!18031 ascend 310 inference for fcn8s

Merge pull request !18031 from 于振华/fcn8s_master
This commit is contained in:
i-robot 2021-06-11 10:01:44 +08:00 committed by Gitee
commit 26aebfba20
10 changed files with 709 additions and 1 deletions

View File

@ -12,6 +12,10 @@
- [训练](#训练)
- [评估步骤](#评估步骤)
- [评估](#评估)
- [导出过程](#导出过程)
- [导出](#导出)
- [推理过程](#推理过程)
- [推理](#推理)
- [模型介绍](#模型介绍)
- [性能](#性能)
- [评估性能](#评估性能)
@ -71,10 +75,12 @@ Dataset used:
├── README.md // descriptions about all the models
├── FCN8s
├── README.md // descriptions about FCN
├── ascend310_infer // 实现310推理源代码
├── scripts
├── run_train.sh
├── run_standalone_train.sh
├── run_eval.sh
├── run_infer_310.sh // Ascend推理shell脚本
├── build_data.sh
├── src
│ ├──data
@ -93,6 +99,8 @@ Dataset used:
│ ├──moxing_adapter.py // Decorator
├── default_config.yaml // Parameters config
├── train.py // training script
├── postprogress.py // 310推理后处理脚本
├── export.py // 将checkpoint文件导出到air/mindir
├── eval.py // evaluation script
```
@ -271,6 +279,33 @@ Dataset used:
mean IoU 0.6467
```
## 导出过程
### 导出
在导出之前需要修改default_config.yaml配置文件中的ckpt_file配置项file_name和file_format配置项根据情况修改.
```shell
python export.py
```
## 推理过程
### 推理
在还行推理之前我们需要先导出模型。Air模型只能在昇腾910环境上导出mindir可以在任意环境上导出。batch_size只支持1。
```shell
# Ascend310 inference
bash run_infer_310.sh [MINDIR_PATH] [DATA_LIST_FILE] [IMAGE_PATH] [MASK_PATH] [DEVICE_ID]
```
推理的结果保存在当前目录下在acc.log日志文件中可以找到类似以下的结果。
```python
mean IoU 0.0.64519877
```
# [模型介绍](#contents)
## [性能](#contents)

View File

@ -0,0 +1,14 @@
cmake_minimum_required(VERSION 3.14.1)
project(Ascend310Infer)
add_compile_definitions(_GLIBCXX_USE_CXX11_ABI=0)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -O0 -g -std=c++17 -Werror -Wall -fPIE -Wl,--allow-shlib-undefined")
set(PROJECT_SRC_ROOT ${CMAKE_CURRENT_LIST_DIR}/)
option(MINDSPORE_PATH "mindspore install path" "")
include_directories(${MINDSPORE_PATH})
include_directories(${MINDSPORE_PATH}/include)
include_directories(${PROJECT_SRC_ROOT})
find_library(MS_LIB libmindspore.so ${MINDSPORE_PATH}/lib)
file(GLOB_RECURSE MD_LIB ${MINDSPORE_PATH}/_c_dataengine*)
add_executable(main src/main.cc src/utils.cc)
target_link_libraries(main ${MS_LIB} ${MD_LIB} gflags)

View File

@ -0,0 +1,29 @@
#!/bin/bash
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
if [ -d out ]; then
rm -rf out
fi
mkdir out
cd out || exit
if [ -f "Makefile" ]; then
make clean
fi
cmake .. \
-DMINDSPORE_PATH="`pip3.7 show mindspore-ascend | grep Location | awk '{print $2"/mindspore"}' | xargs realpath`"
make

View File

@ -0,0 +1,33 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_INFERENCE_UTILS_H_
#define MINDSPORE_INFERENCE_UTILS_H_
#include <sys/stat.h>
#include <dirent.h>
#include <vector>
#include <string>
#include <memory>
#include "include/api/types.h"
std::vector<std::string> GetAllFiles(std::string_view dirName);
std::vector<std::string> GetImagesById(const std::string &idFIle, const std::string &dirName);
DIR *OpenDir(std::string_view dirName);
std::string RealPath(std::string_view path);
mindspore::MSTensor ReadFileToTensor(const std::string &file);
int WriteResult(const std::string& imageFile, const std::vector<mindspore::MSTensor> &outputs);
#endif

View File

@ -0,0 +1,223 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <sys/time.h>
#include <gflags/gflags.h>
#include <dirent.h>
#include <iostream>
#include <string>
#include <algorithm>
#include <iosfwd>
#include <vector>
#include <fstream>
#include <sstream>
#include "include/api/context.h"
#include "include/api/model.h"
#include "include/api/types.h"
#include "include/api/serialization.h"
#include "include/dataset/vision.h"
#include "include/dataset/execute.h"
#include "../inc/utils.h"
using mindspore::Context;
using mindspore::Serialization;
using mindspore::Model;
using mindspore::Status;
using mindspore::ModelType;
using mindspore::GraphCell;
using mindspore::kSuccess;
using mindspore::MSTensor;
using mindspore::DataType;
using mindspore::dataset::Execute;
using mindspore::dataset::TensorTransform;
using mindspore::dataset::vision::Resize;
using mindspore::dataset::vision::Pad;
using mindspore::dataset::vision::HWC2CHW;
using mindspore::dataset::vision::Normalize;
using mindspore::dataset::vision::SwapRedBlue;
using mindspore::dataset::vision::Decode;
DEFINE_string(mindir_path, "", "mindir path");
DEFINE_string(image_list, "", "image list");
DEFINE_string(dataset_path, ".", "dataset path");
DEFINE_int32(device_id, 0, "device id");
const int IMAGEWIDTH = 512;
const int IMAGEHEIGHT = 512;
int PadImage(const MSTensor &input, MSTensor *output) {
std::shared_ptr<TensorTransform> normalize(new Normalize({103.53, 116.28, 123.675},
{57.375, 57.120, 58.395}));
Execute composeNormalize({normalize});
std::vector<int64_t> shape = input.Shape();
auto imgResize = MSTensor();
auto imgNormalize = MSTensor();
float widthScale, heightScale;
widthScale = static_cast<float>(IMAGEWIDTH) / shape[1];
heightScale = static_cast<float>(IMAGEHEIGHT) / shape[0];
Status ret;
if (widthScale < heightScale) {
int heightSize = shape[0]*widthScale;
std::shared_ptr<TensorTransform> resize(new Resize({heightSize, IMAGEWIDTH}));
Execute composeResizeWidth({resize});
ret = composeResizeWidth(input, &imgResize);
if (ret != kSuccess) {
std::cout << "ERROR: Resize Width failed." << std::endl;
return 1;
}
ret = composeNormalize(imgResize, &imgNormalize);
if (ret != kSuccess) {
std::cout << "ERROR: Normalize failed." << std::endl;
return 1;
}
int paddingSize = IMAGEHEIGHT - heightSize;
std::shared_ptr<TensorTransform> pad(new Pad({0, 0, 0, paddingSize}));
Execute composePad({pad});
ret = composePad(imgNormalize, output);
if (ret != kSuccess) {
std::cout << "ERROR: Height Pad failed." << std::endl;
return 1;
}
} else {
int widthSize = shape[1]*heightScale;
std::shared_ptr<TensorTransform> resize(new Resize({IMAGEHEIGHT, widthSize}));
Execute composeResizeHeight({resize});
ret = composeResizeHeight(input, &imgResize);
if (ret != kSuccess) {
std::cout << "ERROR: Resize Height failed." << std::endl;
return 1;
}
ret = composeNormalize(imgResize, &imgNormalize);
if (ret != kSuccess) {
std::cout << "ERROR: Normalize failed." << std::endl;
return 1;
}
int paddingSize = IMAGEWIDTH - widthSize;
std::shared_ptr<TensorTransform> pad(new Pad({0, 0, paddingSize, 0}));
Execute composePad({pad});
ret = composePad(imgNormalize, output);
if (ret != kSuccess) {
std::cout << "ERROR: Width Pad failed." << std::endl;
return 1;
}
}
return 0;
}
int main(int argc, char **argv) {
gflags::ParseCommandLineFlags(&argc, &argv, true);
if (RealPath(FLAGS_mindir_path).empty()) {
std::cout << "Invalid mindir" << std::endl;
return 1;
}
auto context = std::make_shared<Context>();
auto ascend310 = std::make_shared<mindspore::Ascend310DeviceInfo>();
ascend310->SetDeviceID(FLAGS_device_id);
ascend310->SetPrecisionMode("allow_fp32_to_fp16");
context->MutableDeviceInfo().push_back(ascend310);
mindspore::Graph graph;
Serialization::Load(FLAGS_mindir_path, ModelType::kMindIR, &graph);
Model model;
Status ret = model.Build(GraphCell(graph), context);
if (ret != kSuccess) {
std::cout << "ERROR: Build failed." << std::endl;
return 1;
}
std::vector<MSTensor> model_inputs = model.GetInputs();
if (model_inputs.empty()) {
std::cout << "Invalid model, inputs is empty." << std::endl;
return 1;
}
auto all_files = GetImagesById(FLAGS_image_list, FLAGS_dataset_path);
if (all_files.empty()) {
std::cout << "ERROR: no input data." << std::endl;
return 1;
}
std::map<double, double> costTime_map;
size_t size = all_files.size();
std::shared_ptr<TensorTransform> decode(new Decode());
Execute composeDecode({decode});
std::shared_ptr<TensorTransform> hwc2chw(new HWC2CHW());
Execute composeTranspose({hwc2chw});
for (size_t i = 0; i < size; ++i) {
struct timeval start = {0};
struct timeval end = {0};
double startTimeMs;
double endTimeMs;
std::vector<MSTensor> inputs;
std::vector<MSTensor> outputs;
std::string file = all_files[i] + ".jpg";
std::cout << "Start predict input files:" << file << std::endl;
auto imgDecode = MSTensor();
auto image = ReadFileToTensor(file);
ret = composeDecode(image, &imgDecode);
if (ret != kSuccess) {
std::cout << "ERROR: Decode failed." << std::endl;
return 1;
}
auto imgPad = MSTensor();
PadImage(imgDecode, &imgPad);
auto img = MSTensor();
composeTranspose(imgPad, &img);
inputs.emplace_back(model_inputs[0].Name(), model_inputs[0].DataType(), model_inputs[0].Shape(),
img.Data().get(), img.DataSize());
gettimeofday(&start, nullptr);
ret = model.Predict(inputs, &outputs);
gettimeofday(&end, nullptr);
if (ret != kSuccess) {
std::cout << "Predict " << file << " failed." << std::endl;
return 1;
}
startTimeMs = (1.0 * start.tv_sec * 1000000 + start.tv_usec) / 1000;
endTimeMs = (1.0 * end.tv_sec * 1000000 + end.tv_usec) / 1000;
costTime_map.insert(std::pair<double, double>(startTimeMs, endTimeMs));
WriteResult(file, outputs);
}
double average = 0.0;
int inferCount = 0;
for (auto iter = costTime_map.begin(); iter != costTime_map.end(); iter++) {
double diff = 0.0;
diff = iter->second - iter->first;
average += diff;
inferCount++;
}
average = average / inferCount;
std::stringstream timeCost;
timeCost << "NN inference cost average time: "<< average << " ms of infer_count " << inferCount << std::endl;
std::cout << "NN inference cost average time: "<< average << "ms of infer_count " << inferCount << std::endl;
std::string fileName = "./time_Result" + std::string("/test_perform_static.txt");
std::ofstream fileStream(fileName.c_str(), std::ios::trunc);
fileStream << timeCost.str();
fileStream.close();
costTime_map.clear();
return 0;
}

View File

@ -0,0 +1,145 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <fstream>
#include <algorithm>
#include <iostream>
#include "../inc/utils.h"
using mindspore::MSTensor;
using mindspore::DataType;
std::vector<std::string> GetAllFiles(std::string_view dirName) {
struct dirent *filename;
DIR *dir = OpenDir(dirName);
if (dir == nullptr) {
return {};
}
std::vector<std::string> res;
while ((filename = readdir(dir)) != nullptr) {
std::string dName = std::string(filename->d_name);
if (dName == "." || dName == ".." || filename->d_type != DT_REG) {
continue;
}
res.emplace_back(std::string(dirName) + "/" + filename->d_name);
}
std::sort(res.begin(), res.end());
for (auto &f : res) {
std::cout << "image file: " << f << std::endl;
}
return res;
}
std::vector<std::string> GetImagesById(const std::string &idFile, const std::string &dirName) {
std::ifstream readFile(idFile);
std::string id;
std::vector<std::string> result;
if (!readFile.is_open()) {
std::cout << "can not open image id txt file" << std::endl;
return result;
}
while (getline(readFile, id)) {
result.emplace_back(dirName + "/" + id);
}
return result;
}
int WriteResult(const std::string& imageFile, const std::vector<MSTensor> &outputs) {
std::string homePath = "./result_Files";
for (size_t i = 0; i < outputs.size(); ++i) {
size_t outputSize;
std::shared_ptr<const void> netOutput;
netOutput = outputs[i].Data();
outputSize = outputs[i].DataSize();
int pos = imageFile.rfind('/');
std::string fileName(imageFile, pos + 1);
fileName.replace(fileName.find('.'), fileName.size() - fileName.find('.'), '_' + std::to_string(i) + ".bin");
std::string outFileName = homePath + "/" + fileName;
FILE * outputFile = fopen(outFileName.c_str(), "wb");
fwrite(netOutput.get(), outputSize, sizeof(char), outputFile);
fclose(outputFile);
outputFile = nullptr;
}
return 0;
}
MSTensor ReadFileToTensor(const std::string &file) {
if (file.empty()) {
std::cout << "Pointer file is nullptr" << std::endl;
return MSTensor();
}
std::ifstream ifs(file);
if (!ifs.good()) {
std::cout << "File: " << file << " is not exist" << std::endl;
return MSTensor();
}
if (!ifs.is_open()) {
std::cout << "File: " << file << "open failed" << std::endl;
return MSTensor();
}
ifs.seekg(0, std::ios::end);
size_t size = ifs.tellg();
MSTensor buffer(file, mindspore::DataType::kNumberTypeUInt8, {static_cast<int64_t>(size)}, nullptr, size);
ifs.seekg(0, std::ios::beg);
ifs.read(reinterpret_cast<char *>(buffer.MutableData()), size);
ifs.close();
return buffer;
}
DIR *OpenDir(std::string_view dirName) {
if (dirName.empty()) {
std::cout << " dirName is null ! " << std::endl;
return nullptr;
}
std::string realPath = RealPath(dirName);
struct stat s;
lstat(realPath.c_str(), &s);
if (!S_ISDIR(s.st_mode)) {
std::cout << "dirName is not a valid directory !" << std::endl;
return nullptr;
}
DIR *dir;
dir = opendir(realPath.c_str());
if (dir == nullptr) {
std::cout << "Can not open dir " << dirName << std::endl;
return nullptr;
}
std::cout << "Successfully opened the dir " << dirName << std::endl;
return dir;
}
std::string RealPath(std::string_view path) {
char realPathMem[PATH_MAX] = {0};
char *realPathRet = nullptr;
realPathRet = realpath(path.data(), realPathMem);
if (realPathRet == nullptr) {
std::cout << "File: " << path << " is not exist.";
return "";
}
std::string realPath(realPathMem);
std::cout << path << " realpath is: " << realPath << std::endl;
return realPath;
}

View File

@ -52,6 +52,10 @@ flip: False
freeze_bn: False
ckpt_file: "/data/mjq/ckpt/FCN8s_1-133_300.ckpt"
# ======================================================================================
# Export options
file_name: "fcn8s"
file_format: MINDIR
---
# Help description for each configuration
@ -82,4 +86,6 @@ eval_batch_size: "eval batch size"
data_lst: "list of val data"
scales: "scales of evaluation"
flip: "freeze bn"
ckpt_file: "model to evaluate"
ckpt_file: "model to evaluate"
file_name: "export file name"
file_format: "export model type"

View File

@ -0,0 +1,37 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""export FCN8s."""
import numpy as np
import mindspore as ms
from mindspore import Tensor
from mindspore import context
from mindspore.train.serialization import load_checkpoint, load_param_into_net, export
from src.nets.FCN8s import FCN8s
from src.model_utils.config import config
from src.model_utils.device_adapter import get_device_id
context.set_context(mode=context.GRAPH_MODE, device_target=config.device_target, device_id=get_device_id())
if __name__ == '__main__':
net = FCN8s(n_class=config.num_classes)
# load model
param_dict = load_checkpoint(config.ckpt_file)
load_param_into_net(net, param_dict)
input_arr = Tensor(np.zeros([1, 3, config.crop_size, config.crop_size]), ms.float32)
export(net, input_arr, file_name=config.file_name, file_format=config.file_format)

View File

@ -0,0 +1,78 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""post process for 310 inference"""
import os
import argparse
import numpy as np
import cv2
from PIL import Image
parser = argparse.ArgumentParser(description="FasterRcnn inference")
parser.add_argument("--image_list", type=str, required=True, help="result file path.")
parser.add_argument("--result_path", type=str, required=True, help="result file path.")
parser.add_argument("--data_path", type=str, required=True, help="mask file path.")
parser.add_argument("--mask_path", type=str, required=True, help="mask file path.")
args = parser.parse_args()
NUM_CLASSES = 21
def get_img_size(file_name):
img = Image.open(file_name)
return img.size
def get_resized_size(org_h, org_w, long_size=512):
if org_h > org_w:
new_h = long_size
new_w = int(1.0 * long_size * org_w / org_h)
else:
new_w = long_size
new_h = int(1.0 * long_size * org_h / org_w)
return new_h, new_w
def cal_hist(a, b, n):
k = (a >= 0) & (a < n)
return np.bincount(n * a[k].astype(np.int32) + b[k], minlength=n ** 2).reshape(n, n)
def cal_acc(image_list, data_path, result_path, mask_path):
hist = np.zeros((NUM_CLASSES, NUM_CLASSES))
with open(image_list) as f:
img_list = f.readlines()
for img in img_list:
img_file = os.path.join(data_path, img.strip() + ".jpg")
org_width, org_height = get_img_size(img_file)
resize_h, resize_w = get_resized_size(org_height, org_width)
result_file = os.path.join(result_path, img.strip() + "_0.bin")
result = np.fromfile(result_file, dtype=np.float32).reshape(21, 512, 512)
probs_ = result[:, :resize_h, :resize_w].transpose((1, 2, 0))
probs_ = cv2.resize(probs_.astype(np.float32), (org_width, org_height))
result_msk = probs_.argmax(axis=2)
mask_file = os.path.join(mask_path, img.strip() + ".png")
mask = np.array(Image.open(mask_file), dtype=np.uint8)
hist += cal_hist(mask.flatten(), result_msk.flatten(), NUM_CLASSES)
#print(hist)
iu = np.diag(hist) / (hist.sum(1) + hist.sum(0) - np.diag(hist))
print('per-class IoU', iu)
print('mean IoU', np.nanmean(iu))
if __name__ == '__main__':
cal_acc(args.image_list, args.data_path, args.result_path, args.mask_path)

View File

@ -0,0 +1,108 @@
#!/bin/bash
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
if [[ $# -lt 4 || $# -gt 5 ]]; then
echo "Usage: bash run_infer_310.sh [MINDIR_PATH] [DATA_LIST_FILE] [IMAGE_PATH] [MASK_PATH] [DEVICE_ID]
DEVICE_ID is optional, it can be set by environment variable device_id, otherwise the value is zero"
exit 1
fi
get_real_path(){
if [ "${1:0:1}" == "/" ]; then
echo "$1"
else
echo "$(realpath -m $PWD/$1)"
fi
}
model=$(get_real_path $1)
data_list_file=$(get_real_path $2)
image_path=$(get_real_path $3)
mask_path=$(get_real_path $4)
device_id=0
if [ $# == 5 ]; then
device_id=$5
elif [ $# == 4 ]; then
if [ ! -z $device_id ]; then
device_id=$device_id
fi
fi
echo $model
echo $image_path
echo $mask_path
echo $device_id
export ASCEND_HOME=/usr/local/Ascend/
if [ -d ${ASCEND_HOME}/ascend-toolkit ]; then
export PATH=$ASCEND_HOME/fwkacllib/bin:$ASCEND_HOME/fwkacllib/ccec_compiler/bin:$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/ccec_compiler/bin:$ASCEND_HOME/ascend-toolkit/latest/atc/bin:$PATH
export LD_LIBRARY_PATH=$ASCEND_HOME/fwkacllib/lib64:/usr/local/lib:$ASCEND_HOME/ascend-toolkit/latest/atc/lib64:$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/lib64:$ASCEND_HOME/driver/lib64:$ASCEND_HOME/add-ons:$LD_LIBRARY_PATH
export TBE_IMPL_PATH=$ASCEND_HOME/ascend-toolkit/latest/opp/op_impl/built-in/ai_core/tbe
export PYTHONPATH=$ASCEND_HOME/fwkacllib/python/site-packages:${TBE_IMPL_PATH}:$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/python/site-packages:$PYTHONPATH
export ASCEND_OPP_PATH=$ASCEND_HOME/ascend-toolkit/latest/opp
else
export PATH=$ASCEND_HOME/fwkacllib/bin:$ASCEND_HOME/fwkacllib/ccec_compiler/bin:$ASCEND_HOME/atc/ccec_compiler/bin:$ASCEND_HOME/atc/bin:$PATH
export LD_LIBRARY_PATH=$ASCEND_HOME/fwkacllib/lib64:/usr/local/lib:$ASCEND_HOME/atc/lib64:$ASCEND_HOME/acllib/lib64:$ASCEND_HOME/driver/lib64:$ASCEND_HOME/add-ons:$LD_LIBRARY_PATH
export PYTHONPATH=$ASCEND_HOME/fwkacllib/python/site-packages:$ASCEND_HOME/atc/python/site-packages:$PYTHONPATH
export ASCEND_OPP_PATH=$ASCEND_HOME/opp
fi
function compile_app()
{
cd ../ascend310_infer || exit
if [ -f "Makefile" ]; then
make clean
fi
sh build.sh &> build.log
if [ $? -ne 0 ]; then
echo "compile app code failed"
exit 1
fi
cd - || exit
}
function infer()
{
if [ -d result_Files ]; then
rm -rf ./result_Files
fi
if [ -d time_Result ]; then
rm -rf ./time_Result
fi
mkdir result_Files
mkdir time_Result
../ascend310_infer/out/main --image_list=$data_list_file --mindir_path=$model --dataset_path=$image_path --device_id=$device_id &> infer.log
if [ $? -ne 0 ]; then
echo "execute inference failed"
exit 1
fi
}
function cal_acc()
{
python ../postprocess.py --image_list=$data_list_file --data_path=$image_path --mask_path=$mask_path --result_path=result_Files &> acc.log
if [ $? -ne 0 ]; then
echo "calculate accuracy failed"
exit 1
fi
}
compile_app
infer
cal_acc