deepfm network use mindrecord dataset
This commit is contained in:
parent
1a9f4625ed
commit
435a524f06
|
@ -0,0 +1,286 @@
|
|||
# 目录
|
||||
|
||||
<!-- TOC -->
|
||||
|
||||
- [目录](#目录)
|
||||
- [DeepFM概述](#deepfm概述)
|
||||
- [模型架构](#模型架构)
|
||||
- [数据集](#数据集)
|
||||
- [环境要求](#环境要求)
|
||||
- [快速入门](#快速入门)
|
||||
- [脚本说明](#脚本说明)
|
||||
- [脚本和样例代码](#脚本和样例代码)
|
||||
- [脚本参数](#脚本参数)
|
||||
- [训练过程](#训练过程)
|
||||
- [训练](#训练)
|
||||
- [分布式训练](#分布式训练)
|
||||
- [评估过程](#评估过程)
|
||||
- [评估](#评估)
|
||||
- [模型描述](#模型描述)
|
||||
- [性能](#性能)
|
||||
- [评估性能](#评估性能)
|
||||
- [推理性能](#推理性能)
|
||||
- [随机情况说明](#随机情况说明)
|
||||
- [ModelZoo主页](#modelzoo主页)
|
||||
|
||||
<!-- /TOC -->
|
||||
|
||||
## DeepFM概述
|
||||
|
||||
要想在推荐系统中实现最大点击率,学习用户行为背后复杂的特性交互十分重要。虽然已在这一领域取得很大进展,但高阶交互和低阶交互的方法差异明显,亟需专业的特征工程。本论文中,我们将会展示高阶和低阶交互的端到端学习模型的推导。本论文提出的模型DeepFM,结合了推荐系统中因子分解机和新神经网络架构中的深度特征学习。
|
||||
|
||||
[论文](https://arxiv.org/abs/1703.04247): Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, Xiuqiang He. DeepFM: A Factorization-Machine based Neural Network for CTR Prediction
|
||||
|
||||
## 模型架构
|
||||
|
||||
DeepFM由两部分组成。FM部分是一个因子分解机,用于学习推荐的特征交互;深度学习部分是一个前馈神经网络,用于学习高阶特征交互。
|
||||
FM和深度学习部分拥有相同的输入原样特征向量,让DeepFM能从输入原样特征中同时学习低阶和高阶特征交互。
|
||||
|
||||
## 数据集
|
||||
|
||||
- [1] A dataset used in Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, Xiuqiang He. DeepFM: A Factorization-Machine based Neural Network for CTR Prediction[J]. 2017.
|
||||
|
||||
## 环境要求
|
||||
|
||||
- 硬件(Ascend或GPU)
|
||||
- 使用Ascend或GPU处理器准备硬件环境。如需试用昇腾处理器,请发送[申请表](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx)至ascend@huawei.com,申请通过后,即可获得资源。
|
||||
- 框架
|
||||
- [MindSpore](https://www.mindspore.cn/install)
|
||||
- 如需查看详情,请参见如下资源:
|
||||
- [MindSpore教程](https://www.mindspore.cn/tutorial/training/zh-CN/master/index.html)
|
||||
- [MindSpore Python API](https://www.mindspore.cn/doc/api_python/zh-CN/master/index.html)
|
||||
|
||||
## 快速入门
|
||||
|
||||
通过官方网站安装MindSpore后,您可以按照如下步骤进行训练和评估:
|
||||
|
||||
- Ascend处理器环境运行
|
||||
|
||||
```训练示例
|
||||
# 运行训练示例
|
||||
python train.py \
|
||||
--dataset_path='dataset/train' \
|
||||
--ckpt_path='./checkpoint' \
|
||||
--eval_file_name='auc.log' \
|
||||
--loss_file_name='loss.log' \
|
||||
--device_target='Ascend' \
|
||||
--do_eval=True > ms_log/output.log 2>&1 &
|
||||
|
||||
# 运行分布式训练示例
|
||||
sh scripts/run_distribute_train.sh 8 /dataset_path /rank_table_8p.json
|
||||
|
||||
# 运行评估示例
|
||||
python eval.py \
|
||||
--dataset_path='dataset/test' \
|
||||
--checkpoint_path='./checkpoint/deepfm.ckpt' \
|
||||
--device_target='Ascend' > ms_log/eval_output.log 2>&1 &
|
||||
OR
|
||||
sh scripts/run_eval.sh 0 Ascend /dataset_path /checkpoint_path/deepfm.ckpt
|
||||
```
|
||||
|
||||
在分布式训练中,JSON格式的HCCL配置文件需要提前创建。
|
||||
|
||||
具体操作,参见:
|
||||
|
||||
<https://gitee.com/mindspore/mindspore/tree/master/model_zoo/utils/hccl_tools>.
|
||||
|
||||
- 在GPU上运行
|
||||
|
||||
如在GPU上运行,请配置文件src/config.py中的`device_target`从 `Ascend`改为`GPU`。
|
||||
|
||||
```训练示例
|
||||
# 运行训练示例
|
||||
python train.py \
|
||||
--dataset_path='dataset/train' \
|
||||
--ckpt_path='./checkpoint' \
|
||||
--eval_file_name='auc.log' \
|
||||
--loss_file_name='loss.log' \
|
||||
--device_target='GPU' \
|
||||
--do_eval=True > ms_log/output.log 2>&1 &
|
||||
|
||||
# 运行分布式训练示例
|
||||
sh scripts/run_distribute_train.sh 8 /dataset_path
|
||||
|
||||
# 运行评估示例
|
||||
python eval.py \
|
||||
--dataset_path='dataset/test' \
|
||||
--checkpoint_path='./checkpoint/deepfm.ckpt' \
|
||||
--device_target='GPU' > ms_log/eval_output.log 2>&1 &
|
||||
OR
|
||||
sh scripts/run_eval.sh 0 GPU /dataset_path /checkpoint_path/deepfm.ckpt
|
||||
```
|
||||
|
||||
## 脚本说明
|
||||
|
||||
## 脚本和样例代码
|
||||
|
||||
```deepfm
|
||||
.
|
||||
└─deepfm
|
||||
├─README.md
|
||||
├─mindspore_hub_conf.md # mindspore hub配置
|
||||
├─scripts
|
||||
├─run_standalone_train.sh # 在Ascend处理器或GPU上进行单机训练(单卡)
|
||||
├─run_distribute_train.sh # 在Ascend处理器上进行分布式训练(8卡)
|
||||
├─run_distribute_train_gpu.sh # 在GPU上进行分布式训练(8卡)
|
||||
└─run_eval.sh # 在Ascend处理器或GPU上进行评估
|
||||
├─src
|
||||
├─__init__.py # python init文件
|
||||
├─config.py # 参数配置
|
||||
├─callback.py # 定义回调功能
|
||||
├─deepfm.py # DeepFM网络
|
||||
├─dataset.py # 创建DeepFM数据集
|
||||
├─eval.py # 评估网络
|
||||
└─train.py # 训练网络
|
||||
```
|
||||
|
||||
## 脚本参数
|
||||
|
||||
在config.py中可以同时配置训练参数和评估参数。
|
||||
|
||||
- 训练参数。
|
||||
|
||||
```参数
|
||||
optional arguments:
|
||||
-h, --help show this help message and exit
|
||||
--dataset_path DATASET_PATH
|
||||
Dataset path
|
||||
--ckpt_path CKPT_PATH
|
||||
Checkpoint path
|
||||
--eval_file_name EVAL_FILE_NAME
|
||||
Auc log file path. Default: "./auc.log"
|
||||
--loss_file_name LOSS_FILE_NAME
|
||||
Loss log file path. Default: "./loss.log"
|
||||
--do_eval DO_EVAL Do evaluation or not. Default: True
|
||||
--device_target DEVICE_TARGET
|
||||
Ascend or GPU. Default: Ascend
|
||||
```
|
||||
|
||||
- 评估参数。
|
||||
|
||||
```参数
|
||||
optional arguments:
|
||||
-h, --help show this help message and exit
|
||||
--checkpoint_path CHECKPOINT_PATH
|
||||
Checkpoint file path
|
||||
--dataset_path DATASET_PATH
|
||||
Dataset path
|
||||
--device_target DEVICE_TARGET
|
||||
Ascend or GPU. Default: Ascend
|
||||
```
|
||||
|
||||
## 训练过程
|
||||
|
||||
### 训练
|
||||
|
||||
- Ascend处理器上运行
|
||||
|
||||
```运行命令
|
||||
python trin.py \
|
||||
--dataset_path='dataset/train' \
|
||||
--ckpt_path='./checkpoint' \
|
||||
--eval_file_name='auc.log' \
|
||||
--loss_file_name='loss.log' \
|
||||
--device_target='Ascend' \
|
||||
--do_eval=True > ms_log/output.log 2>&1 &
|
||||
```
|
||||
|
||||
上述python命令将在后台运行,您可以通过`ms_log/output.log`文件查看结果。
|
||||
|
||||
训练结束后, 您可在默认文件夹`./checkpoint`中找到检查点文件。损失值保存在loss.log文件中。
|
||||
|
||||
```运行结果
|
||||
2020-05-27 15:26:29 epoch: 1 step: 41257, loss is 0.498953253030777
|
||||
2020-05-27 15:32:32 epoch: 2 step: 41257, loss is 0.45545706152915955
|
||||
...
|
||||
```
|
||||
|
||||
模型检查点将会储存在当前路径。
|
||||
|
||||
- GPU上运行
|
||||
待运行。
|
||||
|
||||
### 分布式训练
|
||||
|
||||
- Ascend处理器上运行
|
||||
|
||||
```运行命令
|
||||
sh scripts/run_distribute_train.sh 8 /dataset_path /rank_table_8p.json
|
||||
```
|
||||
|
||||
上述shell脚本将在后台运行分布式训练。请在`log[X]/output.log`文件中查看结果。损失值保存在loss.log文件中。
|
||||
|
||||
- GPU上运行
|
||||
待运行。
|
||||
|
||||
## 评估过程
|
||||
|
||||
### 评估
|
||||
|
||||
- Ascend处理器上运行时评估数据集
|
||||
|
||||
在运行以下命令之前,请检查用于评估的检查点路径。
|
||||
|
||||
```命令
|
||||
python eval.py \
|
||||
--dataset_path='dataset/test' \
|
||||
--checkpoint_path='./checkpoint/deepfm.ckpt' \
|
||||
--device_target='Ascend' > ms_log/eval_output.log 2>&1 &
|
||||
OR
|
||||
sh scripts/run_eval.sh 0 Ascend /dataset_path /checkpoint_path/deepfm.ckpt
|
||||
```
|
||||
|
||||
上述python命令将在后台运行,请在eval_output.log路径下查看结果。准确率保存在auc.log文件中。
|
||||
|
||||
```结果
|
||||
{'result': {'AUC': 0.8057789065281104, 'eval_time': 35.64779996871948}}
|
||||
```
|
||||
|
||||
- 在GPU运行时评估数据集
|
||||
待运行。
|
||||
|
||||
## 模型描述
|
||||
|
||||
## 性能
|
||||
|
||||
### 评估性能
|
||||
|
||||
| 参数 | Ascend | GPU |
|
||||
| -------------------------- | ----------------------------------------------------------- | ---------------------- |
|
||||
| 模型版本 | DeepFM | 待运行 |
|
||||
| 资源 | Ascend 910;CPU 2.60GHz,192核;内存:755G | 待运行 |
|
||||
| 上传日期 | 2020-05-17 | 待运行 |
|
||||
| MindSpore版本 | 0.3.0-alpha | 待运行 |
|
||||
| 数据集 | [1] | 待运行 |
|
||||
| 训练参数 | epoch=15, batch_size=1000, lr=1e-5 | 待运行 |
|
||||
| 优化器 | Adam | 待运行 |
|
||||
| 损失函数 | Sigmoid Cross Entropy With Logits | 待运行 |
|
||||
| 输出 | 准确率 | 待运行 |
|
||||
| 损失 | 0.45 | 待运行 |
|
||||
| 速度| 单卡:8.16毫秒/步; | 待运行 |
|
||||
| 总时长| 单卡:90 分钟; | 待运行 |
|
||||
| 参数(M) | 16.5 | 待运行 |
|
||||
| 微调检查点 | 190M (.ckpt 文件) | 待运行 |
|
||||
| 脚本 | [DeepFM脚本](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/recommend/deepfm) | 待运行 |
|
||||
|
||||
### 推理性能
|
||||
|
||||
| 参数 | Ascend | GPU |
|
||||
| ------------------- | --------------------------- | --------------------------- |
|
||||
| 模型版本 | DeepFM | 待运行 |
|
||||
| 资源 | Ascend 910 | 待运行 |
|
||||
| 上传日期 | 2020-05-27 | 待运行 |
|
||||
| MindSpore版本 | 0.3.0-alpha | 待运行 |
|
||||
| 数据集 | [1] | 待运行 |
|
||||
| batch_size | 1000 | 待运行 |
|
||||
| 输出 | 准确率 | 待运行 |
|
||||
| 准确率| 单卡:80.55%; |待运行 |
|
||||
| 推理模型 | 190M (.ckpt文件) | 待运行 |
|
||||
|
||||
## 随机情况说明
|
||||
|
||||
在train.py.中训练之前设置随机种子。
|
||||
|
||||
## ModelZoo主页
|
||||
|
||||
请浏览官网[主页](https://gitee.com/mindspore/mindspore/tree/master/model_zoo)。
|
|
@ -27,7 +27,7 @@ class DataConfig:
|
|||
batch_size = 16000
|
||||
data_field_size = 39
|
||||
# dataset format, 1: mindrecord, 2: tfrecord, 3: h5
|
||||
data_format = 3
|
||||
data_format = 1
|
||||
|
||||
|
||||
class ModelConfig:
|
||||
|
|
|
@ -14,7 +14,7 @@
|
|||
# ============================================================================
|
||||
"""train_criteo."""
|
||||
import os
|
||||
# import pytest
|
||||
import pytest
|
||||
|
||||
from mindspore import context
|
||||
from mindspore.train.model import Model
|
||||
|
@ -27,10 +27,10 @@ from src.callback import EvalCallBack, LossCallBack, TimeMonitor
|
|||
|
||||
set_seed(1)
|
||||
|
||||
# @pytest.mark.level0
|
||||
# @pytest.mark.platform_arm_ascend_training
|
||||
# @pytest.mark.platform_x86_ascend_training
|
||||
# @pytest.mark.env_onecard
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_deepfm():
|
||||
data_config = DataConfig()
|
||||
train_config = TrainConfig()
|
||||
|
@ -39,7 +39,7 @@ def test_deepfm():
|
|||
rank_size = None
|
||||
rank_id = None
|
||||
|
||||
dataset_path = "/home/workspace/mindspore_dataset/criteo_data/criteo_h5/"
|
||||
dataset_path = "/home/workspace/mindspore_dataset/criteo_data/mindrecord/"
|
||||
print("dataset_path:", dataset_path)
|
||||
ds_train = create_dataset(dataset_path,
|
||||
train_mode=True,
|
||||
|
@ -71,10 +71,10 @@ def test_deepfm():
|
|||
print("train_config.train_epochs:", train_config.train_epochs)
|
||||
model.train(train_config.train_epochs, ds_train, callbacks=callback_list)
|
||||
|
||||
export_loss_value = 0.51
|
||||
export_loss_value = 0.52
|
||||
print("loss_callback.loss:", loss_callback.loss)
|
||||
assert loss_callback.loss < export_loss_value
|
||||
export_per_step_time = 40.0
|
||||
export_per_step_time = 30.0
|
||||
print("time_callback:", time_callback.per_step_time)
|
||||
assert time_callback.per_step_time < export_per_step_time
|
||||
print("*******test case pass!********")
|
||||
|
|
Loading…
Reference in New Issue