!18807 Remove create dataset of reset34

Merge pull request !18807 from zhouyaqiang0/master
This commit is contained in:
i-robot 2021-06-24 09:12:17 +00:00 committed by Gitee
commit 19753d1755
3 changed files with 2 additions and 61 deletions

View File

@ -49,7 +49,7 @@ if args_opt.net in ("resnet18", "resnet50"):
elif args_opt.net == "resnet34":
from src.resnet import resnet34 as resnet
from src.config import config_resnet34 as config
from src.dataset import create_dataset_resnet34 as create_dataset
from src.dataset import create_dataset2 as create_dataset
elif args_opt.net == "resnet101":
from src.resnet import resnet101 as resnet
from src.config import config3 as config

View File

@ -400,65 +400,6 @@ def create_dataset4(dataset_path, do_train, repeat_num=1, batch_size=32, target=
return data_set
def create_dataset_resnet34(dataset_path, do_train, repeat_num=1, batch_size=32):
"""
create a train or eval imagenet2012 dataset for resnet34
Args:
dataset_path(string): the path of dataset.
do_train(bool): whether dataset is used for train or eval.
repeat_num(int): the repeat times of dataset. Default: 1
batch_size(int): the batch size of dataset. Default: 32
Returns:
data_set
"""
device_id = int(os.getenv('DEVICE_ID'))
device_num = int(os.getenv('RANK_SIZE'))
if device_num == 1:
data_set = ds.ImageFolderDataset(dataset_path)
else:
if do_train:
data_set = ds.ImageFolderDataset(dataset_path, shuffle=True,
num_shards=device_num, shard_id=device_id)
else:
data_set = ds.ImageFolderDataset(dataset_path)
image_size = 224
mean = [0.485 * 255, 0.456 * 255, 0.406 * 255]
std = [0.229 * 255, 0.224 * 255, 0.225 * 255]
# define map operations
if do_train:
trans = [
C.RandomCropDecodeResize(image_size, scale=(0.08, 1.0), ratio=(0.75, 1.333)),
C.RandomHorizontalFlip(prob=0.5),
C.Normalize(mean=mean, std=std),
C.HWC2CHW()
]
else:
trans = [
C.Decode(),
C.Resize(256),
C.CenterCrop(image_size),
C.Normalize(mean=mean, std=std),
C.HWC2CHW()
]
type_cast_op = C2.TypeCast(mstype.int32)
data_set = data_set.map(operations=trans, input_columns="image", num_parallel_workers=8)
data_set = data_set.map(operations=type_cast_op, input_columns="label", num_parallel_workers=8)
# apply batch operations
data_set = data_set.batch(batch_size, drop_remainder=True)
# apply dataset repeat operation
data_set = data_set.repeat(repeat_num)
return data_set
def _get_rank_info():
"""
get rank size and rank id

View File

@ -86,7 +86,7 @@ if args_opt.net in ("resnet18", "resnet50"):
elif args_opt.net == "resnet34":
from src.resnet import resnet34 as resnet
from src.config import config_resnet34 as config
from src.dataset import create_dataset_resnet34 as create_dataset
from src.dataset import create_dataset2 as create_dataset
elif args_opt.net == "resnet101":
from src.resnet import resnet101 as resnet
from src.config import config3 as config