!9204 Fixbug: modify API docs to make example executable
From: @lixiaohui33 Reviewed-by: @ouwenchang,@wuxuejian Signed-off-by: @wuxuejian
This commit is contained in:
commit
4638a0f378
|
@ -424,7 +424,7 @@ class Faithfulness(LabelSensitiveMetric):
|
|||
>>> res = faithfulness.evaluate(gradient, inputs, targets)
|
||||
>>> # usage 2: input the generated saliency map
|
||||
>>> saliency = gradient(inputs, targets)
|
||||
>>> res = faithfulenss.evaluate(gradient, inputs, targets, saliency)
|
||||
>>> res = faithfulness.evaluate(gradient, inputs, targets, saliency)
|
||||
"""
|
||||
|
||||
self._check_evaluate_param(explainer, inputs, targets, saliency)
|
||||
|
|
|
@ -110,10 +110,10 @@ class Localization(LabelSensitiveMetric):
|
|||
numpy.ndarray, 1D array of shape :math:`(N,)`, result of localization evaluated on `explainer`.
|
||||
|
||||
Examples:
|
||||
>>> # init an explainer, the network should contain the output activation function.
|
||||
>>> # init an explainer with a trained network
|
||||
>>> gradient = Gradient(network)
|
||||
>>> inputs = ms.Tensor(np.random.rand(1, 3, 224, 224), ms.float32)
|
||||
>>> masks = np.zeros(1, 1, 224, 224)
|
||||
>>> masks = np.zeros([1, 1, 224, 224])
|
||||
>>> masks[:, :, 65: 100, 65: 100] = 1
|
||||
>>> targets = 5
|
||||
>>> # usage 1: input the explainer and the data to be explained,
|
||||
|
|
|
@ -111,7 +111,7 @@ class GradCAM(IntermediateLayerAttribution):
|
|||
Tensor, a 4D tensor of shape :math:`(N, 1, H, W)`.
|
||||
|
||||
Examples:
|
||||
>>> inputs = ms.Tensor(np.random.rand([1, 3, 224, 224]), ms.float32)
|
||||
>>> inputs = ms.Tensor(np.random.rand(1, 3, 224, 224), ms.float32)
|
||||
>>> label = 5
|
||||
>>> # gradcam is a GradCAM object, parse data and the target label to be explained and get the attribution
|
||||
>>> saliency = gradcam(inputs, label)
|
||||
|
|
|
@ -89,7 +89,7 @@ class Gradient(Attribution):
|
|||
Tensor, a 4D tensor of shape :math:`(N, 1, H, W)`.
|
||||
|
||||
Examples:
|
||||
>>> inputs = ms.Tensor(np.random.rand([1, 3, 224, 224]), ms.float32)
|
||||
>>> inputs = ms.Tensor(np.random.rand(1, 3, 224, 224), ms.float32)
|
||||
>>> label = 5
|
||||
>>> # gradient is a Gradient object, parse data and the target label to be explained and get the attribution
|
||||
>>> saliency = gradient(inputs, label)
|
||||
|
|
|
@ -45,7 +45,7 @@ class ModifiedReLU(Gradient):
|
|||
Tensor, a 4D tensor of shape :math:`(N, 1, H, W)`.
|
||||
|
||||
Examples:
|
||||
>>> inputs = ms.Tensor(np.random.rand([1, 3, 224, 224]), ms.float32)
|
||||
>>> inputs = ms.Tensor(np.random.rand(1, 3, 224, 224), ms.float32)
|
||||
>>> label = 5
|
||||
>>> # explainer is a "Deconvolution" or "GuidedBackprop" object, parse data and the target label to be
|
||||
>>> # explained and get the attribution
|
||||
|
@ -104,7 +104,7 @@ class Deconvolution(ModifiedReLU):
|
|||
>>> # init Gradient with a trained network.
|
||||
>>> deconvolution = Deconvolution(net)
|
||||
>>> # parse data and the target label to be explained and get the saliency map
|
||||
>>> inputs = ms.Tensor(np.random.rand([1, 3, 224, 224]), ms.float32)
|
||||
>>> inputs = ms.Tensor(np.random.rand(1, 3, 224, 224), ms.float32)
|
||||
>>> label = 5
|
||||
>>> saliency = deconvolution(inputs, label)
|
||||
"""
|
||||
|
|
|
@ -76,7 +76,7 @@ class Occlusion(PerturbationAttribution):
|
|||
>>> param_dict = load_checkpoint("resnet50.ckpt")
|
||||
>>> load_param_into_net(network, param_dict)
|
||||
>>> occlusion = Occlusion(network)
|
||||
>>> x = Tensor(np.random.rand([1, 3, 224, 224]), ms.float32)
|
||||
>>> x = Tensor(np.random.rand(1, 3, 224, 224), ms.float32)
|
||||
>>> label = 1
|
||||
>>> saliency = occlusion(x, label)
|
||||
"""
|
||||
|
|
|
@ -114,14 +114,13 @@ class RISE(PerturbationAttribution):
|
|||
|
||||
Examples:
|
||||
>>> # given an instance of RISE, saliency map can be generate
|
||||
>>> inputs = ms.Tensor(np.random.rand([2, 3, 224, 224]), ms.float32)
|
||||
>>> inputs = ms.Tensor(np.random.rand(2, 3, 224, 224), ms.float32)
|
||||
>>> # when `targets` is an integer
|
||||
>>> targets = 5
|
||||
>>> saliency = rise(inputs, targets)
|
||||
>>> # `targets` can also be a tensor
|
||||
>>> targets = ms.Tensor([[5], [1]])
|
||||
>>> saliency = rise(inputs, targets)
|
||||
>>>
|
||||
"""
|
||||
self._verify_data(inputs, targets)
|
||||
height, width = inputs.shape[2], inputs.shape[3]
|
||||
|
|
Loading…
Reference in New Issue