if (!is_dataset_graph_) {
// only try to enable debugger if it is not a dataset graph
EnableDebugger();
if (debugger_enabled_) {
// get graph proto and send to mindinsight
SendGraphAndSuspend(GetGraphProto());
}
}
}
}
void Debugger::CheckDatasetGraph() {
// print parameter node names
const auto &params = graph_ptr_->inputs();
for (const auto &param : params) {
MS_LOG(INFO) << "param: " << param->fullname_with_scope();
}
// check if there is GetNext or InitDataSetQueue node
const auto &nodes = graph_ptr_->execution_order();
for (const auto &node : nodes) {
auto node_name = AnfAlgo::GetCNodeName(node);
MS_LOG(INFO) << "node: " << node->fullname_with_scope();
if (node_name == "GetNext" || node_name == "InitDataSetQueue") {
MS_LOG(WARNING) << "Not enabling debugger for graph " << graph_ptr_->graph_id() << ": found dataset graph node "
<< node_name;
is_dataset_graph_ = true;
return;
}
}
is_dataset_graph_ = false;
}
GraphProto Debugger::GetGraphProto() {
// convert kernel graph to debugger modelproto
ModelProto model = GetDebuggerFuncGraphProto(graph_ptr_);
return model.graph();
}
void Debugger::SendGraphAndSuspend(const GraphProto &graph_proto) {
// prepare metadata
std::string device_name = std::to_string(device_id_) + ":" + std::to_string(graph_ptr_->graph_id());
Metadata metadata;
metadata.set_device_name(device_name);
metadata.set_cur_step(num_step_);
EventReply reply_metadata = grpc_client_->SendMetadata(metadata);
if (reply_metadata.status() != reply_metadata.OK) {
MS_LOG(ERROR) << "Error: SendMetadata failed";
}
// send graph to mindinght server
EventReply reply = grpc_client_->SendGraph(graph_proto);
if (reply.status() != reply.OK) {
MS_LOG(ERROR) << "Error: SendGraph failed";
}
// enter command loop, wait and process commands
CommandLoop();
}
void Debugger::CommandLoop() {
// prepare metadata
std::string device_name = std::to_string(device_id_) + ":" + std::to_string(graph_ptr_->graph_id());
Metadata metadata;
metadata.set_device_name(device_name);
metadata.set_cur_step(num_step_);
// loop exit flag
bool run = false;
int num_wait_fail = 0;
const int max_num_wait_fail = 5;
while (!run) {
// wait for command
EventReply reply = grpc_client_->WaitForCommand(metadata);
if (reply.status() != reply.OK) {
MS_LOG(ERROR) << "Error: WaitForCommand failed";
num_wait_fail++;
if (num_wait_fail > max_num_wait_fail) {
MS_LOG(ERROR) << "Maximum number of WaitForCommand retry reached: exiting training session";
Exit();
}
MS_LOG(ERROR) << "Number of consecutive WaitForCommand fail:" << num_wait_fail << "; Retry after "
<< num_wait_fail << "s";
std::this_thread::sleep_for(std::chrono::milliseconds(1000 * num_wait_fail));
continue;
}
// get type of the command in reply
DebuggerCommand cmd = GetCommand(reply);
if (cmd == DebuggerCommand::kUnknownCMD) {
MS_LOG(ERROR) << "Error: debugger recieved unknown command";
continue;
}
MS_LOG(INFO) << "recieved command: ";
switch (cmd) {
case DebuggerCommand::kUnknownCMD:
MS_LOG(INFO) << "UnknownCMD";
break;
case DebuggerCommand::kExitCMD:
MS_LOG(INFO) << "ExitCMD";
Exit();
break;
case DebuggerCommand::kRunCMD:
MS_LOG(INFO) << "RunCMD";
// exit loop
run = true;
break;
case DebuggerCommand::kSetCMD:
MS_LOG(INFO) << "SetCMD";
{
// print set cmd content
ProtoVector<WatchNode> recieved_nodes = GetWatchnodes(reply);
for (auto node : recieved_nodes) {
MS_LOG(INFO) << "node name: " << node.node_name();
MS_LOG(INFO) << "node type: " << node.node_type();
}
WatchCondition recieved_condition = GetWatchcondition(reply);
MS_LOG(INFO) << "condition: " << recieved_condition.condition();
int32_t id = GetWatchpointID(reply);
MS_LOG(INFO) << "id: " << id;
bool delete_ = GetWatchpointDelete(reply);
MS_LOG(INFO) << "delete: " << delete_;
}
MS_LOG(INFO) << "Setting watchpoint";
if (GetWatchpointDelete(reply)) {
RemoveWatchpoint(GetWatchpointID(reply));
} else {
SetWatchpoint(GetWatchnodes(reply), GetWatchcondition(reply), GetWatchpointID(reply));
}
break;
case DebuggerCommand::kViewCMD:
MS_LOG(INFO) << "ViewCMD";
{
// print view cmd content
ProtoVector<TensorProto> received_tensors = GetTensors(reply);
for (auto tensor : received_tensors) {
MS_LOG(INFO) << "tensor node name: " << tensor.node_name();
MS_LOG(INFO) << "tensor slot: " << tensor.slot();
MS_LOG(INFO) << "tensor finished: " << std::boolalpha << tensor.finished() << std::noboolalpha;
}
}
MS_LOG(INFO) << "Sending tensors";
std::list<TensorProto> tensors = LoadTensors(GetTensors(reply));
{
for (auto tensor : tensors) {
MS_LOG(INFO) << "tensor node name: " << tensor.node_name();
MS_LOG(INFO) << "tensor slot: " << tensor.slot();
MS_LOG(INFO) << "tensor finished: " << std::boolalpha << tensor.finished() << std::noboolalpha;
MS_LOG(INFO) << "tensor dims: ";
for (auto dim : tensor.dims()) {
MS_LOG(INFO) << dim << ",";
}
MS_LOG(INFO) << "tensor dtype: " << tensor.data_type();
}
}
EventReply send_tensors_reply = grpc_client_->SendTensors(tensors);
if (send_tensors_reply.status() != send_tensors_reply.OK) {
MS_LOG(ERROR) << "Error: SendTensors failed";
}
break;
}
}
}
DebuggerCommand Debugger::GetCommand(const EventReply &reply) {
DebuggerCommand cmd = DebuggerCommand::kUnknownCMD;
switch (reply.cmd_case()) {
case debugger::EventReply::CmdCase::kExit:
cmd = DebuggerCommand::kExitCMD;
break;
case debugger::EventReply::CmdCase::kRunCmd:
cmd = DebuggerCommand::kRunCMD;
break;
case debugger::EventReply::CmdCase::kSetCmd:
cmd = DebuggerCommand::kSetCMD;
break;
case debugger::EventReply::CmdCase::kViewCmd:
cmd = DebuggerCommand::kViewCMD;
break;
default:
MS_LOG(ERROR) << "Error: UnknownCMD";
break;
}
return cmd;
}
ProtoVector<WatchNode> Debugger::GetWatchnodes(const EventReply &reply) {
if (!reply.has_set_cmd()) {
MS_LOG(ERROR) << "Error: Not SetCMD, can not get WatchNodes. Returning default value: ProtoVector<WatchNode>().";
return ProtoVector<WatchNode>();
}
return reply.set_cmd().watch_nodes();
}
WatchCondition Debugger::GetWatchcondition(const EventReply &reply) {
if (!reply.has_set_cmd() || !reply.set_cmd().has_watch_condition()) {
MS_LOG(ERROR) << "Error: Can not get WatchCondition from command. Returning default value: WatchCondition().";
return WatchCondition();
}
return reply.set_cmd().watch_condition();
}
int32_t Debugger::GetWatchpointID(const EventReply &reply) {
if (!reply.has_set_cmd()) {
MS_LOG(ERROR) << "Error: Not SetCMD, can not get Watchpoint ID. Returning default value: 0.";
return 0;
}
return reply.set_cmd().id();
}
bool Debugger::GetWatchpointDelete(const EventReply &reply) {
if (!reply.has_set_cmd()) {
MS_LOG(ERROR) << "Error: Not SetCMD, can not get Watchpoint delete flag. Returning default value: false.";
return false;
}
return reply.set_cmd().delete_();
}
ProtoVector<TensorProto> Debugger::GetTensors(const EventReply &reply) {
if (!reply.has_view_cmd()) {
MS_LOG(ERROR) << "Error: Not ViewCMD, can not get Tensors. Returning default value: ProtoVector<TensorProto>().";
return ProtoVector<TensorProto>();
}
return reply.view_cmd().tensors();
}
void Debugger::SetWatchpoint(const ProtoVector<WatchNode> &nodes, const WatchCondition &condition, const int32_t id) {
std::vector<std::tuple<std::string, bool>> check_node_list;
std::transform(nodes.begin(), nodes.end(), std::back_inserter(check_node_list),
[](WatchNode node) -> std::tuple<std::string, bool> {
return make_tuple(node.node_name(), node.node_type() == "scope");
});
debug_services_->add_watchpoint(id, condition.condition(), check_node_list);
}
void Debugger::RemoveWatchpoint(const int32_t id) { debug_services_->remove_watchpoint(id); }
std::list<TensorProto> Debugger::LoadTensors(const ProtoVector<TensorProto> &tensors) {
std::vector<std::string> name;
std::vector<std::string> ret_name;
std::vector<char *> data_ptr;
std::vector<unsigned int> data_size;
std::vector<TypePtr> dtype;
std::vector<std::vector<int>> shape;
std::transform(tensors.begin(), tensors.end(), std::back_inserter(name),
[](TensorProto tensor) -> std::string { return tensor.node_name() + ":" + tensor.slot(); });
debug_services_->read_nodes_tensors(name, &ret_name, &data_ptr, &data_size, &dtype, &shape);
std::list<TensorProto> tensor_list;
unsigned int result_index = 0;
TensorProto tensor_item;
for (auto tensor : tensors) {
tensor_item.set_node_name(tensor.node_name());
tensor_item.set_slot(tensor.slot());
tensor_item.set_finished(true);
// return empty tensor if didn't find the requested tensor
if (result_index >= ret_name.size() || ret_name[result_index] != tensor.node_name() + ":" + tensor.slot()) {
tensor_list.push_back(tensor_item);
continue;
}
tensor_item.set_tensor_content(data_ptr[result_index], data_size[result_index]);
tensor_item.set_data_type(GetDebuggerNumberDataType(dtype[result_index]));
tensor_item.clear_dims();
for (auto &elem : shape[result_index]) {
tensor_item.add_dims(elem);
}
tensor_list.push_back(tensor_item);
result_index++;
}
return tensor_list;
}
void Debugger::Exit() {
// clear resource before exit
pipeline::ClearResAtexit();
std::exit(EXIT_FAILURE);
}
std::list<WatchpointHit> Debugger::CheckWatchpoints() {
std::vector<std::string> name;
std::vector<std::string> slot;
std::vector<char *> data_ptr;
std::vector<unsigned int> data_size;
std::vector<int> condition;
std::vector<unsigned int> watchpoint_id;
debug_services_->check_watchpoints(&name, &slot, &data_ptr, &data_size, &condition, &watchpoint_id);
std::list<WatchpointHit> points;
for (unsigned int i = 0; i < name.size(); i++) {
TensorProto *tensor_item;
tensor_item = new TensorProto();
tensor_item->set_node_name(name[i]);
tensor_item->set_slot(slot[i]);
tensor_item->set_tensor_content(data_ptr[i], data_size[i]);
// finished in TensorProto will always be true before we implement big tensor splitting
tensor_item->set_finished(true);
WatchCondition *condition_item;
condition_item = new WatchCondition();
condition_item->set_condition(debugger::WatchCondition_Condition(condition[i]));
WatchpointHit point;
point.set_allocated_tensor(tensor_item);
point.set_allocated_watch_condition(condition_item);
point.set_id(watchpoint_id[i]);
points.push_back(point);
}
return points;
}
void Debugger::SendWatchpointsAndSuspend(const std::list<WatchpointHit> &points) {
// send info about watchpoint
if (!points.empty()) {
EventReply reply = grpc_client_->SendWatchpointHits(points);
if (reply.status() != reply.OK) {
MS_LOG(ERROR) << "Error: SendWatchpointHits failed";
}
}
// enter command loop
CommandLoop();
}
DebugServices *Debugger::get_debug_services() { return debug_services_.get(); }
bool Debugger::debugger_enabled() { return debugger_enabled_; }
} // namespace mindspore

View File

@ -0,0 +1,159 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_DEBUG_DEBUGGER_DEBUGGER_H_
#define MINDSPORE_CCSRC_DEBUG_DEBUGGER_DEBUGGER_H_
#include <list>
#include <memory>
#include <string>
#include "session/kernel_graph.h"
#include "debug/debugger/grpc_client.h"
#include "debug/debug_services.h"
using debugger::DataType;
using debugger::EventReply;
using debugger::GraphProto;
using debugger::ModelProto;
using debugger::TensorProto;
using debugger::WatchCondition;
using debugger::WatchNode;
using debugger::WatchpointHit;
template <class T>
using ProtoVector = google::protobuf::RepeatedPtrField<T>;
namespace mindspore {
// different types of command recieved by debugger
// need to keep sync with client-side proto and server-side proto
enum class DebuggerCommand { kExitCMD = 2, kRunCMD = 3, kSetCMD = 4, kViewCMD = 5, kUnknownCMD = -1 };
class Debugger : public std::enable_shared_from_this<Debugger> {
public:
static std::shared_ptr<Debugger> GetInstance() {
std::lock_guard<std::mutex> i_lock(instance_lock_);
if (debugger_ == nullptr) {
debugger_ = std::shared_ptr<Debugger>(new (std::nothrow) Debugger());
}
return debugger_;
}
// deconstructor
~Debugger() = default;
// init
// only save device_id
void Init(const uint32_t device_id);
// reset debugger
void Reset();
// enable debugger
// send graph and wait for command
// do nothing if graph is set already
void PreExecute(const KernelGraphPtr &graph_ptr);
// analyze tensors and wait for command
// don't need a graph_ptr because it is saved during pre_execute
void PostExecute();
// suspend the execution after a debug_op
void PostDebugOp();
DebugServices *get_debug_services();
bool debugger_enabled();
private:
// private constructor for singleton
Debugger();
// enable debugger
// instantiate class members
// read env variable for grpc client
void EnableDebugger();
// check and save graph pointer
void CheckGraphPtr(const KernelGraphPtr &graph_ptr);
// check if the graph is a dataset graph
void CheckDatasetGraph();
// serialize graph and get proto
GraphProto GetGraphProto();
// send graph and enter command wait loop
void SendGraphAndSuspend(const GraphProto &graph_proto);
// wait for command and process command
// send command request and process reply in a loop
// break if RunCMD
void CommandLoop();
// process reply and command type
DebuggerCommand GetCommand(const EventReply &reply);
// parse other data out of EventReply
ProtoVector<WatchNode> GetWatchnodes(const EventReply &reply);
WatchCondition GetWatchcondition(const EventReply &reply);
int32_t GetWatchpointID(const EventReply &reply);
bool GetWatchpointDelete(const EventReply &reply);
ProtoVector<TensorProto> GetTensors(const EventReply &reply);
// set what nodes and conditions to watch
void SetWatchpoint(const ProtoVector<WatchNode> &nodes, const WatchCondition &condition, const int32_t id);
// remove watchpoint with id
void RemoveWatchpoint(const int32_t id);
// load tensor for view command
std::list<TensorProto> LoadTensors(const ProtoVector<TensorProto> &tensors);
// terminate training process
void Exit();
// analyze tensors and check watchpoint conditions
// return names of tensors and what condition they hit
std::list<WatchpointHit> CheckWatchpoints();
// send watchpoints that hit and enter command wait loop
void SendWatchpointsAndSuspend(const std::list<WatchpointHit> &points);
// class members
std::unique_ptr<GrpcClient> grpc_client_;
std::unique_ptr<DebugServices> debug_services_;
KernelGraphPtr graph_ptr_;
uint32_t device_id_;
int32_t num_step_;
bool debugger_enabled_;
bool is_dataset_graph_;
std::mutex access_lock_;
// singleton
static std::mutex instance_lock_;
static std::shared_ptr<Debugger> debugger_;
};
using DebuggerPtr = std::shared_ptr<Debugger>;
// get debugger ModelProto
std::string GetDebuggerFuncGraphProtoString(const FuncGraphPtr &func_graph);
ModelProto GetDebuggerFuncGraphProto(const FuncGraphPtr &func_graph);
// for getting proto DataType from Type of Tensor
DataType GetDebuggerNumberDataType(const TypePtr &type);
} // namespace mindspore
#endif // MINDSPORE_CCSRC_DEBUG_DEBUGGER_DEBUGGER_H_

View File

@ -0,0 +1,124 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <thread>
#include "debug/debugger/grpc_client.h"
#include "utils/log_adapter.h"
using debugger::EventListener;
using debugger::EventReply;
using debugger::EventReply_Status_FAILED;
using debugger::GraphProto;
using debugger::Metadata;
using debugger::TensorProto;
using debugger::WatchpointHit;
namespace mindspore {
GrpcClient::GrpcClient(const std::string &host, const std::string &port) : stub_(nullptr) { Init(host, port); }
void GrpcClient::Init(const std::string &host, const std::string &port) {
std::string target_str = host + ":" + port;
MS_LOG(INFO) << "GrpcClient connecting to: " << target_str;
std::shared_ptr<grpc::Channel> channel = grpc::CreateChannel(target_str, grpc::InsecureChannelCredentials());
stub_ = EventListener::NewStub(channel);
}
void GrpcClient::Reset() { stub_ = nullptr; }
EventReply GrpcClient::WaitForCommand(const Metadata &metadata) {
EventReply reply;
grpc::ClientContext context;
grpc::Status status = stub_->WaitCMD(&context, metadata, &reply);
if (!status.ok()) {
MS_LOG(ERROR) << "RPC failed: WaitForCommand";
MS_LOG(ERROR) << status.error_code() << ": " << status.error_message();
reply.set_status(EventReply_Status_FAILED);
}
return reply;
}
EventReply GrpcClient::SendMetadata(const Metadata &metadata) {
EventReply reply;
grpc::ClientContext context;
grpc::Status status = stub_->SendMetadata(&context, metadata, &reply);
if (!status.ok()) {
MS_LOG(ERROR) << "RPC failed: SendMetadata";
MS_LOG(ERROR) << status.error_code() << ": " << status.error_message();
reply.set_status(EventReply_Status_FAILED);
}
return reply;
}
EventReply GrpcClient::SendGraph(const GraphProto &graph) {
EventReply reply;
grpc::ClientContext context;
grpc::Status status = stub_->SendGraph(&context, graph, &reply);
if (!status.ok()) {
MS_LOG(ERROR) << "RPC failed: SendGraph";
MS_LOG(ERROR) << status.error_code() << ": " << status.error_message();
reply.set_status(EventReply_Status_FAILED);
}
return reply;
}
EventReply GrpcClient::SendTensors(const std::list<TensorProto> &tensors) {
EventReply reply;
grpc::ClientContext context;
std::unique_ptr<grpc::ClientWriter<TensorProto> > writer(stub_->SendTensors(&context, &reply));
for (const auto &tensor : tensors) {
if (!writer->Write(tensor)) {
break;
}
std::this_thread::sleep_for(std::chrono::milliseconds(1));
}
writer->WritesDone();
grpc::Status status = writer->Finish();
if (!status.ok()) {
MS_LOG(ERROR) << "RPC failed: SendTensors";
MS_LOG(ERROR) << status.error_code() << ": " << status.error_message();
reply.set_status(EventReply_Status_FAILED);
}
return reply;
}
EventReply GrpcClient::SendWatchpointHits(const std::list<WatchpointHit> &watchpoints) {
EventReply reply;
grpc::ClientContext context;
std::unique_ptr<grpc::ClientWriter<WatchpointHit> > writer(stub_->SendWatchpointHits(&context, &reply));
for (const auto &watchpoint : watchpoints) {
if (!writer->Write(watchpoint)) {
break;
}
std::this_thread::sleep_for(std::chrono::milliseconds(1));
}
writer->WritesDone();
grpc::Status status = writer->Finish();
if (!status.ok()) {
MS_LOG(ERROR) << "RPC failed: SendWatchpointHits";
MS_LOG(ERROR) << status.error_code() << ": " << status.error_message();
reply.set_status(EventReply_Status_FAILED);
}
return reply;
}
} // namespace mindspore

View File

@ -0,0 +1,61 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_DEBUG_DEBUGGER_GRPC_CLIENT_H_
#define MINDSPORE_CCSRC_DEBUG_DEBUGGER_GRPC_CLIENT_H_
#include <grpcpp/grpcpp.h>
#include <string>
#include <list>
#include <memory>
#include "proto/debug_grpc.grpc.pb.h"
using debugger::EventListener;
using debugger::EventReply;
using debugger::GraphProto;
using debugger::Metadata;
using debugger::TensorProto;
using debugger::WatchpointHit;
namespace mindspore {
class GrpcClient {
public:
// constructor
GrpcClient(const std::string &host, const std::string &port);
// deconstructor
~GrpcClient() = default;
// init
void Init(const std::string &host, const std::string &port);
// reset
void Reset();
EventReply WaitForCommand(const Metadata &metadata);
EventReply SendMetadata(const Metadata &metadata);
EventReply SendGraph(const GraphProto &graph);
EventReply SendTensors(const std::list<TensorProto> &tensors);
EventReply SendWatchpointHits(const std::list<WatchpointHit> &watchpoints);
private:
std::unique_ptr<EventListener::Stub> stub_;
};
} // namespace mindspore
#endif // MINDSPORE_CCSRC_DEBUG_DEBUGGER_GRPC_CLIENT_H_

View File

@ -0,0 +1,542 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <fstream>
#include <map>
#include <memory>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <algorithm>
#include "debug/debugger/debugger.h"
#include "proto/debug_graph.pb.h"
#include "utils/graph_utils.h"
#include "utils/symbolic.h"
namespace mindspore {
class DebuggerProtoExporter {
public:
DebuggerProtoExporter() {}
~DebuggerProtoExporter() {}
std::string GetFuncGraphProtoString(const FuncGraphPtr &func_graph);
debugger::ModelProto GetFuncGraphProto(const FuncGraphPtr &func_graph);
private:
void InitModelInfo();
void GetOpNodeTypeAndAttrs(const FuncGraphPtr &func_graph, const AnfNodePtr &node, debugger::NodeProto *node_proto);
std::string GetOpNodeInputId(const FuncGraphPtr &func_graph, const AnfNodePtr &node,
const std::map<AnfNodePtr, size_t> &apply_map,
std::map<AnfNodePtr, size_t> *const_map_ptr);
void SetValueToProto(const ValuePtr &attr_value, debugger::ValueProto *value_proto);
void SetScalarToProto(const ScalarPtr &val, debugger::ValueProto *value_proto);
void SetSequenceToProto(const ValueSequeuePtr &val, debugger::ValueProto *value_proto);
void SetDictionaryToProto(const ValueDictionaryPtr &val, debugger::ValueProto *value_proto);
void SetNodeOutputType(const AnfNodePtr &node, debugger::TypeProto *type_proto);
void SetNodeOutputType(const TypePtr &node, const BaseShapePtr &shape, debugger::TypeProto *type_proto);
void ExportFuncGraph(const FuncGraphPtr &func_graph, debugger::GraphProto *graph_proto);
void ExportParameters(const FuncGraphPtr &func_graph, debugger::GraphProto *graph_proto);
void ExportCNodes(const FuncGraphPtr &func_graph, debugger::GraphProto *graph_proto,
std::map<AnfNodePtr, size_t> *const_map_ptr);
void ExportCNode(const FuncGraphPtr &func_graph, const CNodePtr &node, std::map<AnfNodePtr, size_t> *apply_map_ptr,
std::map<AnfNodePtr, size_t> *const_map_ptr, debugger::GraphProto *graph_proto);
void ExportFuncGraphOutput(const FuncGraphPtr &func_graph, const CNodePtr &ret_node,
const std::map<AnfNodePtr, size_t> &apply_map, std::map<AnfNodePtr, size_t> *const_map_ptr,
debugger::GraphProto *graph_proto);
void ExportValueNodes(const std::map<AnfNodePtr, size_t> &const_map, debugger::GraphProto *graph_proto);
static std::string GetConstNodeId(size_t idx) { return std::string("cst") + std::to_string(idx); }
debugger::ModelProto model_;
};
void DebuggerProtoExporter::SetNodeOutputType(const TypePtr &type, const BaseShapePtr &shape,
debugger::TypeProto *type_proto) {
if (type_proto == nullptr) {
return;
}
if (type == nullptr) {
type_proto->set_data_type(debugger::DT_UNDEFINED);
} else if (type->isa<Number>()) {
type_proto->set_data_type(GetDebuggerNumberDataType(type));
} else if (type->isa<TensorType>()) {
TypePtr elem_type = dyn_cast<TensorType>(type)->element();
type_proto->mutable_tensor_type()->set_elem_type(GetDebuggerNumberDataType(elem_type));
type_proto->set_data_type(debugger::DT_TENSOR);
if (shape != nullptr && shape->isa<abstract::Shape>()) {
abstract::ShapePtr shape_info = dyn_cast<abstract::Shape>(shape);
for (const auto &elem : shape_info->shape()) {
type_proto->mutable_tensor_type()->mutable_shape()->add_dim()->set_size(elem);
}
}
} else if (type->isa<Tuple>()) {
TuplePtr tuple_type = dyn_cast<Tuple>(type);
type_proto->set_data_type(debugger::DT_TUPLE);
for (const auto &elem_type : tuple_type->elements()) {
SetNodeOutputType(elem_type, nullptr, type_proto->mutable_sequence_type()->add_elem_types());
}
} else if (type->isa<TypeType>()) {
type_proto->set_data_type(debugger::DT_TYPE);
} else if (type->isa<List>()) {
ListPtr list_type = dyn_cast<List>(type);
type_proto->set_data_type(debugger::DT_LIST);
for (const auto &elem_type : list_type->elements()) {
SetNodeOutputType(elem_type, nullptr, type_proto->mutable_sequence_type()->add_elem_types());
}
} else if (type->isa<TypeAnything>()) {
type_proto->set_data_type(debugger::DT_ANYTHING);
} else if (type->isa<RefKeyType>()) {
type_proto->set_data_type(debugger::DT_REFKEY);
} else if (type->isa<RefType>()) {
type_proto->set_data_type(debugger::DT_REF);
} else if (type->isa<Function>()) {
type_proto->set_data_type(debugger::DT_GRAPH);
} else if (type->isa<TypeNone>()) {
type_proto->set_data_type(debugger::DT_NONE);
} else if (type->isa<String>()) {
type_proto->set_data_type(debugger::DT_STRING);
} else if (type->isa<SymbolicKeyType>()) {
// Do Nothing.
} else {
MS_LOG(EXCEPTION) << "Unknown type: " << type->type_name();
}
}
void DebuggerProtoExporter::SetNodeOutputType(const AnfNodePtr &node, debugger::TypeProto *type_proto) {
if (node == nullptr || type_proto == nullptr) {
return;
}
SetNodeOutputType(node->Type(), node->Shape(), type_proto);
}
void DebuggerProtoExporter::SetValueToProto(const ValuePtr &val, debugger::ValueProto *value_proto) {
if (val == nullptr || value_proto == nullptr) {
return;
}
if (val->isa<StringImm>()) {
const StringImmPtr &value = dyn_cast<StringImm>(val);
value_proto->set_dtype(debugger::DT_STRING);
value_proto->set_str_val(value->value());
} else if (val->isa<Scalar>()) {
SetScalarToProto(dyn_cast<Scalar>(val), value_proto);
} else if (val->isa<Bool>()) {
value_proto->set_dtype(debugger::DT_TYPE);
value_proto->mutable_type_val()->set_data_type(debugger::DT_BOOL);
} else if (val->isa<Int>()) {
value_proto->set_dtype(debugger::DT_TYPE);
value_proto->mutable_type_val()->set_data_type(debugger::DT_BASE_INT);
} else if (val->isa<Float>()) {
value_proto->set_dtype(debugger::DT_TYPE);
value_proto->mutable_type_val()->set_data_type(debugger::DT_BASE_FLOAT);
} else if (val->isa<ValueSequeue>()) {
SetSequenceToProto(dyn_cast<ValueSequeue>(val), value_proto);
} else if (val->isa<None>()) {
value_proto->set_dtype(debugger::DT_NONE);
value_proto->set_str_val("None");
} else if (val->isa<SymbolicKeyInstance>()) {
SymbolicKeyInstancePtr sym_inst = dyn_cast<SymbolicKeyInstance>(val);
ParameterPtr sym_node = dyn_cast<Parameter>(sym_inst->node());
value_proto->set_dtype(debugger::DT_SYM_INST);
value_proto->set_str_val(sym_node == nullptr ? std::string("nullptr") : sym_node->ToString());
} else if (val->isa<ValueDictionary>()) {
SetDictionaryToProto(dyn_cast<ValueDictionary>(val), value_proto);
} else if (val->isa<tensor::Tensor>()) {
tensor::TensorPtr tensor_ptr = dyn_cast<tensor::Tensor>(val);
value_proto->set_dtype(debugger::DT_TENSOR);
debugger::TensorProto *tensor_proto = value_proto->mutable_tensor_val();
tensor_proto->set_data_type(GetDebuggerNumberDataType(tensor_ptr->Dtype()));
for (auto &elem : tensor_ptr->shape()) {
tensor_proto->add_dims(elem);
}
tensor_proto->set_tensor_content(tensor_ptr->data_c(), tensor_ptr->data().nbytes());
} else if (val->isa<TensorType>()) {
value_proto->set_dtype(debugger::DT_TYPE);
debugger::TypeProto *type_proto = value_proto->mutable_type_val();
type_proto->set_data_type(debugger::DT_TENSOR);
TypePtr elem_type = dyn_cast<TensorType>(val)->element();
type_proto->mutable_tensor_type()->set_elem_type(GetDebuggerNumberDataType(elem_type));
} else {
MS_LOG(WARNING) << "Unsupported type " << val->type_name();
}
}
void DebuggerProtoExporter::SetScalarToProto(const ScalarPtr &val, debugger::ValueProto *value_proto) {
if (val == nullptr || value_proto == nullptr) {
return;
}
if (val->isa<BoolImm>()) {
const BoolImmPtr &value = dyn_cast<BoolImm>(val);
value_proto->set_dtype(debugger::DT_BOOL);
value_proto->set_bool_val(value->value());
} else if (val->isa<Int8Imm>()) {
const Int8ImmPtr &value = dyn_cast<Int8Imm>(val);
value_proto->set_dtype(debugger::DT_INT8);
value_proto->set_int_val(value->value());
} else if (val->isa<Int16Imm>()) {
const Int16ImmPtr &value = dyn_cast<Int16Imm>(val);
value_proto->set_dtype(debugger::DT_INT16);
value_proto->set_int_val(value->value());
} else if (val->isa<Int32Imm>()) {
const Int32ImmPtr &value = dyn_cast<Int32Imm>(val);
value_proto->set_dtype(debugger::DT_INT32);
value_proto->set_int_val(value->value());
} else if (val->isa<Int64Imm>()) {
const Int64ImmPtr &value = dyn_cast<Int64Imm>(val);
value_proto->set_dtype(debugger::DT_INT64);
value_proto->set_int_val(value->value());
} else if (val->isa<UInt8Imm>()) {
const UInt8ImmPtr &value = dyn_cast<UInt8Imm>(val);
value_proto->set_dtype(debugger::DT_UINT8);
value_proto->set_uint_val(value->value());
} else if (val->isa<UInt16Imm>()) {
const UInt16ImmPtr &value = dyn_cast<UInt16Imm>(val);
value_proto->set_dtype(debugger::DT_UINT16);
value_proto->set_uint_val(value->value());
} else if (val->isa<UInt32Imm>()) {
const UInt32ImmPtr &value = dyn_cast<UInt32Imm>(val);
value_proto->set_dtype(debugger::DT_UINT32);
value_proto->set_uint_val(value->value());
} else if (val->isa<UInt64Imm>()) {
const UInt64ImmPtr &value = dyn_cast<UInt64Imm>(val);
value_proto->set_dtype(debugger::DT_UINT64);
value_proto->set_uint_val(value->value());
} else if (val->isa<FP32Imm>()) {
const FP32ImmPtr &value = dyn_cast<FP32Imm>(val);
value_proto->set_dtype(debugger::DT_FLOAT32);
value_proto->set_float_val(value->value());
} else if (val->isa<FP64Imm>()) {
const FP64ImmPtr &value = dyn_cast<FP64Imm>(val);
value_proto->set_dtype(debugger::DT_FLOAT64);
value_proto->set_double_val(value->value());
} else {
MS_LOG(EXCEPTION) << "Unknown scalar type " << val->ToString();
}
}
void DebuggerProtoExporter::SetSequenceToProto(const ValueSequeuePtr &val, debugger::ValueProto *value_proto) {
if (val == nullptr || value_proto == nullptr) {
return;
}
if (val->isa<ValueTuple>()) {
const ValueTuplePtr &value = dyn_cast<ValueTuple>(val);
value_proto->set_dtype(debugger::DT_TUPLE);
for (const auto &item : value->value()) {
SetValueToProto(item, value_proto->add_values());
}
} else if (val->isa<ValueList>()) {
const ValueListPtr &value = dyn_cast<ValueList>(val);
value_proto->set_dtype(debugger::DT_LIST);
for (const auto &item : value->value()) {
SetValueToProto(item, value_proto->add_values());
}
}
}
void DebuggerProtoExporter::SetDictionaryToProto(const ValueDictionaryPtr &val, debugger::ValueProto *value_proto) {
if (val == nullptr || value_proto == nullptr) {
return;
}
value_proto->set_dtype(debugger::DT_DICT);
for (const auto &item : val->value()) {
debugger::NamedValueProto *named_val = value_proto->add_dict_val();
named_val->set_key(item.first);
SetValueToProto(item.second, named_val->mutable_value());
}
}
void DebuggerProtoExporter::GetOpNodeTypeAndAttrs(const FuncGraphPtr &, const AnfNodePtr &node,
debugger::NodeProto *node_proto) {
if (node == nullptr || node_proto == nullptr) {
return;
}
if (node->isa<CNode>() || node->isa<Parameter>() || IsValueNode<FuncGraph>(node)) {
MS_LOG(EXCEPTION) << "Op node can not be CNode, Parameter or ValueNode Graph. But got " << node->ToString();
}
if (!IsValueNode<Primitive>(node)) {
MS_LOG(EXCEPTION) << "Op node is not primitive: " << node->ToString();
}
const PrimitivePtr &prim = GetValueNode<PrimitivePtr>(node);
node_proto->set_op_type(prim->name());
for (const auto &attr : prim->attrs()) {
debugger::AttributeProto *attr_proto = node_proto->add_attribute();
attr_proto->set_name(attr.first);
SetValueToProto(attr.second, attr_proto->mutable_value());
}
node_proto->set_scope(node->scope()->name());
}
std::string DebuggerProtoExporter::GetOpNodeInputId(const FuncGraphPtr &, const AnfNodePtr &node,
const std::map<AnfNodePtr, size_t> &apply_map,
std::map<AnfNodePtr, size_t> *const_map_ptr) {
if (node == nullptr || const_map_ptr == nullptr) {
return "";
}
if (node->isa<CNode>()) {
auto iter = apply_map.find(node);
if (iter == apply_map.end()) {
MS_LOG(EXCEPTION) << "Can not find node '" << node->ToString() << "' in apply_map";
}
return std::to_string(iter->second);
}
if (node->isa<Parameter>()) {
return node->ToString();
}
if (node->isa<ValueNode>()) {
auto iter = const_map_ptr->find(node);
if (iter == const_map_ptr->end()) {
// Start index number from 1
auto const_idx = const_map_ptr->size() + 1;
(*const_map_ptr)[node] = const_idx;
}
return GetConstNodeId((*const_map_ptr)[node]);
}
MS_LOG(EXCEPTION) << "Unknown node type. node is '" << node->ToString() << "'";
}
std::string DebuggerProtoExporter::GetFuncGraphProtoString(const FuncGraphPtr &func_graph) {
if (func_graph == nullptr) {
return "";
}
InitModelInfo();
debugger::GraphProto *graph_proto = model_.mutable_graph();
ExportFuncGraph(func_graph, graph_proto);
return model_.SerializeAsString();
}
debugger::ModelProto DebuggerProtoExporter::GetFuncGraphProto(const FuncGraphPtr &func_graph) {
if (func_graph == nullptr) {
return ModelProto();
}
InitModelInfo();
debugger::GraphProto *graph_proto = model_.mutable_graph();
ExportFuncGraph(func_graph, graph_proto);
return model_;
}
void DebuggerProtoExporter::ExportFuncGraph(const FuncGraphPtr &func_graph, debugger::GraphProto *graph_proto) {
if (func_graph == nullptr || graph_proto == nullptr) {
return;
}
// map for store ValueNodes of this graph
std::map<AnfNodePtr, size_t> const_map;
// set graph name
graph_proto->set_name(func_graph->ToString());
ExportParameters(func_graph, graph_proto);
ExportCNodes(func_graph, graph_proto, &const_map);
ExportValueNodes(const_map, graph_proto);
}
void DebuggerProtoExporter::ExportParameters(const FuncGraphPtr &func_graph, debugger::GraphProto *graph_proto) {
if (func_graph == nullptr || graph_proto == nullptr) {
return;
}
// cast FuncGraph to KernelGraph to access inputs()
std::vector<AnfNodePtr> parameters = static_cast<session::KernelGraph *>(func_graph.get())->inputs();
for (auto &param : parameters) {
debugger::ParameterProto *param_proto = graph_proto->add_parameters();
param_proto->set_name(param->ToString());
SetNodeOutputType(param, param_proto->mutable_type());
const ParameterPtr param_ptr = dyn_cast<Parameter>(param);
if (param_ptr == nullptr) {
MS_LOG(EXCEPTION) << "Parameter '" << param->ToString() << "' could not cast to parameter.";
}
}
}
void DebuggerProtoExporter::ExportCNodes(const FuncGraphPtr &func_graph, debugger::GraphProto *graph_proto,
std::map<AnfNodePtr, size_t> *const_map_ptr) {
if (func_graph == nullptr || graph_proto == nullptr || const_map_ptr == nullptr) {
return;
}
// topo sort nodes
std::vector<AnfNodePtr> nodes = TopoSort(func_graph->get_return(), SuccIncoming, AlwaysInclude);
std::map<AnfNodePtr, size_t> apply_map;
for (const AnfNodePtr &node : nodes) {
MS_EXCEPTION_IF_NULL(node);
if (!node->isa<CNode>()) {
continue;
}
auto cnode = node->cast<CNodePtr>();
if (cnode != func_graph->get_return()) {
ExportCNode(func_graph, cnode, &apply_map, const_map_ptr, graph_proto);
} else {
ExportFuncGraphOutput(func_graph, cnode, apply_map, const_map_ptr, graph_proto);
}
}
}
void DebuggerProtoExporter::ExportCNode(const FuncGraphPtr &func_graph, const CNodePtr &node,
std::map<AnfNodePtr, size_t> *apply_map_ptr,
std::map<AnfNodePtr, size_t> *const_map_ptr,
debugger::GraphProto *graph_proto) {
if (func_graph == nullptr || node == nullptr || apply_map_ptr == nullptr || const_map_ptr == nullptr ||
graph_proto == nullptr) {
return;
}
auto apply_idx = apply_map_ptr->size() + 1;
(*apply_map_ptr)[node] = apply_idx;
auto &inputs = node->inputs();
if (inputs.size() < 1) {
MS_LOG(EXCEPTION) << "Inputs of apply node is empty";
}
AnfNodePtr op = inputs[0];
debugger::NodeProto *node_proto = graph_proto->add_node();
// CNode/ConstGraph/Const/Parameter
if (op->isa<CNode>() || IsValueNode<FuncGraph>(op) || op->isa<Parameter>()) {
MS_LOG(WARNING) << "Operator must be a primitive";
} else {
GetOpNodeTypeAndAttrs(func_graph, op, node_proto);
node_proto->set_name(std::to_string(apply_idx));
node_proto->set_scope(node->scope()->name());
// add debug_name for debugger
node_proto->set_debug_name(node->fullname_with_scope());
// process OP inputs
for (size_t i = 1; i < inputs.size(); ++i) {
debugger::InputProto *input_proto = node_proto->add_input();
input_proto->set_type(debugger::InputProto_EdgeType_DATA_EDGE);
std::string id = GetOpNodeInputId(func_graph, inputs[i], *apply_map_ptr, const_map_ptr);
input_proto->set_name(id);
}
// set node output type
SetNodeOutputType(node, node_proto->mutable_output_type());
}
}
void DebuggerProtoExporter::ExportFuncGraphOutput(const FuncGraphPtr &func_graph, const CNodePtr &ret_node,
const std::map<AnfNodePtr, size_t> &apply_map,
std::map<AnfNodePtr, size_t> *const_map_ptr,
debugger::GraphProto *graph_proto) {
if (ret_node == nullptr || !ret_node->isa<CNode>()) {
MS_LOG(EXCEPTION) << "Graph return node is illegal";
}
AnfNodePtr arg = ret_node->input(1);
if (graph_proto == nullptr) {
MS_LOG(EXCEPTION) << "graph_proto is nullptr";
}
debugger::OutputProto *output_proto = graph_proto->add_outputs();
if (output_proto == nullptr) {
MS_LOG(EXCEPTION) << "output_proto is nullptr";
}
std::string id = GetOpNodeInputId(func_graph, arg, apply_map, const_map_ptr);
output_proto->set_name(id);
SetNodeOutputType(arg, output_proto->mutable_type());
}
static bool CompareValue(const std::pair<AnfNodePtr, size_t> &x, const std::pair<AnfNodePtr, size_t> &y) {
return x.second < y.second;
}
void DebuggerProtoExporter::ExportValueNodes(const std::map<AnfNodePtr, size_t> &const_map,
debugger::GraphProto *graph_proto) {
std::vector<std::pair<AnfNodePtr, size_t>> nodes;
(void)std::transform(const_map.cbegin(), const_map.cend(), std::back_inserter(nodes),
[](const std::pair<AnfNodePtr, size_t> &item) { return item; });
sort(nodes.begin(), nodes.end(), CompareValue);
for (auto &item : nodes) {
if (graph_proto == nullptr) {
MS_LOG(EXCEPTION) << "graph_proto is nullptr";
}
debugger::NamedValueProto *named_value = graph_proto->add_const_vals();
MS_EXCEPTION_IF_NULL(named_value);
named_value->set_key(GetConstNodeId(item.second));
SetValueToProto(GetValueNode(item.first), named_value->mutable_value());
}
}
void DebuggerProtoExporter::InitModelInfo() { model_.set_ir_version(debugger::IR_VERSION); }
std::string GetDebuggerFuncGraphProtoString(const FuncGraphPtr &func_graph) {
DebuggerProtoExporter exporter;
return exporter.GetFuncGraphProtoString(func_graph);
}
debugger::ModelProto GetDebuggerFuncGraphProto(const FuncGraphPtr &func_graph) {
DebuggerProtoExporter exporter;
return exporter.GetFuncGraphProto(func_graph);
}
debugger::DataType GetDebuggerNumberDataType(const TypePtr &type) {
switch (type->type_id()) {
case kNumberTypeBool:
return debugger::DT_BOOL;
case kNumberTypeInt8:
return debugger::DT_INT8;
case kNumberTypeInt16:
return debugger::DT_INT16;
case kNumberTypeInt32:
return debugger::DT_INT32;
case kNumberTypeInt64:
return debugger::DT_INT64;
case kNumberTypeUInt8:
return debugger::DT_UINT8;
case kNumberTypeUInt16:
return debugger::DT_UINT16;
case kNumberTypeUInt32:
return debugger::DT_UINT32;
case kNumberTypeUInt64:
return debugger::DT_UINT64;
case kNumberTypeFloat16:
return debugger::DT_FLOAT16;
case kNumberTypeFloat32:
return debugger::DT_FLOAT32;
case kNumberTypeFloat64:
return debugger::DT_FLOAT64;
case kNumberTypeInt:
return debugger::DT_BASE_INT;
case kNumberTypeUInt:
return debugger::DT_BASE_UINT;
case kNumberTypeFloat:
return debugger::DT_BASE_FLOAT;
default:
MS_LOG(EXCEPTION) << "Unexpected type " << type->type_name();
}
}
} // namespace mindspore

View File

@ -0,0 +1,75 @@
/**
* Copyright 2019 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_DEBUG_TENSOR_DATA_H_
#define MINDSPORE_CCSRC_DEBUG_TENSOR_DATA_H_
#include <vector>
#include <string>
#include <cstring>
#include <iostream>
#include "ir/tensor.h"
namespace mindspore {
class TensorData {
private:
mindspore::tensor::TensorPtr tensor_ptr;
std::string name;
size_t slot;
int execution_order;
public:
TensorData() : slot(0), execution_order(-1) {}
TensorData(const TensorData &obj) {
std::cout << "Copy Constructor" << std::endl;
this->name = obj.name;
this->execution_order = obj.execution_order;
this->slot = obj.slot;
this->tensor_ptr = obj.tensor_ptr;
}
~TensorData() {}
std::string GetName() { return this->name; }
mindspore::tensor::TensorPtr GetTensor() { return this->tensor_ptr; }
size_t GetSlot() { return this->slot; }
int GetExecutionOrder() { return this->execution_order; }
int SetExecutionOrder(int execution_order) {
this->execution_order = execution_order;
return true;
}
int SetName(const std::string &name) {
this->name = name;
return true;
}
bool SetTensor(mindspore::tensor::TensorPtr out_tensor) {
this->tensor_ptr = out_tensor;
return true;
}
bool SetSlot(size_t slot) {
this->slot = slot;
return true;
}
};
} // namespace mindspore
#endif // MINDSPORE_CCSRC_DEBUG_TENSOR_DATA_H_

View File

@ -0,0 +1,69 @@
/**
* Copyright 2019 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_DEBUG_TENSOR_LOAD_H_
#define MINDSPORE_CCSRC_DEBUG_TENSOR_LOAD_H_
#include <memory>
#include <vector>
#include <map>
#include <tuple>
#include <string>
#include "debug/tensor_data.h"
namespace mindspore {
class TensorLoader {
public:
TensorLoader() : iter_num(-1) {}
~TensorLoader() {}
bool LoadNewTensor(std::shared_ptr<TensorData> tensor) {
tensor_list.push_back(tensor);
tensor_list_map.insert({tensor->GetName(), tensor});
return true;
}
std::vector<std::shared_ptr<TensorData>> GetTensor() { return tensor_list; }
uint32_t GetIterNum() { return iter_num; }
std::map<std::string, std::shared_ptr<TensorData>> GetTensorMap() { return tensor_list_map; }
void SearchTensors(const std::vector<std::string> &search_list,
std::vector<std::tuple<std::string, std::shared_ptr<TensorData>>> *result_list) {
for (auto i : search_list) {
std::map<std::string, std::shared_ptr<TensorData>>::iterator iter;
iter = tensor_list_map.find(i);
if (iter != tensor_list_map.end()) {
result_list->push_back(std::make_tuple(i, iter->second));
} else {
result_list->push_back(std::make_tuple(i, nullptr));
}
}
}
bool EmptyTensor() {
tensor_list_map.clear();
tensor_list.clear();
return true;
}
void set_iter_num(uint32_t iter_num) { this->iter_num = iter_num; }
private:
std::vector<std::shared_ptr<TensorData>> tensor_list;
std::map<std::string, std::shared_ptr<TensorData>> tensor_list_map;
uint32_t iter_num;
};
} // namespace mindspore
#endif // MINDSPORE_CCSRC_DEBUG_TENSOR_LOAD_H_

View File

@ -30,6 +30,10 @@
#ifdef ENABLE_DUMP_E2E #ifdef ENABLE_DUMP_E2E
#include "debug/e2e_dump.h" #include "debug/e2e_dump.h"
#endif #endif
#ifdef ENABLE_DEBUGGER
#include "debug/tensor_load.h"
#endif
namespace mindspore { namespace mindspore {
namespace device { namespace device {
namespace ascend { namespace ascend {
@ -346,6 +350,52 @@ bool AscendDeviceAddress::DumpMemToFile(bool trans_flag, const std::string &file
return ret; return ret;
} }
#endif #endif
#ifdef ENABLE_DEBUGGER
bool AscendDeviceAddress::LoadMemToHost(bool trans_flag, const std::string &tensor_name, int execution_order,
const std::string &host_fmt, const std::vector<int> &host_shape,
TypeId host_type, size_t slot, Debugger *debugger) const {
bool ret = false;
DebugServices *debug_services = debugger->get_debug_services();
TensorLoader *tensor_loader = debug_services->get_tensor_loader();
if (trans_flag) {
MS_LOG(INFO) << "E2E tensor name is " << tensor_name;
mindspore::tensor::TensorPtr out_tensor = std::make_shared<tensor::Tensor>(host_type, host_shape);
size_t host_size = out_tensor->data().nbytes();
ret = SyncDeviceToHost(host_shape, host_size, host_type, out_tensor->data_c(true));
if (!ret) {
MS_LOG(ERROR) << "Copy device mem to host failed";
return ret;
}
auto tensor_data = std::make_shared<mindspore::TensorData>();
tensor_data->SetName(tensor_name);
tensor_data->SetExecutionOrder(execution_order);
tensor_data->SetTensor(out_tensor);
tensor_data->SetSlot(slot);
ret = tensor_loader->LoadNewTensor(tensor_data);
} else {
mindspore::tensor::TensorPtr out_tensor = std::make_shared<tensor::Tensor>(type_id_, host_shape);
size_t host_size = out_tensor->data().nbytes();
auto ret_rt_memcpy = rtMemcpy(out_tensor->data_c(true), host_size, ptr_, host_size, RT_MEMCPY_DEVICE_TO_HOST);
auto tensor_data = std::make_shared<mindspore::TensorData>();
tensor_data->SetName(tensor_name);
tensor_data->SetExecutionOrder(execution_order);
tensor_data->SetTensor(out_tensor);
tensor_data->SetSlot(slot);
ret = tensor_loader->LoadNewTensor(tensor_data);
if (ret_rt_memcpy != RT_ERROR_NONE) {
MS_LOG(ERROR) << "SyncDeviceToHost: rtMemcpy mem size[" << size_ << "] fail, ret[" << ret_rt_memcpy << "]";
}
MS_LOG(INFO) << "E2E tensor name is " << tensor_name;
}
return ret;
}
#endif
} // namespace ascend } // namespace ascend
} // namespace device } // namespace device
} // namespace mindspore } // namespace mindspore

View File

@ -25,6 +25,9 @@
#include "ir/dtype.h" #include "ir/dtype.h"
namespace mindspore { namespace mindspore {
#ifdef ENABLE_DEBUGGER
class Debugger;
#endif
namespace device { namespace device {
namespace ascend { namespace ascend {
class AscendDeviceAddress : public DeviceAddress { class AscendDeviceAddress : public DeviceAddress {
@ -39,6 +42,10 @@ class AscendDeviceAddress : public DeviceAddress {
#ifdef ENABLE_DUMP_E2E #ifdef ENABLE_DUMP_E2E
bool DumpMemToFile(bool dump_mode, const std::string &filepath, const std::string &host_fmt, bool DumpMemToFile(bool dump_mode, const std::string &filepath, const std::string &host_fmt,
const std::vector<int> &host_shape, TypeId host_type) const; const std::vector<int> &host_shape, TypeId host_type) const;
#endif
#ifdef ENABLE_DEBUGGER
bool LoadMemToHost(bool dump_mode, const std::string &tensor_name, int execution_order, const std::string &host_fmt,
const std::vector<int> &host_shape, TypeId host_type, size_t slot, Debugger *debugger) const;
#endif #endif
private: private:
bool SyncDeviceToHostAndConvertFormat(const std::vector<int> &shape, size_t size, TypeId type, void *host_ptr) const; bool SyncDeviceToHostAndConvertFormat(const std::vector<int> &shape, size_t size, TypeId type, void *host_ptr) const;

View File

@ -41,6 +41,7 @@
#include "kernel/tbe/tbe_python_funcs.h" #include "kernel/tbe/tbe_python_funcs.h"
#include "pre_activate/mem_reuse/mem_reuse_checker.h" #include "pre_activate/mem_reuse/mem_reuse_checker.h"
#include "device/ascend/ascend_memory_manager.h" #include "device/ascend/ascend_memory_manager.h"
#include "debug/tensor_load.h"
using mindspore::device::ascend::ProfilingManager; using mindspore::device::ascend::ProfilingManager;
using mindspore::device::ascend::ProfilingUtils; using mindspore::device::ascend::ProfilingUtils;
@ -293,6 +294,91 @@ bool AscendKernelRuntime::DumpData(mindspore::session::KernelGraph *graph) {
return true; return true;
} }
#ifdef ENABLE_DEBUGGER
namespace {
void LoadOutput(mindspore::session::KernelGraph *graph, Debugger *debugger) {
MS_EXCEPTION_IF_NULL(graph);
bool trans_flag = false;
const auto &apply_kernels = graph->execution_order();
// for kernels, execution order starts from 1
int exec_order = 1;
for (const auto &node : apply_kernels) {
MS_EXCEPTION_IF_NULL(node);
auto node_name = AnfAlgo::GetCNodeName(node);
std::string kernel_name = node->fullname_with_scope();
auto output_size = AnfAlgo::GetOutputTensorNum(node);
for (size_t j = 0; j < output_size; ++j) {
auto addr = AnfAlgo::GetOutputAddr(node, j);
auto type = AnfAlgo::GetOutputInferDataType(node, j);
auto format = kOpFormat_DEFAULT;
string tensor_name = kernel_name + ':' + std::to_string(j);
auto ascend_addr = dynamic_cast<const mindspore::device::ascend::AscendDeviceAddress *>(addr);
std::vector<int> int_shapes;
if (trans_flag) {
int_shapes = trans::GetRuntimePaddingShape(node, j);
} else {
auto shape = AnfAlgo::GetOutputDeviceShape(node, j);
(void)std::transform(shape.begin(), shape.end(), std::back_inserter(int_shapes),
[](size_t inner_item) { return SizeToInt(inner_item); });
}
auto ret = ascend_addr->LoadMemToHost(trans_flag, tensor_name, exec_order, format, int_shapes, type, j, debugger);
if (!ret) {
MS_LOG(ERROR) << "LoadMemToHost: flag:" << trans_flag << ", tensor_name:" << tensor_name
<< ", host_format:" << format << ".!";
}
}
exec_order = exec_order + 1;
}
}
void LoadParameters(mindspore::session::KernelGraph *graph, Debugger *debugger) {
MS_EXCEPTION_IF_NULL(graph);
bool trans_flag = false;
const auto &parameters = graph->inputs();
// for parameters, set its execution order to be 0;
int exec_order = 0;
for (auto &item : parameters) {
if (!item->isa<Parameter>()) {
continue;
}
std::string parameter_name = item->fullname_with_scope();
auto addr = AnfAlgo::GetOutputAddr(item, PRAMATER_OUTPUT_INDEX);
auto type = AnfAlgo::GetOutputInferDataType(item, PRAMATER_OUTPUT_INDEX);
auto format = kOpFormat_DEFAULT;
string tensor_name = parameter_name + ':' + "0";
auto ascend_addr = dynamic_cast<const mindspore::device::ascend::AscendDeviceAddress *>(addr);
std::vector<int> int_shapes;
if (trans_flag) {
int_shapes = trans::GetRuntimePaddingShape(item, PRAMATER_OUTPUT_INDEX);
} else {
auto shape = AnfAlgo::GetOutputDeviceShape(item, PRAMATER_OUTPUT_INDEX);
(void)std::transform(shape.begin(), shape.end(), std::back_inserter(int_shapes),
[](size_t inner_item) { return SizeToInt(inner_item); });
}
auto ret = ascend_addr->LoadMemToHost(trans_flag, tensor_name, exec_order, format, int_shapes, type, 0, debugger);
if (!ret) {
MS_LOG(ERROR) << "LoadMemToHost Failed: flag:" << trans_flag << ", path:" << tensor_name
<< ", host_format:" << format << ".!";
}
}
}
} // namespace
#endif
bool AscendKernelRuntime::LoadData(mindspore::session::KernelGraph *graph, Debugger *debugger) {
MS_EXCEPTION_IF_NULL(graph);
#ifdef ENABLE_DEBUGGER
MS_LOG(INFO) << "start load step";
uint32_t cur_iter = 0;
MS_LOG(INFO) << "cur iter is " << cur_iter;
// load output
LoadOutput(graph, debugger);
// load parameters
LoadParameters(graph, debugger);
#endif
return true;
}
bool AscendKernelRuntime::NodeOutputDeviceAddressExist(const AnfNodePtr &kernel, size_t index) { bool AscendKernelRuntime::NodeOutputDeviceAddressExist(const AnfNodePtr &kernel, size_t index) {
if (AnfAlgo::OutputAddrExist(kernel, index)) { if (AnfAlgo::OutputAddrExist(kernel, index)) {
auto address = AnfAlgo::GetOutputAddr(kernel, index); auto address = AnfAlgo::GetOutputAddr(kernel, index);

View File

@ -37,6 +37,7 @@ class AscendKernelRuntime : public KernelRuntime {
~AscendKernelRuntime() override; ~AscendKernelRuntime() override;
bool Init() override; bool Init() override;
bool DumpData(session::KernelGraph *graph) override; bool DumpData(session::KernelGraph *graph) override;
bool LoadData(session::KernelGraph *graph, Debugger *debugger) override;
bool GenTask(const session::KernelGraph *graph) override; bool GenTask(const session::KernelGraph *graph) override;
bool RunTask(const session::KernelGraph *graph) override; bool RunTask(const session::KernelGraph *graph) override;
bool LoadTask(const session::KernelGraph *graph) override; bool LoadTask(const session::KernelGraph *graph) override;

View File

@ -79,6 +79,14 @@ bool KernelRuntime::DumpData(mindspore::session::KernelGraph *graph) {
return false; return false;
} }
// for D to impl
bool KernelRuntime::LoadData(mindspore::session::KernelGraph *graph, Debugger *debugger) {
if (graph != nullptr) {
return true;
}
return false;
}
// for D to impl // for D to impl
bool KernelRuntime::GenTask(const session::KernelGraph *graph) { bool KernelRuntime::GenTask(const session::KernelGraph *graph) {
if (graph != nullptr) { if (graph != nullptr) {

View File

@ -27,6 +27,9 @@
#ifdef ENABLE_DUMP_E2E #ifdef ENABLE_DUMP_E2E
#include "debug/e2e_dump.h" #include "debug/e2e_dump.h"
#endif #endif
#ifdef ENABLE_DEBUGGER
#include "debug/debugger/debugger.h"
#endif
#include "session/kernel_graph.h" #include "session/kernel_graph.h"
#include "session/anf_runtime_algorithm.h" #include "session/anf_runtime_algorithm.h"
#include "kernel/kernel.h" #include "kernel/kernel.h"
@ -34,11 +37,15 @@
#include "device/memory_manager.h" #include "device/memory_manager.h"
using mindspore::tensor::Tensor; using mindspore::tensor::Tensor;
using std::vector;
using TensorPtr = std::shared_ptr<Tensor>; using TensorPtr = std::shared_ptr<Tensor>;
using mindspore::kernel::AddressPtr; using mindspore::kernel::AddressPtr;
using AddressPtrList = std::vector<mindspore::kernel::AddressPtr>; using AddressPtrList = std::vector<mindspore::kernel::AddressPtr>;
namespace mindspore { namespace mindspore {
#ifndef ENABLE_DEBUGGER
class Debugger;
#endif
namespace device { namespace device {
class KernelRuntime { class KernelRuntime {
public: public:
@ -50,6 +57,7 @@ class KernelRuntime {
void RunOpClearMemory(session::KernelGraph *graph); void RunOpClearMemory(session::KernelGraph *graph);
virtual bool Run(session::KernelGraph *graph); virtual bool Run(session::KernelGraph *graph);
virtual bool DumpData(session::KernelGraph *graph); virtual bool DumpData(session::KernelGraph *graph);
virtual bool LoadData(session::KernelGraph *graph, Debugger *debugger);
virtual bool RunTask(const session::KernelGraph *graph); virtual bool RunTask(const session::KernelGraph *graph);
virtual bool GenTask(const session::KernelGraph *graph); virtual bool GenTask(const session::KernelGraph *graph);
bool LaunchKernel(const session::KernelGraph *graph); bool LaunchKernel(const session::KernelGraph *graph);

View File

@ -0,0 +1,50 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "kernel/cpu/debug_cpu_kernel.h"
#include "device/cpu/cpu_device_address.h"
#include "common/utils.h"
#ifdef ENABLE_DEBUGGER
#include "debug/debugger/debugger.h"
#endif
namespace mindspore {
namespace kernel {
void DebugCPUKernel::InitKernel(const CNodePtr &kernel_node) { MS_EXCEPTION_IF_NULL(kernel_node); }
bool DebugCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs,
const std::vector<kernel::AddressPtr> & /*workspace*/,
const std::vector<kernel::AddressPtr> &outputs) {
if (inputs.size() < 1 || outputs.empty()) {
MS_LOG(EXCEPTION) << " input or output empty!";
}
auto val = reinterpret_cast<float *>(inputs[0]->addr);
MS_LOG(DEBUG) << " launch DebugCountCPUKernel val " << *val;
auto output = reinterpret_cast<int *>(outputs[0]->addr);
size_t elem_num = inputs[0]->size / sizeof(int);
for (size_t i = 0; i < elem_num; i++) {
output[i] = val[i];
}
#ifdef ENABLE_DEBUGGER
// debugger will suspend execution is neccessary
Debugger::GetInstance()->PostDebugOp();
#endif
return true;
}
} // namespace kernel
} // namespace mindspore

View File

@ -0,0 +1,41 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_KERNEL_CPU_DEBUG_CPU_KERNEL_H_
#define MINDSPORE_CCSRC_KERNEL_CPU_DEBUG_CPU_KERNEL_H_
#include <vector>
#include <memory>
#include "kernel/cpu/cpu_kernel.h"
#include "kernel/cpu/cpu_kernel_factory.h"
namespace mindspore {
namespace kernel {
class DebugCPUKernel : public CPUKernel {
public:
DebugCPUKernel() = default;
~DebugCPUKernel() override = default;
void InitKernel(const CNodePtr &kernel_node) override;
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
const std::vector<AddressPtr> &outputs) override;
};
MS_REG_CPU_KERNEL(Debug, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeInt32), DebugCPUKernel);
} // namespace kernel
} // namespace mindspore
#endif // MINDSPORE_CCSRC_KERNEL_CPU_DEBUG_CPU_KERNEL_H_

View File

@ -275,5 +275,6 @@ const PrimitivePtr kPrimScalarSummary = std::make_shared<Primitive>("ScalarSumma
const PrimitivePtr kPrimImageSummary = std::make_shared<Primitive>("ImageSummary"); const PrimitivePtr kPrimImageSummary = std::make_shared<Primitive>("ImageSummary");
const PrimitivePtr kPrimTensorSummary = std::make_shared<Primitive>("TensorSummary"); const PrimitivePtr kPrimTensorSummary = std::make_shared<Primitive>("TensorSummary");
const PrimitivePtr kPrimHistogramSummary = std::make_shared<Primitive>("HistogramSummary"); const PrimitivePtr kPrimHistogramSummary = std::make_shared<Primitive>("HistogramSummary");
const PrimitivePtr kPrimDebug = std::make_shared<Primitive>("Debug");
} // namespace prim } // namespace prim
} // namespace mindspore } // namespace mindspore

View File

@ -276,6 +276,7 @@ extern const PrimitivePtr kPrimNotInDict;
extern const PrimitivePtr kPrimMixedPrecisionCast; extern const PrimitivePtr kPrimMixedPrecisionCast;
extern const PrimitivePtr kPrimIsConsant; extern const PrimitivePtr kPrimIsConsant;
extern const PrimitivePtr kPrimEquivFormat; extern const PrimitivePtr kPrimEquivFormat;
extern const PrimitivePtr kPrimDebug;
// Comm ops // Comm ops
extern const PrimitivePtr kPrimAllReduce; extern const PrimitivePtr kPrimAllReduce;

View File

@ -21,5 +21,21 @@
#include "utils/symbolic.h" #include "utils/symbolic.h"
namespace mindspore { namespace mindspore {
namespace abstract {} // namespace abstract namespace abstract {
AbstractBasePtr InferImplDebug(const AnalysisEnginePtr &, const PrimitivePtr &primitive,
const AbstractBasePtrList &args_spec_list) {
// Inputs: a tensor(value)
const std::string op_name = primitive->name();
CheckArgsSize(op_name, args_spec_list, 1);
auto tensor_value = CheckArg<AbstractTensor>(op_name, args_spec_list, 0);
int tensor_rank = SizeToInt(tensor_value->shape()->shape().size());
if (tensor_rank == 0) {
MS_LOG(EXCEPTION) << op_name << " summary evaluator second arg should be an tensor, but got a scalar, rank is 0";
}
return std::make_shared<AbstractTuple>(AbstractBasePtrList({tensor_value->Broaden()}));
}
} // namespace abstract
} // namespace mindspore } // namespace mindspore

View File

@ -66,6 +66,7 @@ const std::set<std::string> BLACK_LIST = {TUPLE_GETITEM,
SCALARSUMMARY, SCALARSUMMARY,
IMAGESUMMARY, IMAGESUMMARY,
TENSORSUMMARY, TENSORSUMMARY,
DEBUG,
HISTOGRAMSUMMARY, HISTOGRAMSUMMARY,
COL2IMV1, COL2IMV1,
RESOLVE, RESOLVE,

View File

@ -269,6 +269,7 @@ constexpr char SCALARSUMMARY[] = "ScalarSummary";
constexpr char IMAGESUMMARY[] = "ImageSummary"; constexpr char IMAGESUMMARY[] = "ImageSummary";
constexpr char TENSORSUMMARY[] = "TensorSummary"; constexpr char TENSORSUMMARY[] = "TensorSummary";
constexpr char HISTOGRAMSUMMARY[] = "HistogramSummary"; constexpr char HISTOGRAMSUMMARY[] = "HistogramSummary";
constexpr char DEBUG[] = "Debug";
constexpr char BROADCASTGRADIENTARGS[] = "BroadcastGradientArgs"; constexpr char BROADCASTGRADIENTARGS[] = "BroadcastGradientArgs";
constexpr char INVERTPERMUTATION[] = "InvertPermutation"; constexpr char INVERTPERMUTATION[] = "InvertPermutation";
constexpr char CONTROLDEPEND[] = "ControlDepend"; constexpr char CONTROLDEPEND[] = "ControlDepend";

View File

@ -445,7 +445,10 @@ bool ExecutorPy::CompileInner(const py::object &obj, const py::tuple &args, cons
std::string backend = MsContext::GetInstance()->backend_policy(); std::string backend = MsContext::GetInstance()->backend_policy();
if (use_vm && backend != "ge") { if (use_vm && backend != "ge") {
// Create backend and session // Create backend and session
resource->results()[kBackend] = compile::CreateBackend(); auto backend_ptr = compile::CreateBackend();
// Connect session to debugger
backend_ptr->SetDebugger();
resource->results()[kBackend] = backend_ptr;
p_actions = VmPipeline(); p_actions = VmPipeline();
} else { } else {
p_actions = GePipeline(); p_actions = GePipeline();

View File

@ -130,6 +130,8 @@ PrimitiveEvalImplMap &GetPrimitiveToEvalImplMap() {
{prim::kPrimDepend, {InferImplDepend, true}}, {prim::kPrimDepend, {InferImplDepend, true}},
{prim::kPrimBroadcastGradientArgs, {InferImplBroadcastGradientArgs, false}}, {prim::kPrimBroadcastGradientArgs, {InferImplBroadcastGradientArgs, false}},
{prim::kPrimControlDepend, {InferImplControlDepend, true}}, {prim::kPrimControlDepend, {InferImplControlDepend, true}},
// Debug
{prim::kPrimDebug, {InferImplDebug, true}},
}; };
return prim_eval_implement_map; return prim_eval_implement_map;
} }

View File

@ -346,6 +346,9 @@ AbstractBasePtr InferImplBroadcastGradientArgs(const AnalysisEnginePtr &, const
const AbstractBasePtrList &args_spec_list); const AbstractBasePtrList &args_spec_list);
AbstractBasePtr InferImplControlDepend(const AnalysisEnginePtr &, const PrimitivePtr &primitive, AbstractBasePtr InferImplControlDepend(const AnalysisEnginePtr &, const PrimitivePtr &primitive,
const AbstractBasePtrList &args_spec_list); const AbstractBasePtrList &args_spec_list);
AbstractBasePtr InferImplDebug(const AnalysisEnginePtr &, const PrimitivePtr &primitive,
const AbstractBasePtrList &args_spec_list);
} // namespace abstract } // namespace abstract
} // namespace mindspore } // namespace mindspore

View File

@ -18,6 +18,7 @@
#include <map> #include <map>
#include <tuple> #include <tuple>
#include <set> #include <set>
#include <string>
#include <list> #include <list>
#include "operator/ops.h" #include "operator/ops.h"
#include "ir/tensor.h" #include "ir/tensor.h"
@ -45,6 +46,7 @@
#include "kernel/tbe/tbe_python_funcs.h" #include "kernel/tbe/tbe_python_funcs.h"
#include "utils/config_manager.h" #include "utils/config_manager.h"
#include "utils/base_ref_extends.h" #include "utils/base_ref_extends.h"
#include "debug/tensor_load.h"
namespace mindspore { namespace mindspore {
namespace session { namespace session {
@ -450,6 +452,12 @@ void AscendSession::RunGraph(const GraphId &graph_id, const std::vector<tensor::
LoadInputData(kernel_graph, inputs); LoadInputData(kernel_graph, inputs);
// convert inputs to model // convert inputs to model
predictmodel::StepConvertWeight(inputs); predictmodel::StepConvertWeight(inputs);
#ifdef ENABLE_DEBUGGER
// debugger pre-execution processing
if (debugger_) {
debugger_->PreExecute(kernel_graph);
}
#endif
{ {
py::gil_scoped_release release; py::gil_scoped_release release;
// run task on device // run task on device
@ -459,8 +467,20 @@ void AscendSession::RunGraph(const GraphId &graph_id, const std::vector<tensor::
UpdateOutputs(kernel_graph, outputs, inputs); UpdateOutputs(kernel_graph, outputs, inputs);
// summary // summary
Summary(kernel_graph.get()); Summary(kernel_graph.get());
#ifdef ENABLE_DEBUGGER
// load tensor from device for debugger
if (debugger_ && debugger_->debugger_enabled()) {
LoadTensor(kernel_graph);
}
#endif
// dump used for debug // dump used for debug
Dump(kernel_graph); Dump(kernel_graph);
#ifdef ENABLE_DEBUGGER
// debugger post-execution processing
if (debugger_) {
debugger_->PostExecute();
}
#endif
MS_LOG(INFO) << "Finish!"; MS_LOG(INFO) << "Finish!";
} }
@ -757,6 +777,22 @@ void AscendSession::ExportChildGraphs(const GraphId graph_id) {
#endif #endif
} }
void AscendSession::LoadTensor(const std::shared_ptr<KernelGraph> &kernel_graph) const {
MS_LOG(INFO) << "Start!";
MS_EXCEPTION_IF_NULL(kernel_graph);
#ifdef ENABLE_DEBUGGER
auto runtime_instance = device::KernelRuntimeManager::Instance().GetKernelRuntime(kAscendDevice, device_id_);
MS_EXCEPTION_IF_NULL(runtime_instance);
DebugServices *debug_services = debugger_->get_debug_services();
TensorLoader *tensor_loader = debug_services->get_tensor_loader();
tensor_loader->EmptyTensor();
uint32_t iter_num = tensor_loader->GetIterNum();
tensor_loader->set_iter_num(++iter_num);
(void)runtime_instance->LoadData(kernel_graph.get(), debugger_.get());
#endif
MS_LOG(INFO) << "Finish!";
}
GraphId AscendSession::SetFinalGraphInput(const std::vector<AnfNodePtr> &args) { GraphId AscendSession::SetFinalGraphInput(const std::vector<AnfNodePtr> &args) {
MS_LOG(INFO) << "Start! Args size " << args.size(); MS_LOG(INFO) << "Start! Args size " << args.size();
auto final_graph = NewKernelGraph(); auto final_graph = NewKernelGraph();

View File

@ -87,6 +87,7 @@ class AscendSession : public SessionBasic {
void ExecTask(const std::shared_ptr<KernelGraph> &kernel_graph) const; void ExecTask(const std::shared_ptr<KernelGraph> &kernel_graph) const;
void Dump(const std::shared_ptr<KernelGraph> &kernel_graph) const; void Dump(const std::shared_ptr<KernelGraph> &kernel_graph) const;
void ExportChildGraphs(const GraphId graph_id); void ExportChildGraphs(const GraphId graph_id);
void LoadTensor(const std::shared_ptr<KernelGraph> &kernel_graph) const;
// below functions are used for run op // below functions are used for run op
void RunOpHardwareOptimize(const std::shared_ptr<session::KernelGraph> &kernel_graph) const; void RunOpHardwareOptimize(const std::shared_ptr<session::KernelGraph> &kernel_graph) const;
void RunOpExecTask(const std::shared_ptr<KernelGraph> &kernel_graph) const; void RunOpExecTask(const std::shared_ptr<KernelGraph> &kernel_graph) const;

View File

@ -25,6 +25,9 @@
#include "predict/predict.h" #include "predict/predict.h"
#include "kernel/cpu/cpu_kernel_factory.h" #include "kernel/cpu/cpu_kernel_factory.h"
#include "device/cpu/kernel_select_cpu.h" #include "device/cpu/kernel_select_cpu.h"
#ifdef ENABLE_DEBUGGER
#include "debug/debugger/debugger.h"
#endif
namespace mindspore { namespace mindspore {
namespace session { namespace session {
@ -78,7 +81,12 @@ void CPUSession::RunGraph(const GraphId &graph_id, const std::vector<tensor::Ten
summary_outputs = kernel_graph->summary_nodes(); summary_outputs = kernel_graph->summary_nodes();
runtime_.IncreaseSummaryRefCount(summary_outputs); runtime_.IncreaseSummaryRefCount(summary_outputs);
} }
#ifdef ENABLE_DEBUGGER
// debugger pre-execution processing
if (debugger_) {
debugger_->PreExecute(kernel_graph);
}
#endif
bool ret = runtime_.Run(kernel_graph.get()); bool ret = runtime_.Run(kernel_graph.get());
if (!ret) { if (!ret) {
MS_LOG(EXCEPTION) << "Run graph failed"; MS_LOG(EXCEPTION) << "Run graph failed";
@ -92,6 +100,12 @@ void CPUSession::RunGraph(const GraphId &graph_id, const std::vector<tensor::Ten
runtime_.DecreaseSummaryRefCount(summary_outputs); runtime_.DecreaseSummaryRefCount(summary_outputs);
} }
#ifdef ENABLE_DEBUGGER
// debugger post-execution processing
if (debugger_) {
debugger_->PostExecute();
}
#endif
MS_LOG(INFO) << "Run graph end"; MS_LOG(INFO) << "Run graph end";
} }

View File

@ -32,6 +32,9 @@
#include "utils/contract.h" #include "utils/contract.h"
#include "pynative/pynative_execute.h" #include "pynative/pynative_execute.h"
#include "device/kernel_info.h" #include "device/kernel_info.h"
#ifdef ENABLE_DEBUGGER
#include "debug/debugger/debugger.h"
#endif
namespace mindspore { namespace mindspore {
using GraphId = uint32_t; using GraphId = uint32_t;
@ -48,7 +51,11 @@ using OpRunInfoPtr = std::shared_ptr<OpRunInfo>;
class SessionBasic { class SessionBasic {
public: public:
SessionBasic() : context_(nullptr), summary_callback_(nullptr), device_id_(0) {} SessionBasic() : context_(nullptr), summary_callback_(nullptr), device_id_(0) {
#ifdef ENABLE_DEBUGGER
debugger_ = nullptr;
#endif
}
virtual void Init(uint32_t device_id) { device_id_ = device_id; } virtual void Init(uint32_t device_id) { device_id_ = device_id; }
@ -92,6 +99,14 @@ class SessionBasic {
virtual void SetActive(GraphId, GraphId) {} virtual void SetActive(GraphId, GraphId) {}
virtual void GetSummaryNodes(KernelGraph *graph); virtual void GetSummaryNodes(KernelGraph *graph);
#ifdef ENABLE_DEBUGGER
// set debugger
void SetDebugger() {
debugger_ = Debugger::GetInstance();
debugger_->Init(device_id_);
}
#endif
protected: protected:
virtual void LoadInputData(const std::shared_ptr<KernelGraph> &kernel_graph, virtual void LoadInputData(const std::shared_ptr<KernelGraph> &kernel_graph,
const std::vector<tensor::TensorPtr> &inputs_const) const; const std::vector<tensor::TensorPtr> &inputs_const) const;
@ -123,6 +138,9 @@ class SessionBasic {
CallBackFunc summary_callback_; CallBackFunc summary_callback_;
static GraphId graph_sum_; static GraphId graph_sum_;
uint32_t device_id_; uint32_t device_id_;
#ifdef ENABLE_DEBUGGER
std::shared_ptr<Debugger> debugger_;
#endif
}; };
using SessionPtr = std::shared_ptr<session::SessionBasic>; using SessionPtr = std::shared_ptr<session::SessionBasic>;

View File

@ -371,6 +371,7 @@ std::unordered_map<std::string, OpAdapterDescPtr> &DfGraphConvertor::get_adpt_ma
{prim::kPrimImageSummary->name(), ADPT_DESC(Summary)}, {prim::kPrimImageSummary->name(), ADPT_DESC(Summary)},
{prim::kPrimTensorSummary->name(), ADPT_DESC(Summary)}, {prim::kPrimTensorSummary->name(), ADPT_DESC(Summary)},
{prim::kPrimHistogramSummary->name(), ADPT_DESC(Summary)}, {prim::kPrimHistogramSummary->name(), ADPT_DESC(Summary)},
{prim::kPrimDebug->name(), ADPT_DESC(Summary)},
{prim::kPrimTensorAdd->name(), {prim::kPrimTensorAdd->name(),
std::make_shared<OpAdapterDesc>(std::make_shared<OpAdapter<Add>>(ExtraAttr({{"mode", MakeValue(1)}})), std::make_shared<OpAdapterDesc>(std::make_shared<OpAdapter<Add>>(ExtraAttr({{"mode", MakeValue(1)}})),
std::make_shared<OpAdapter<Add>>(ExtraAttr({{"mode", MakeValue(1)}})))}, std::make_shared<OpAdapter<Add>>(ExtraAttr({{"mode", MakeValue(1)}})))},

View File

@ -69,7 +69,11 @@ MsContext::MsContext(const std::string &policy, const std::string &target) {
enable_task_sink_ = true; enable_task_sink_ = true;
ir_fusion_flag_ = true; ir_fusion_flag_ = true;
enable_hccl_ = false; enable_hccl_ = false;
#ifdef ENABLE_DEBUGGER
enable_mem_reuse_ = false;
#else
enable_mem_reuse_ = true; enable_mem_reuse_ = true;
#endif
enable_gpu_summary_ = true; enable_gpu_summary_ = true;
precompile_only_ = false; precompile_only_ = false;
auto_mixed_precision_flag_ = false; auto_mixed_precision_flag_ = false;

View File

@ -362,5 +362,9 @@ GraphId MsBackend::CompileGraph(NotNull<FuncGraphPtr> fg) { return target_sess_-
VectorRef MsBackend::RunGraph(GraphId graph_id, const VectorRef &args) { return MsRunGraph(graph_id, args); } VectorRef MsBackend::RunGraph(GraphId graph_id, const VectorRef &args) { return MsRunGraph(graph_id, args); }
#ifdef ENABLE_DEBUGGER
void MsBackend::SetDebugger() { target_sess_->SetDebugger(); }
#endif
} // namespace compile } // namespace compile
} // namespace mindspore } // namespace mindspore

View File

@ -69,6 +69,8 @@ class Backend {
bool is_switch_call() const { return is_switch_call_; } bool is_switch_call() const { return is_switch_call_; }
void set_simu_flag(bool simu) { simu_flag_ = simu; } void set_simu_flag(bool simu) { simu_flag_ = simu; }
virtual void SetDebugger() {}
protected: protected:
std::string name_; std::string name_;
LinkFuncType convert_fn_; LinkFuncType convert_fn_;
@ -109,6 +111,10 @@ class MsBackend : public Backend {
VectorRef RunGraph(GraphId graph_id, const VectorRef &args); VectorRef RunGraph(GraphId graph_id, const VectorRef &args);
void CreateOtherSession(const std::string &target); void CreateOtherSession(const std::string &target);
#ifdef ENABLE_DEBUGGER
void SetDebugger() override;
#endif
private: private:
session::SessionPtr target_sess_; session::SessionPtr target_sess_;
session::SessionPtr other_sess_; session::SessionPtr other_sess_;

View File

@ -66,3 +66,12 @@ def get_bprop_insert_gradient_of(self):
def bprop(x, out, dout): def bprop(x, out, dout):
return (f(dout),) return (f(dout),)
return bprop return bprop
@bprop_getters.register(P.Debug)
def get_bprop_debug(self):
"""Generate bprop for Debug"""
def bprop(x, out, dout):
return dout
return bprop

View File

@ -37,7 +37,7 @@ from .comm_ops import (AllGather, AllReduce, _AlltoAll, ReduceScatter, Broadcast
_VirtualDiv, _GetTensorSlice, _VirtualDiv, _GetTensorSlice,
HostAllGather, HostReduceScatter) HostAllGather, HostReduceScatter)
from .debug_ops import (ImageSummary, InsertGradientOf, HookBackward, ScalarSummary, from .debug_ops import (ImageSummary, InsertGradientOf, HookBackward, ScalarSummary,
TensorSummary, HistogramSummary, Print) TensorSummary, HistogramSummary, Debug, Print)
from .control_ops import ControlDepend, GeSwitch, Merge from .control_ops import ControlDepend, GeSwitch, Merge
from .inner_ops import ScalarCast from .inner_ops import ScalarCast
@ -173,6 +173,7 @@ __all__ = [
'ImageSummary', 'ImageSummary',
'TensorSummary', 'TensorSummary',
'HistogramSummary', 'HistogramSummary',
"Debug",
"Print", "Print",
'InsertGradientOf', 'InsertGradientOf',
'HookBackward', 'HookBackward',

View File

@ -17,7 +17,7 @@
from types import FunctionType, MethodType from types import FunctionType, MethodType
from ..._checkparam import Validator as validator from ..._checkparam import Validator as validator
from ...common import dtype as mstype from ...common import dtype as mstype
from ..primitive import prim_attr_register, PrimitiveWithInfer from ..primitive import prim_attr_register, PrimitiveWithInfer, Primitive
def _check_summary_param(name, value, class_name): def _check_summary_param(name, value, class_name):
@ -340,3 +340,29 @@ class Print(PrimitiveWithInfer):
for dtype in inputs: for dtype in inputs:
validator.check_subclass("input", dtype, (mstype.tensor, mstype.string), self.name) validator.check_subclass("input", dtype, (mstype.tensor, mstype.string), self.name)
return mstype.int32 return mstype.int32
class Debug(Primitive):
"""
Print tensor value.
Inputs:
- **value** (Tensor) - The value of tensor.
Examples:
>>> class DebugNN(nn.Cell):
>>> def __init__(self,):
>>> self.debug = nn.Debug()
>>>
>>> def construct(self, x, y):
>>> x = self.add(x, y)
>>> self.debug(x)
>>> return x
"""
@prim_attr_register
def __init__(self):
"""init"""
def __call__(self, *args, **kwargs):
pass

View File

@ -114,6 +114,12 @@ list(REMOVE_ITEM MINDSPORE_SRC_LIST "../../../mindspore/ccsrc/utils/node_strateg
list(REMOVE_ITEM MINDSPORE_SRC_LIST "../../../mindspore/ccsrc/utils/load_onnx/anf_model_parser.cc") list(REMOVE_ITEM MINDSPORE_SRC_LIST "../../../mindspore/ccsrc/utils/load_onnx/anf_model_parser.cc")
list(REMOVE_ITEM MINDSPORE_SRC_LIST "../../../mindspore/ccsrc/utils/load_onnx/anf_converter.cc") list(REMOVE_ITEM MINDSPORE_SRC_LIST "../../../mindspore/ccsrc/utils/load_onnx/anf_converter.cc")
# remove files for debugger
list(REMOVE_ITEM MINDSPORE_SRC_LIST "../../../mindspore/ccsrc/debug/debugger/debugger.cc")
list(REMOVE_ITEM MINDSPORE_SRC_LIST "../../../mindspore/ccsrc/debug/debugger/grpc_client.cc")
list(REMOVE_ITEM MINDSPORE_SRC_LIST "../../../mindspore/ccsrc/debug/debug_services.cc")
list(REMOVE_ITEM MINDSPORE_SRC_LIST "../../../mindspore/ccsrc/debug/debugger/proto_exporter.cc")
file(GLOB_RECURSE UT_SUTB_SRC_LIST RELATIVE ${CMAKE_CURRENT_SOURCE_DIR} file(GLOB_RECURSE UT_SUTB_SRC_LIST RELATIVE ${CMAKE_CURRENT_SOURCE_DIR}
"stub/aicpu/*.cc" "stub/aicpu/*.cc"
"stub/cce/*.cc" "stub/cce/*.cc"