!17082 set default context mode to GRAPH_MODE
Merge pull request !17082 from huangbingjian/change_context_mode
This commit is contained in:
commit
21513404c4
|
@ -147,7 +147,7 @@ class _Context:
|
|||
|
||||
def __init__(self):
|
||||
self._thread_local_info = _ThreadLocalInfo()
|
||||
self._context_switches = _ContextSwitchInfo(True)
|
||||
self._context_switches = _ContextSwitchInfo(False)
|
||||
self._context_handle = MSContext.get_instance()
|
||||
|
||||
def __new__(cls, *args, **kwargs):
|
||||
|
@ -522,7 +522,7 @@ def set_context(**kwargs):
|
|||
Context should be configured before running your program. If there is no configuration,
|
||||
it will automatic acquisition according to device target by default. GRAPH_MODE or
|
||||
PYNATIVE_MODE can be set by `mode` attribute and both modes support all backends, default
|
||||
mode is PYNATIVE_MODE.
|
||||
mode is GRAPH_MODE.
|
||||
|
||||
When the `save_graphs` attribute is set to True, attribute of `save_graphs_path` is used to set the
|
||||
intermediate compilation graph storage path. By default, the graphs are saved in the current directory.
|
||||
|
@ -532,7 +532,7 @@ def set_context(**kwargs):
|
|||
Note:
|
||||
Attribute name is required for setting attributes.
|
||||
The mode is not recommended to be changed after net was initialized because the implementations of some
|
||||
operations are different in graph mode and pynative mode. Default: PYNATIVE_MODE.
|
||||
operations are different in graph mode and pynative mode. Default: GRAPH_MODE.
|
||||
|
||||
Some configurations are device specific, see the below table for details:
|
||||
|
||||
|
@ -555,7 +555,7 @@ def set_context(**kwargs):
|
|||
=========================== =========================== =================
|
||||
|
||||
Args:
|
||||
mode (int): Running in GRAPH_MODE(0) or PYNATIVE_MODE(1). Default: PYNATIVE_MODE(1).
|
||||
mode (int): Running in GRAPH_MODE(0) or PYNATIVE_MODE(1). Default: GRAPH_MODE(0).
|
||||
precompile_only (bool): Whether to only precompile the network. If set, the network will only be compiled and
|
||||
not executed. Default: False.
|
||||
device_target (str): The target device to run, support "Ascend", "GPU", and "CPU".
|
||||
|
|
|
@ -61,7 +61,7 @@ MsContext::MsContext(const std::string &policy, const std::string &target) {
|
|||
|
||||
set_param<uint32_t>(MS_CTX_MAX_CALL_DEPTH, MAX_CALL_DEPTH_DEFAULT);
|
||||
set_param<std::string>(MS_CTX_DEVICE_TARGET, target);
|
||||
set_param<int>(MS_CTX_EXECUTION_MODE, kPynativeMode);
|
||||
set_param<int>(MS_CTX_EXECUTION_MODE, kGraphMode);
|
||||
set_param<bool>(MS_CTX_ENABLE_TASK_SINK, true);
|
||||
set_param<bool>(MS_CTX_IR_FUSION_FLAG, true);
|
||||
set_param<bool>(MS_CTX_ENABLE_HCCL, false);
|
||||
|
|
|
@ -6,6 +6,7 @@ from mindspore.common.parameter import Parameter
|
|||
from mindspore.nn import Cell
|
||||
import mindspore.ops.operations as P
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
|
@ -34,7 +35,6 @@ def test_if_by_if_basic():
|
|||
class Net(Cell):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
self.subnet = SubNet()
|
||||
self.relu = P.ReLU()
|
||||
self.add = P.Add()
|
||||
|
|
|
@ -19,6 +19,7 @@ import pytest
|
|||
|
||||
import mindspore as ms
|
||||
import mindspore.nn as nn
|
||||
from mindspore import context
|
||||
|
||||
from mindspore.explainer._utils import (
|
||||
ForwardProbe,
|
||||
|
@ -27,6 +28,7 @@ from mindspore.explainer._utils import (
|
|||
retrieve_layer_by_name)
|
||||
from mindspore.explainer.explanation._attribution._backprop.backprop_utils import GradNet, get_bp_weights
|
||||
|
||||
context.set_context(mode=context.PYNATIVE_MODE)
|
||||
|
||||
class CustomNet(nn.Cell):
|
||||
"""Simple net for test."""
|
||||
|
|
|
@ -18,12 +18,14 @@ import numpy as np
|
|||
import pytest
|
||||
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Parameter, Tensor
|
||||
from mindspore import Parameter, Tensor, context
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.common import dtype as mstype
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.train.serialization import export
|
||||
|
||||
context.set_context(mode=context.PYNATIVE_MODE)
|
||||
|
||||
|
||||
class MeanConv(nn.Cell):
|
||||
def __init__(self,
|
||||
|
|
|
@ -18,10 +18,12 @@ import pytest
|
|||
import numpy as onp
|
||||
|
||||
import mindspore.numpy as mnp
|
||||
from mindspore import context
|
||||
|
||||
from .utils import rand_int, rand_bool, match_array, match_res, match_meta, \
|
||||
match_all_arrays, run_multi_test, to_tensor
|
||||
|
||||
context.set_context(mode=context.PYNATIVE_MODE)
|
||||
|
||||
class Cases():
|
||||
def __init__(self):
|
||||
|
|
|
@ -20,11 +20,14 @@ import pytest
|
|||
import numpy as onp
|
||||
|
||||
import mindspore.numpy as mnp
|
||||
from mindspore import context
|
||||
from mindspore.nn import Cell
|
||||
|
||||
from .utils import rand_int, run_non_kw_test, check_all_results, match_array, \
|
||||
rand_bool, match_res, run_multi_test, to_tensor, match_all_arrays
|
||||
|
||||
context.set_context(mode=context.PYNATIVE_MODE)
|
||||
|
||||
|
||||
class Cases():
|
||||
def __init__(self):
|
||||
|
|
|
@ -18,10 +18,13 @@ import pytest
|
|||
import numpy as onp
|
||||
|
||||
import mindspore.numpy as mnp
|
||||
from mindspore import context
|
||||
|
||||
from .utils import rand_int, rand_bool, run_binop_test, run_logical_test, match_res, \
|
||||
match_all_arrays, to_tensor
|
||||
|
||||
context.set_context(mode=context.PYNATIVE_MODE)
|
||||
|
||||
|
||||
class Cases():
|
||||
def __init__(self):
|
||||
|
|
|
@ -18,11 +18,14 @@ import pytest
|
|||
import numpy as onp
|
||||
|
||||
import mindspore.numpy as mnp
|
||||
from mindspore import context
|
||||
from mindspore.common.dtype import dtype_to_nptype
|
||||
|
||||
from .utils import rand_int, rand_bool, run_binop_test, run_unary_test, run_multi_test, \
|
||||
run_single_test, match_res, match_array, match_meta, match_all_arrays, to_tensor
|
||||
|
||||
context.set_context(mode=context.PYNATIVE_MODE)
|
||||
|
||||
class Cases():
|
||||
def __init__(self):
|
||||
self.arrs = [
|
||||
|
|
|
@ -22,7 +22,7 @@ import mindspore.nn as nn
|
|||
from mindspore import Tensor
|
||||
from mindspore.common.api import ms_function
|
||||
|
||||
context.set_context(device_target='CPU')
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target='CPU')
|
||||
|
||||
class NetNorm(nn.Cell):
|
||||
def __init__(self):
|
||||
|
|
|
@ -21,7 +21,7 @@ import mindspore.nn as nn
|
|||
from mindspore import Tensor
|
||||
from mindspore.common.api import ms_function
|
||||
|
||||
context.set_context(device_target='CPU')
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target='CPU')
|
||||
|
||||
|
||||
class NetOneHot(nn.Cell):
|
||||
|
|
|
@ -21,7 +21,7 @@ import mindspore.nn as nn
|
|||
import mindspore.context as context
|
||||
from mindspore.common.api import ms_function
|
||||
|
||||
context.set_context(device_target="CPU")
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="CPU")
|
||||
|
||||
|
||||
class NetReduce(nn.Cell):
|
||||
|
|
|
@ -23,7 +23,7 @@ from mindspore.common.parameter import Parameter
|
|||
import mindspore.nn as nn
|
||||
import mindspore.context as context
|
||||
|
||||
context.set_context(device_target='CPU')
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target='CPU')
|
||||
|
||||
|
||||
class Transpose(nn.Cell):
|
||||
|
|
|
@ -23,7 +23,7 @@ from mindspore import Tensor, ops
|
|||
from mindspore.ops import operations as P
|
||||
from mindspore.common.api import ms_function
|
||||
|
||||
context.set_context(device_target='GPU')
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
|
|
|
@ -60,7 +60,7 @@ class AddNet(nn.Cell):
|
|||
|
||||
|
||||
def add(nptype):
|
||||
context.set_context(device_target='GPU')
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
|
||||
|
||||
add_net = AddNet(nptype)
|
||||
output = add_net()
|
||||
|
|
|
@ -22,8 +22,6 @@ from mindspore import Tensor
|
|||
from mindspore.common.api import ms_function
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
context.set_context(device_target='GPU')
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
|
@ -39,6 +37,7 @@ class Net(nn.Cell):
|
|||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_net():
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
|
||||
x = np.arange(1 * 3 * 3 * 4).reshape(1, 3, 3, 4).astype(np.float32)
|
||||
y = np.arange(1 * 3 * 3 * 4).reshape(1, 3, 3, 4).astype(np.float32)
|
||||
z = np.arange(1 * 3 * 3 * 4).reshape(1, 3, 3, 4).astype(np.float32)
|
||||
|
|
|
@ -23,7 +23,7 @@ from mindspore.common.api import ms_function
|
|||
from mindspore.ops import operations as P
|
||||
from mindspore.ops.operations import _quant_ops as Q
|
||||
|
||||
context.set_context(device_target='GPU')
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
|
|
|
@ -22,7 +22,7 @@ from mindspore import Tensor
|
|||
from mindspore.common.api import ms_function
|
||||
from mindspore.ops.operations import _quant_ops as Q
|
||||
|
||||
context.set_context(device_target='GPU')
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
|
|
|
@ -24,7 +24,7 @@ from mindspore.common.initializer import initializer
|
|||
from mindspore.common.api import ms_function
|
||||
from mindspore.ops.operations import _quant_ops as Q
|
||||
|
||||
context.set_context(device_target='GPU')
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
|
|
|
@ -41,7 +41,7 @@ class ConcatV32(nn.Cell):
|
|||
|
||||
|
||||
def axis32(nptype):
|
||||
context.set_context(device_target='GPU')
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
|
||||
|
||||
cat = ConcatV32(nptype)
|
||||
output = cat()
|
||||
|
@ -98,7 +98,7 @@ class ConcatV43(nn.Cell):
|
|||
|
||||
|
||||
def axis43(nptype):
|
||||
context.set_context(device_target='GPU')
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
|
||||
|
||||
cat = ConcatV43(nptype)
|
||||
output = cat()
|
||||
|
@ -159,6 +159,8 @@ class ConcatV21(nn.Cell):
|
|||
|
||||
|
||||
def axis21(nptype):
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
|
||||
|
||||
cat = ConcatV21(nptype)
|
||||
output = cat()
|
||||
expect = np.array([[0., 1., 0., 1., 2.],
|
||||
|
@ -206,8 +208,9 @@ class Concat3INet(nn.Cell):
|
|||
|
||||
|
||||
def concat_3i(nptype):
|
||||
cat = Concat3INet()
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
|
||||
|
||||
cat = Concat3INet()
|
||||
x1_np = np.random.randn(32, 4, 224, 224).astype(nptype)
|
||||
x2_np = np.random.randn(32, 8, 224, 224).astype(nptype)
|
||||
x3_np = np.random.randn(32, 10, 224, 224).astype(nptype)
|
||||
|
@ -250,6 +253,7 @@ def test_concat_3i_uint8():
|
|||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_concat_3i_bool():
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
|
||||
cat = Concat3INet()
|
||||
|
||||
x1_np = np.random.choice([True, False], (32, 4, 224, 224)).astype(np.bool)
|
||||
|
@ -275,8 +279,9 @@ class Concat4INet(nn.Cell):
|
|||
|
||||
|
||||
def concat_4i(nptype):
|
||||
cat = Concat4INet()
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
|
||||
|
||||
cat = Concat4INet()
|
||||
x1_np = np.random.randn(32, 4, 224, 224).astype(nptype)
|
||||
x2_np = np.random.randn(32, 8, 224, 224).astype(nptype)
|
||||
x3_np = np.random.randn(32, 10, 224, 224).astype(nptype)
|
||||
|
@ -321,8 +326,9 @@ def test_concat_4i_uint8():
|
|||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_concat_4i_bool():
|
||||
cat = Concat4INet()
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
|
||||
|
||||
cat = Concat4INet()
|
||||
x1_np = np.random.choice([True, False], (32, 4, 224, 224)).astype(np.bool)
|
||||
x2_np = np.random.choice([True, False], (32, 8, 224, 224)).astype(np.bool)
|
||||
x3_np = np.random.choice([True, False], (32, 10, 224, 224)).astype(np.bool)
|
||||
|
|
|
@ -23,7 +23,7 @@ from mindspore.common.api import ms_function
|
|||
from mindspore.ops import operations as P
|
||||
from mindspore.ops.operations import _grad_ops as G
|
||||
|
||||
context.set_context(device_target='GPU')
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
|
||||
|
||||
|
||||
class Conv2dFilter(nn.Cell):
|
||||
|
|
|
@ -22,7 +22,7 @@ from mindspore import Tensor
|
|||
from mindspore.common.api import ms_function
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
context.set_context(device_target='GPU')
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
|
||||
|
||||
|
||||
class Conv2dInput(nn.Cell):
|
||||
|
|
|
@ -22,7 +22,7 @@ from mindspore import Tensor
|
|||
from mindspore.common.api import ms_function
|
||||
from mindspore.ops.operations import _quant_ops as Q
|
||||
|
||||
context.set_context(device_target='GPU')
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
|
|
|
@ -22,7 +22,7 @@ from mindspore import Tensor
|
|||
from mindspore.common.api import ms_function
|
||||
from mindspore.ops.operations import _quant_ops as Q
|
||||
|
||||
context.set_context(device_target='GPU')
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
|
|
|
@ -65,8 +65,8 @@ def test_inplace_fusion1():
|
|||
x2 = Tensor(x2_np.astype(np.float32))
|
||||
x3 = Tensor(x3_np.astype(np.float32))
|
||||
|
||||
net = Conv2dBpropInputInplace(w1, w2)
|
||||
context.set_context(device_target='GPU', mode=context.GRAPH_MODE)
|
||||
net = Conv2dBpropInputInplace(w1, w2)
|
||||
fusion_output = net(x1, x2, x3)
|
||||
|
||||
context.set_context(device_target='GPU', mode=context.PYNATIVE_MODE)
|
||||
|
|
|
@ -23,7 +23,7 @@ from mindspore.common.api import ms_function
|
|||
from mindspore.ops import operations as P
|
||||
|
||||
def cum_prod(nptype):
|
||||
context.set_context(device_target='GPU')
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
|
||||
x0 = np.random.rand(2, 3, 4, 4).astype(nptype)
|
||||
axis0 = 3
|
||||
|
||||
|
|
|
@ -23,7 +23,7 @@ from mindspore.common.api import ms_function
|
|||
from mindspore.ops import operations as P
|
||||
|
||||
def cum_sum(nptype):
|
||||
context.set_context(device_target='GPU')
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
|
||||
x0 = np.random.rand(2, 3, 4, 4).astype(nptype)
|
||||
axis0 = 3
|
||||
|
||||
|
|
|
@ -34,6 +34,7 @@ class Net(nn.Cell):
|
|||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_dropout():
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
|
||||
x_shape = [32, 16, 2, 5]
|
||||
x = np.ones(x_shape).astype(np.float32)
|
||||
keep_prob = 0.4
|
||||
|
|
|
@ -21,7 +21,7 @@ from mindspore.common.tensor import Tensor
|
|||
from mindspore import nn
|
||||
from mindspore.ops.operations import _quant_ops as Q
|
||||
|
||||
context.set_context(device_target='GPU', device_id=0)
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU', device_id=0)
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
|
@ -240,7 +240,7 @@ def test_fake_quant_perchannel10():
|
|||
x = np.array([-0.1, 0.0, 0.1, 0.25, 0.5, 0.75,
|
||||
1.0, 1.25, 1.5, 1.75, 2.0, 2.25,
|
||||
63.0, 63.25, 63.5, 63.7, 63.75, 63.8,
|
||||
63.9, 100.0, 100.0, 100.0, 100.0, 1000.0]).reshape(1, 4, 2, 3).astype(np.float32)
|
||||
63.9, 100.0, 100.0, 100.0, 100.0, 1000.0]).reshape((1, 4, 2, 3)).astype(np.float32)
|
||||
expect = np.array([0.0, 0.0, 0.0, 0.25, 0.5, 0.75,
|
||||
1.0, 1.25, 1.5, 1.75, 2.0, 2.25,
|
||||
63.0, 63.25, 63.5, 63.75, 63.75, 63.75,
|
||||
|
@ -269,7 +269,7 @@ def test_fake_quant_perchannel11():
|
|||
x = np.array([-0.1, 0.0, 0.1, 0.25, 0.5, 0.75,
|
||||
1.0, 1.25, 1.5, 1.75, 2.0, 2.25,
|
||||
63.0, 63.25, 63.3, 63.4, 63.5, 63.6,
|
||||
63.7, 100.0, 100.0, 100.0, 100.0, 1000.0]).reshape(1, 4, 2, 3).astype(np.float32)
|
||||
63.7, 100.0, 100.0, 100.0, 100.0, 1000.0]).reshape((1, 4, 2, 3)).astype(np.float32)
|
||||
expect = np.array([0.0, 0.0, 0.0, 0.25, 0.5, 0.75,
|
||||
1.0, 1.25, 1.5, 1.75, 2.0, 2.25,
|
||||
63.0, 63.25, 63.25, 63.5, 63.5, 63.5,
|
||||
|
@ -296,7 +296,7 @@ def test_fake_quant_perchannel12():
|
|||
x = np.array([-0.3, -0.25, -0.2, 0.0, 0.25, 0.5,
|
||||
0.75, 1.0, 1.25, 1.5, 1.75, 2.0,
|
||||
63.0, 63.25, 63.4, 63.5, 63.6, 63.7,
|
||||
100.0, 100.0, 100.0, 100.0, 100.0, 1000.0]).reshape(1, 4, 2, 3).astype(np.float32)
|
||||
100.0, 100.0, 100.0, 100.0, 100.0, 1000.0]).reshape((1, 4, 2, 3)).astype(np.float32)
|
||||
expect = np.array([-0.25, -0.25, -0.25, 0.0, 0.25, 0.5,
|
||||
0.75, 1.0, 1.25, 1.5, 1.75, 2.0,
|
||||
63.0, 63.25, 63.5, 63.5, 63.5, 63.5,
|
||||
|
@ -325,7 +325,7 @@ def test_fake_quant_perchannel13():
|
|||
x = np.array([-0.3, -0.25, -0.2, 0.0, 0.25, 0.5,
|
||||
0.75, 1.0, 1.25, 1.5, 1.75, 2.0,
|
||||
63.0, 63.2, 63.25, 63.3, 63.4, 63.5,
|
||||
100.0, 100.0, 100.0, 100.0, 100.0, 1000.0]).reshape(1, 4, 2, 3).astype(np.float32)
|
||||
100.0, 100.0, 100.0, 100.0, 100.0, 1000.0]).reshape((1, 4, 2, 3)).astype(np.float32)
|
||||
expect = np.array([-0.25, -0.25, -0.25, 0.0, 0.25, 0.5,
|
||||
0.75, 1.0, 1.25, 1.5, 1.75, 2.0,
|
||||
63.0, 63.25, 63.25, 63.25, 63.25, 63.25,
|
||||
|
@ -526,7 +526,7 @@ def test_fake_quant_perchannel22():
|
|||
x = np.array([-0.1, 0.0, 0.1, 0.5, 1.0, 1.5,
|
||||
1.5, 2.0, 2.5, 3.0, 3.5, 4.0,
|
||||
6.0, 6.5, 7.0, 7.4, 7.5, 7.7,
|
||||
7.8, 100.0, 100.0, 100.0, 100.0, 1000.0]).reshape(1, 4, 2, 3).astype(np.float32)
|
||||
7.8, 100.0, 100.0, 100.0, 100.0, 1000.0]).reshape((1, 4, 2, 3)).astype(np.float32)
|
||||
expect = np.array([0.0, 0.0, 0.0, 0.5, 1.0, 1.5,
|
||||
1.5, 2.0, 2.5, 3.0, 3.5, 4.0,
|
||||
6.0, 6.5, 7.0, 7.5, 7.5, 7.5,
|
||||
|
@ -553,7 +553,7 @@ def test_fake_quant_perchannel23():
|
|||
x = np.array([-0.1, 0.0, 0.1, 0.5, 1.0, 1.5,
|
||||
1.5, 2.0, 2.5, 3.0, 3.5, 4.0,
|
||||
6.0, 6.5, 6.8, 6.9, 7.0, 7.1,
|
||||
7.2, 100.0, 100.0, 100.0, 100.0, 1000.0]).reshape(1, 4, 2, 3).astype(np.float32)
|
||||
7.2, 100.0, 100.0, 100.0, 100.0, 1000.0]).reshape((1, 4, 2, 3)).astype(np.float32)
|
||||
expect = np.array([0.0, 0.0, 0.0, 0.5, 1.0, 1.5,
|
||||
1.5, 2.0, 2.5, 3.0, 3.5, 4.0,
|
||||
6.0, 6.5, 7.0, 7.0, 7.0, 7.0,
|
||||
|
@ -580,7 +580,7 @@ def test_fake_quant_perchannel24():
|
|||
x = np.array([-0.6, -0.5, -0.4, 0.0, 0.5, 1.0,
|
||||
1.5, 2.0, 2.5, 3.0, 3.5, 4.0,
|
||||
6.0, 6.5, 6.9, 7.0, 7.1, 7.7,
|
||||
100.0, 100.0, 100.0, 100.0, 100.0, 1000.0]).reshape(1, 4, 2, 3).astype(np.float32)
|
||||
100.0, 100.0, 100.0, 100.0, 100.0, 1000.0]).reshape((1, 4, 2, 3)).astype(np.float32)
|
||||
expect = np.array([-0.5, -0.5, -0.5, 0.0, 0.5, 1.0,
|
||||
1.5, 2.0, 2.5, 3.0, 3.5, 4.0,
|
||||
6.0, 6.5, 7.0, 7.0, 7.0, 7.0,
|
||||
|
@ -607,7 +607,7 @@ def test_fake_quant_perchannel25():
|
|||
x = np.array([-0.6, -0.5, -0.4, 0.0, 0.5, 1.0,
|
||||
1.5, 2.0, 2.5, 3.0, 3.5, 4.0,
|
||||
5.5, 6.0, 6.4, 6.5, 6.6, 6.7,
|
||||
100.0, 100.0, 100.0, 100.0, 100.0, 1000.0]).reshape(1, 4, 2, 3).astype(np.float32)
|
||||
100.0, 100.0, 100.0, 100.0, 100.0, 1000.0]).reshape((1, 4, 2, 3)).astype(np.float32)
|
||||
expect = np.array([-0.5, -0.5, -0.5, 0.0, 0.5, 1.0,
|
||||
1.5, 2.0, 2.5, 3.0, 3.5, 4.0,
|
||||
5.5, 6.0, 6.5, 6.5, 6.5, 6.5,
|
||||
|
|
|
@ -20,7 +20,7 @@ import mindspore.nn as nn
|
|||
import mindspore.context as context
|
||||
from mindspore.ops.operations import _quant_ops as Q
|
||||
|
||||
context.set_context(device_target='GPU', device_id=0)
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU', device_id=0)
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
|
@ -256,7 +256,7 @@ def test_fake_quant_grad10():
|
|||
x = np.array([-0.1, 0.0, 63.75, 63.8, -0.1, 0.0,
|
||||
63.75, 63.8, -0.1, 0.0, 63.75, 63.8,
|
||||
-0.1, 0.0, 63.75, 63.8, -0.1, 0.0,
|
||||
63.75, 63.8, -0.1, 0.0, 63.75, 63.8]).reshape(4, 3, 2, 1).astype(np.float32)
|
||||
63.75, 63.8, -0.1, 0.0, 63.75, 63.8]).reshape((4, 3, 2, 1)).astype(np.float32)
|
||||
min_val = np.array([-0.1, -0.1, -0.1, -0.1]).astype(np.float32)
|
||||
max_val = np.array([63.65, 63.65, 63.65, 63.65]).astype(np.float32)
|
||||
dout = read_dout.flatten()
|
||||
|
@ -286,7 +286,7 @@ def test_fake_quant_grad11():
|
|||
# WithVarsPerChannelDim4GradientNudgedDown_NarrowRange
|
||||
read_dout = np.random.uniform(-1, 1, size=[4, 3, 2, 1]).astype('float32')
|
||||
x = np.array([-0.1, 0.0, 63.5, 63.6, -0.1, 0.0, 63.5, 63.6, -0.1, 0.0, 63.5, 63.6, -0.1, 0.0, 63.5,
|
||||
63.6, -0.1, 0.0, 63.5, 63.6, -0.1, 0.0, 63.5, 63.6]).reshape(4, 3, 2, 1).astype(np.float32)
|
||||
63.6, -0.1, 0.0, 63.5, 63.6, -0.1, 0.0, 63.5, 63.6]).reshape((4, 3, 2, 1)).astype(np.float32)
|
||||
min_val = np.array([-0.1, -0.1, -0.1, -0.1]).astype(np.float32)
|
||||
max_val = np.array([63.4, 63.4, 63.4, 63.4]).astype(np.float32)
|
||||
dout = read_dout.flatten()
|
||||
|
@ -318,7 +318,7 @@ def test_fake_quant_grad12():
|
|||
x = np.array([-0.3, -0.25, 63.5, 63.6, -0.3, -0.25,
|
||||
63.5, 63.6, -0.3, -0.25, 63.5, 63.6,
|
||||
-0.3, -0.25, 63.5, 63.6, -0.3, -0.25,
|
||||
63.5, 63.6, -0.3, -0.25, 63.5, 63.6]).reshape(4, 3, 2, 1).astype(np.float32)
|
||||
63.5, 63.6, -0.3, -0.25, 63.5, 63.6]).reshape((4, 3, 2, 1)).astype(np.float32)
|
||||
min_val = np.array([-0.125, -0.125, -0.125, -0.125]).astype(np.float32)
|
||||
max_val = np.array([63.625, 63.625, 63.625, 63.625]).astype(np.float32)
|
||||
dout = read_dout.flatten()
|
||||
|
@ -350,7 +350,7 @@ def test_fake_quant_grad13():
|
|||
x = np.array([-0.3, -0.25, 63.25, 63.3, -0.3, -0.25,
|
||||
63.25, 63.3, -0.3, -0.25, 63.25, 63.3,
|
||||
-0.3, -0.25, 63.25, 63.3, -0.3, -0.25,
|
||||
63.25, 63.3, -0.3, -0.25, 63.25, 63.3]).reshape(4, 3, 2, 1).astype(np.float32)
|
||||
63.25, 63.3, -0.3, -0.25, 63.25, 63.3]).reshape((4, 3, 2, 1)).astype(np.float32)
|
||||
min_val = np.array([-0.125, -0.125, -0.125, -0.125]).astype(np.float32)
|
||||
max_val = np.array([63.375, 63.375, 63.375, 63.375]).astype(np.float32)
|
||||
dout = read_dout.flatten()
|
||||
|
|
|
@ -21,7 +21,7 @@ from mindspore.common.tensor import Tensor
|
|||
import mindspore.nn as nn
|
||||
from mindspore.ops.operations import _quant_ops as Q
|
||||
|
||||
context.set_context(device_target='GPU', device_id=0)
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU', device_id=0)
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
|
|
|
@ -20,7 +20,7 @@ import mindspore.nn as nn
|
|||
import mindspore.context as context
|
||||
from mindspore.ops.operations import _quant_ops as Q
|
||||
|
||||
context.set_context(device_target='GPU', device_id=0)
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU', device_id=0)
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
|
|
|
@ -103,6 +103,7 @@ def test_in_top_k_float32():
|
|||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_in_top_k_invalid_input():
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
# k must be > 0
|
||||
with pytest.raises(ValueError):
|
||||
in_top_k_net = InTopKNet(0)
|
||||
|
|
|
@ -224,6 +224,7 @@ def test_index_add_int16():
|
|||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_index_add_invalid_inputs():
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
|
||||
x = np.arange(2 * 3 * 4).reshape(2, 3, 4).astype(np.uint8)
|
||||
y = np.ones((2, 2, 4), dtype=np.uint8)
|
||||
with pytest.raises(TypeError):
|
||||
|
|
|
@ -82,6 +82,8 @@ class CustomLoss(Loss):
|
|||
return self.get_loss(x, weights=2.0)
|
||||
|
||||
def custom_loss(nptype):
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
|
||||
|
||||
loss = L1Loss()
|
||||
input_data = Tensor(np.array([[1, 2, 3], [2, 3, 4]]).astype(nptype))
|
||||
target_data = Tensor(np.array([[0, 2, 5], [3, 1, 1]]).astype(nptype))
|
||||
|
|
|
@ -25,7 +25,7 @@ from mindspore.common.tensor import Tensor
|
|||
from mindspore.ops import composite as C
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
context.set_context(device_target='GPU')
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
|
||||
|
||||
|
||||
class LstmNet(nn.Cell):
|
||||
|
|
|
@ -21,7 +21,7 @@ import mindspore.nn as nn
|
|||
from mindspore import Tensor
|
||||
from mindspore.common.api import ms_function
|
||||
|
||||
context.set_context(device_target='GPU')
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
|
||||
|
||||
|
||||
class NetOneHot(nn.Cell):
|
||||
|
|
|
@ -21,6 +21,9 @@ import mindspore.nn as nn
|
|||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
|
||||
|
||||
class RangeNet(nn.Cell):
|
||||
def __init__(self, maxlen=50):
|
||||
super(RangeNet, self).__init__()
|
||||
|
@ -34,8 +37,6 @@ class RangeNet(nn.Cell):
|
|||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_range_precision_end_equals_last_element():
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
|
||||
range_net = RangeNet(100)
|
||||
ms_out = range_net(Tensor(1000.04, mstype.float32),
|
||||
Tensor(1001.04, mstype.float32),
|
||||
|
@ -68,8 +69,6 @@ def test_range_precision_end_equals_last_element():
|
|||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_range_int():
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
|
||||
range_net = RangeNet()
|
||||
ms_out = range_net(Tensor(2, mstype.int32), Tensor(5, mstype.int32), Tensor(1, mstype.int32)).asnumpy()
|
||||
np_expected = np.array([2, 3, 4])
|
||||
|
@ -94,8 +93,6 @@ def test_range_int():
|
|||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_range_float():
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
|
||||
range_net = RangeNet()
|
||||
ms_out = range_net(Tensor(2.3, mstype.float32), Tensor(5.5, mstype.float32), Tensor(1.2, mstype.float32)).asnumpy()
|
||||
np_expected = np.array([2.3, 3.5, 4.7])
|
||||
|
|
|
@ -39,8 +39,6 @@ x3 = np.array([[True, True], [True, False], [False, False]])
|
|||
axis3 = 1
|
||||
keep_dims3 = False
|
||||
|
||||
context.set_context(device_target='GPU')
|
||||
|
||||
|
||||
class ReduceAll(nn.Cell):
|
||||
def __init__(self):
|
||||
|
@ -75,6 +73,7 @@ class ReduceAll(nn.Cell):
|
|||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_ReduceAll():
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
|
||||
reduce_all = ReduceAll()
|
||||
output = reduce_all()
|
||||
|
||||
|
|
|
@ -39,8 +39,6 @@ x3 = np.array([[True, True], [True, False], [False, False]])
|
|||
axis3 = 1
|
||||
keep_dims3 = False
|
||||
|
||||
context.set_context(device_target='GPU')
|
||||
|
||||
|
||||
class ReduceAny(nn.Cell):
|
||||
def __init__(self):
|
||||
|
@ -75,6 +73,7 @@ class ReduceAny(nn.Cell):
|
|||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_ReduceAny():
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
|
||||
reduce_any = ReduceAny()
|
||||
output = reduce_any()
|
||||
|
||||
|
|
|
@ -63,8 +63,6 @@ axis8 = ()
|
|||
np_axis8 = None
|
||||
keep_dims8 = True
|
||||
|
||||
context.set_context(device_target='GPU')
|
||||
|
||||
|
||||
class ReduceMax(nn.Cell):
|
||||
def __init__(self):
|
||||
|
@ -123,6 +121,7 @@ class ReduceMax(nn.Cell):
|
|||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_ReduceMax():
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
|
||||
reduce_max = ReduceMax()
|
||||
output = reduce_max()
|
||||
|
||||
|
|
|
@ -84,8 +84,6 @@ axis14 = ()
|
|||
np_axis14 = None
|
||||
keep_dims14 = True
|
||||
|
||||
context.set_context(device_target='GPU')
|
||||
|
||||
|
||||
class ReduceMean(nn.Cell):
|
||||
def __init__(self):
|
||||
|
@ -174,6 +172,7 @@ class ReduceMean(nn.Cell):
|
|||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_ReduceMean():
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
|
||||
reduce_mean = ReduceMean()
|
||||
output = reduce_mean()
|
||||
|
||||
|
|
|
@ -63,8 +63,6 @@ axis8 = ()
|
|||
np_axis8 = None
|
||||
keep_dims8 = True
|
||||
|
||||
context.set_context(device_target='GPU')
|
||||
|
||||
|
||||
class ReduceMin(nn.Cell):
|
||||
def __init__(self):
|
||||
|
@ -123,6 +121,7 @@ class ReduceMin(nn.Cell):
|
|||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_ReduceMin():
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
|
||||
reduce_min = ReduceMin()
|
||||
output = reduce_min()
|
||||
|
||||
|
|
|
@ -86,8 +86,6 @@ axis14 = ()
|
|||
np_axis14 = None
|
||||
keep_dims14 = True
|
||||
|
||||
context.set_context(device_target='GPU')
|
||||
|
||||
|
||||
class ReduceSum(nn.Cell):
|
||||
def __init__(self):
|
||||
|
@ -176,6 +174,7 @@ class ReduceSum(nn.Cell):
|
|||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_ReduceSum():
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
|
||||
reduce_sum = ReduceSum()
|
||||
output = reduce_sum()
|
||||
|
||||
|
|
|
@ -101,6 +101,7 @@ def test_reverse_v2_int64():
|
|||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_reverse_v2_invalid_axis():
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
x = Tensor(np.arange(60).reshape(1, 2, 3, 2, 5).astype(np.int32))
|
||||
|
||||
with pytest.raises(ValueError) as info:
|
||||
|
|
|
@ -135,6 +135,7 @@ def test_sampled_softmax_loss_none_sampler():
|
|||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_sampledsoftmaxloss_reduction_invalid():
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
|
||||
# Check 'reduction'
|
||||
with pytest.raises(ValueError):
|
||||
nn.SampledSoftmaxLoss(num_sampled=4, num_classes=7, reduction="")
|
||||
|
|
|
@ -62,6 +62,7 @@ def test_slice_4d():
|
|||
x_np = np.random.randn(32, 24, 224, 224).astype(np.float32)
|
||||
output_np = x_np[:, 11:18, :, :]
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
x_ms = Tensor(x_np)
|
||||
net = SliceNet()
|
||||
output_ms = net(x_ms)
|
||||
|
|
|
@ -22,7 +22,7 @@ from mindspore import Tensor
|
|||
from mindspore.common.api import ms_function
|
||||
from mindspore.ops.operations import _grad_ops as G
|
||||
|
||||
context.set_context(device_target='GPU')
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
|
||||
|
||||
|
||||
class SliceGrad(nn.Cell):
|
||||
|
|
|
@ -85,6 +85,7 @@ class Transpose_dynamic2(nn.Cell):
|
|||
return (out_1, out_2)
|
||||
|
||||
def transpose1(nptype):
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
|
||||
transpose = Transpose(nptype)
|
||||
output = transpose()
|
||||
expect0 = np.array([[[0, 6, 12, 18, 24],
|
||||
|
|
|
@ -23,7 +23,6 @@ from mindspore.common import dtype as mstype
|
|||
from mindspore.ops.operations import _inner_ops as inner
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
context.set_context(device_target='GPU')
|
||||
|
||||
class UnsortedSegmentSumNet(nn.Cell):
|
||||
def __init__(self, num_segments):
|
||||
|
@ -39,6 +38,7 @@ class UnsortedSegmentSumNet(nn.Cell):
|
|||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_1D():
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
|
||||
input_x = Tensor([1, 2, 3, 4], mstype.float32)
|
||||
segment_ids = Tensor([0, 0, 1, 2], mstype.int32)
|
||||
num_segments = 4
|
||||
|
@ -53,6 +53,7 @@ def test_1D():
|
|||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_2D():
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
|
||||
input_x = Tensor([[1, 2, 3, 4],
|
||||
[5, 6, 7, 8],
|
||||
[9, 10, 11, 12]], mstype.float32)
|
||||
|
@ -72,6 +73,7 @@ def test_2D():
|
|||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_3D():
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
|
||||
input_x = Tensor(np.arange(4 * 5 * 3, dtype=np.float32).reshape(4, 5, 3))
|
||||
segment_ids = Tensor([2, 1, 1, -1], mstype.int32)
|
||||
num_segments = 5
|
||||
|
|
|
@ -157,6 +157,7 @@ def test_zeros_like_dynamic_float64():
|
|||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_zeros_like_dynamic_multiple_inputs():
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
net = ZerosLikeDynamicNet()
|
||||
|
||||
x = Tensor(np.arange(4).reshape(4).astype(np.float32))
|
||||
|
|
|
@ -191,6 +191,7 @@ class ArgMaxWithValueFactory(OpsFactory):
|
|||
return input_grad.asnumpy()
|
||||
|
||||
def forward_cmp(self):
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target=context.get_context('device_target'))
|
||||
out_numpy = self.forward_numpy_impl()
|
||||
out_mindspore = self.forward_mindspore_impl()
|
||||
allclose_nparray(out_numpy[0], out_mindspore[0], self.loss, self.loss)
|
||||
|
|
|
@ -18,7 +18,10 @@ import numpy as np
|
|||
import pytest
|
||||
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore import context, Tensor
|
||||
|
||||
context.set_context(mode=context.PYNATIVE_MODE)
|
||||
|
||||
|
||||
weight = Tensor(np.ones([2, 2]))
|
||||
conv2 = nn.Conv2d(3, 64, (3, 3), stride=2, padding=0)
|
||||
|
|
|
@ -34,6 +34,8 @@ from ....mindspore_test_framework.pipeline.forward.compile_forward \
|
|||
from ....mindspore_test_framework.pipeline.forward.verify_exception \
|
||||
import pipeline_for_verify_exception_for_case_by_case_config
|
||||
|
||||
context.set_context(mode=context.PYNATIVE_MODE)
|
||||
|
||||
|
||||
def test_expand_dims():
|
||||
input_tensor = Tensor(np.array([[2, 2], [2, 2]]))
|
||||
|
|
|
@ -16,13 +16,15 @@
|
|||
import numpy as np
|
||||
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore import context, Tensor
|
||||
from mindspore.common import dtype as mstype
|
||||
from mindspore.ops import operations as P
|
||||
from ....mindspore_test_framework.mindspore_test import mindspore_test
|
||||
from ....mindspore_test_framework.pipeline.forward.compile_forward \
|
||||
import pipeline_for_compile_forward_ge_graph_for_case_by_case_config_exception
|
||||
|
||||
context.set_context(mode=context.PYNATIVE_MODE)
|
||||
|
||||
|
||||
class ExpandDimsNet(nn.Cell):
|
||||
def __init__(self, axis):
|
||||
|
|
|
@ -27,7 +27,7 @@ from ....mindspore_test_framework.mindspore_test import mindspore_test
|
|||
from ....mindspore_test_framework.pipeline.forward.compile_forward \
|
||||
import pipeline_for_compile_forward_ge_graph_for_case_by_case_config
|
||||
|
||||
|
||||
context.set_context(mode=context.PYNATIVE_MODE)
|
||||
grad_by_list_with_sens = C.GradOperation(get_by_list=True, sens_param=True)
|
||||
|
||||
|
||||
|
|
|
@ -18,7 +18,10 @@ import numpy as np
|
|||
import pytest
|
||||
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore import context, Tensor
|
||||
|
||||
context.set_context(mode=context.PYNATIVE_MODE)
|
||||
|
||||
|
||||
weight = Tensor(np.ones([2, 2]))
|
||||
conv2 = nn.Conv2d(3, 64, (3, 3), stride=2, padding=0)
|
||||
|
|
Loading…
Reference in New Issue