!16895 cnnctc and warpctc add 310 infer - amend lenet and mobilenetv2 readme
From: @chenweitao_295 Reviewed-by: @c_34,@oacjiewen Signed-off-by: @c_34
This commit is contained in:
commit
1691ab80de
|
@ -15,10 +15,15 @@
|
|||
- [Distributed Training](#distributed-training)
|
||||
- [Evaluation Process](#evaluation-process)
|
||||
- [Evaluation](#evaluation)
|
||||
- [Inference Process](#inference-process)
|
||||
- [Export MindIR](#export-mindir)
|
||||
- [Infer on Ascend310](#infer-on-ascend310)
|
||||
- [result](#result)
|
||||
- [Model Description](#model-description)
|
||||
- [Performance](#performance)
|
||||
- [Training Performance](#training-performance)
|
||||
- [Evaluation Performance](#evaluation-performance)
|
||||
- [Inference Performance](#evaluation-performance)
|
||||
- [Inference Performance](#inference-performance)
|
||||
- [How to use](#how-to-use)
|
||||
- [Inference](#inference)
|
||||
- [Continue Training on the Pretrained Model](#continue-training-on-the-pretrained-model)
|
||||
|
@ -145,7 +150,11 @@ The entire code structure is as following:
|
|||
|---README.md // descriptions about cnnctc
|
||||
|---train.py // train scripts
|
||||
|---eval.py // eval scripts
|
||||
|---export.py // export scripts
|
||||
|---pstprocess.py // postprocess scripts
|
||||
|---ascend310_infer // application for 310 inference
|
||||
|---scripts
|
||||
|---run_infer_310.sh // shell script for infer on ascend310
|
||||
|---run_standalone_train_ascend.sh // shell script for standalone on ascend
|
||||
|---run_distribute_train_ascend.sh // shell script for distributed on ascend
|
||||
|---run_eval_ascend.sh // shell script for eval on ascend
|
||||
|
@ -251,6 +260,39 @@ bash scripts/run_eval_ascend.sh $TRAINED_CKPT
|
|||
|
||||
The model will be evaluated on the IIIT dataset, sample results and overall accuracy will be printed.
|
||||
|
||||
## [Inference process](#contents)
|
||||
|
||||
### Export MindIR
|
||||
|
||||
```shell
|
||||
python export.py --ckpt_file [CKPT_PATH] --file_name [FILE_NAME] --file_format [EXPORT_FORMAT]
|
||||
```
|
||||
|
||||
The ckpt_file parameter is required,
|
||||
The file_name parameter is file name after export.
|
||||
`EXPORT_FORMAT` should be in ["AIR", "MINDIR"]
|
||||
|
||||
### Infer on Ascend310
|
||||
|
||||
Before performing inference, the mindir file must be exported by `export.py` script. We only provide an example of inference using MINDIR model.
|
||||
Current batch_size can only be set to 1, modify the parameter `TEST_BATCH_SIZE` in `config.py` to 1 before export the model
|
||||
|
||||
```shell
|
||||
# Ascend310 inference
|
||||
bash run_infer_310.sh [MINDIR_PATH] [DATA_PATH] [DVPP] [DEVICE_ID]
|
||||
```
|
||||
|
||||
- `DVPP` is mandatory, and must choose from ["DVPP", "CPU"], it's case-insensitive. CNNCTC only support CPU mode .
|
||||
- `DEVICE_ID` is optional, default value is 0.
|
||||
|
||||
### result
|
||||
|
||||
Inference result is saved in current path, you can find result like this in acc.log file.
|
||||
|
||||
```bash
|
||||
'Accuracy': 0.8546
|
||||
```
|
||||
|
||||
# [Model Description](#contents)
|
||||
|
||||
## [Performance](#contents)
|
||||
|
@ -286,6 +328,20 @@ The model will be evaluated on the IIIT dataset, sample results and overall accu
|
|||
| Accuracy | 85% |
|
||||
| Model for inference | 675M (.ckpt file) |
|
||||
|
||||
### Inference Performance
|
||||
|
||||
| Parameters | Ascend |
|
||||
| ------------------- | --------------------------- |
|
||||
| Model Version | CNNCTC |
|
||||
| Resource | Ascend 310; CentOS 3.10 |
|
||||
| Uploaded Date | 19/05/2021 (month/day/year) |
|
||||
| MindSpore Version | 1.2.0 |
|
||||
| Dataset | IIIT5K |
|
||||
| batch_size | 1 |
|
||||
| outputs | Accuracy |
|
||||
| Accuracy | Accuracy=0.8546 |
|
||||
| Model for inference | 675M(.ckpt file) |
|
||||
|
||||
## [How to use](#contents)
|
||||
|
||||
### Inference
|
||||
|
|
|
@ -18,10 +18,15 @@
|
|||
- [训练结果](#训练结果)
|
||||
- [评估过程](#评估过程)
|
||||
- [评估](#评估)
|
||||
- [推理过程](#推理过程)
|
||||
- [导出MindIR](#导出mindir)
|
||||
- [在Ascend310执行推理](#在ascend310执行推理)
|
||||
- [结果](#结果)
|
||||
- [模型描述](#模型描述)
|
||||
- [性能](#性能)
|
||||
- [训练性能](#训练性能)
|
||||
- [评估性能](#评估性能)
|
||||
- [推理性能](#推理性能)
|
||||
- [用法](#用法)
|
||||
- [推理](#推理)
|
||||
- [在预训练模型上继续训练](#在预训练模型上继续训练)
|
||||
|
@ -148,10 +153,14 @@ bash scripts/run_eval_ascend.sh $TRAINED_CKPT
|
|||
|---README.md // CNN+CTC相关描述
|
||||
|---train.py // 训练脚本
|
||||
|---eval.py // 评估脚本
|
||||
|---export.py // 模型导出脚本
|
||||
|---postprocess.py // 推理后处理脚本
|
||||
|---ascend310_infer // 用于310推理
|
||||
|---scripts
|
||||
|---run_standalone_train_ascend.sh // Ascend单机shell脚本
|
||||
|---run_distribute_train_ascend.sh // Ascend分布式shell脚本
|
||||
|---run_eval_ascend.sh // Ascend评估shell脚本
|
||||
|---run_infer_310.sh // Ascend310推理的shell脚本
|
||||
|---src
|
||||
|---__init__.py // init文件
|
||||
|---cnn_ctc.py // cnn_ctc网络
|
||||
|
@ -255,6 +264,39 @@ bash scripts/run_eval_ascend.sh $TRAINED_CKPT
|
|||
|
||||
在IIIT数据集上评估模型,并打印样本结果和总准确率。
|
||||
|
||||
## 推理过程
|
||||
|
||||
### 导出MindIR
|
||||
|
||||
```shell
|
||||
python export.py --ckpt_file [CKPT_PATH] --file_name [FILE_NAME] --file_format [EXPORT_FORMAT]
|
||||
```
|
||||
|
||||
参数ckpt_file为必填项,
|
||||
参数file_name为导出后文件名,
|
||||
`EXPORT_FORMAT` 可选 ["AIR", "MINDIR"].
|
||||
|
||||
### 在Ascend310执行推理
|
||||
|
||||
在执行推理前,mindir文件必须通过`export.py`脚本导出。以下展示了使用mindir模型执行推理的示例。
|
||||
目前仅支持batch_size为1的推理,导出模型前请修改`config.py`中的参数`TEST_BATCH_SIZE`为1。
|
||||
|
||||
```shell
|
||||
# Ascend310 inference
|
||||
bash run_infer_310.sh [MINDIR_PATH] [DATA_PATH] [DVPP] [DEVICE_ID]
|
||||
```
|
||||
|
||||
- `DVPP` 为必填项,需要在["DVPP", "CPU"]选择,大小写均可。CNNCTC目前仅支持使用CPU算子进行推理。
|
||||
- `DEVICE_ID` 可选,默认值为0。
|
||||
|
||||
### 结果
|
||||
|
||||
推理结果保存在脚本执行的当前路径,你可以在acc.log中看到以下精度计算结果。
|
||||
|
||||
```bash
|
||||
'Accuracy':0.8546
|
||||
```
|
||||
|
||||
# 模型描述
|
||||
|
||||
## 性能
|
||||
|
@ -290,6 +332,20 @@ bash scripts/run_eval_ascend.sh $TRAINED_CKPT
|
|||
| 准确率 | 85% |
|
||||
| 推理模型 | 675M(.ckpt文件) |
|
||||
|
||||
### 推理性能
|
||||
|
||||
| 参数 | Ascend |
|
||||
| -------------- | ---------------------------|
|
||||
| 模型版本 | CNNCTC |
|
||||
| 资源 | Ascend 310;系统 CentOS 3.10 |
|
||||
| 上传日期 | 2021-05-19 |
|
||||
| MindSpore版本 | 1.2.0 |
|
||||
| 数据集 | IIIT5K |
|
||||
| batch_size | 1 |
|
||||
| 输出 | Accuracy |
|
||||
| 准确率 | Accuracy=0.8546 |
|
||||
| 推理模型 | 675M(.ckpt文件) |
|
||||
|
||||
## 用法
|
||||
|
||||
### 推理
|
||||
|
|
|
@ -0,0 +1,14 @@
|
|||
cmake_minimum_required(VERSION 3.14.1)
|
||||
project(Ascend310Infer)
|
||||
add_compile_definitions(_GLIBCXX_USE_CXX11_ABI=0)
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -O0 -g -std=c++17 -Werror -Wall -fPIE -Wl,--allow-shlib-undefined")
|
||||
set(PROJECT_SRC_ROOT ${CMAKE_CURRENT_LIST_DIR}/)
|
||||
option(MINDSPORE_PATH "mindspore install path" "")
|
||||
include_directories(${MINDSPORE_PATH})
|
||||
include_directories(${MINDSPORE_PATH}/include)
|
||||
include_directories(${PROJECT_SRC_ROOT})
|
||||
find_library(MS_LIB libmindspore.so ${MINDSPORE_PATH}/lib)
|
||||
file(GLOB_RECURSE MD_LIB ${MINDSPORE_PATH}/_c_dataengine*)
|
||||
|
||||
add_executable(main src/main.cc src/utils.cc)
|
||||
target_link_libraries(main ${MS_LIB} ${MD_LIB} gflags)
|
|
@ -0,0 +1,23 @@
|
|||
#!/bin/bash
|
||||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
if [ ! -d out ]; then
|
||||
mkdir out
|
||||
fi
|
||||
cd out || exit
|
||||
cmake .. \
|
||||
-DMINDSPORE_PATH="`pip show mindspore-ascend | grep Location | awk '{print $2"/mindspore"}' | xargs realpath`"
|
||||
make
|
|
@ -0,0 +1,32 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_INFERENCE_UTILS_H_
|
||||
#define MINDSPORE_INFERENCE_UTILS_H_
|
||||
|
||||
#include <sys/stat.h>
|
||||
#include <dirent.h>
|
||||
#include <vector>
|
||||
#include <string>
|
||||
#include <memory>
|
||||
#include "include/api/types.h"
|
||||
|
||||
std::vector<std::string> GetAllFiles(std::string_view dirName);
|
||||
DIR *OpenDir(std::string_view dirName);
|
||||
std::string RealPath(std::string_view path);
|
||||
mindspore::MSTensor ReadFileToTensor(const std::string &file);
|
||||
int WriteResult(const std::string& imageFile, const std::vector<mindspore::MSTensor> &outputs);
|
||||
#endif
|
|
@ -0,0 +1,198 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#include <sys/time.h>
|
||||
#include <gflags/gflags.h>
|
||||
#include <dirent.h>
|
||||
#include <math.h>
|
||||
#include <iostream>
|
||||
#include <string>
|
||||
#include <algorithm>
|
||||
#include <iosfwd>
|
||||
#include <vector>
|
||||
#include <fstream>
|
||||
#include <sstream>
|
||||
|
||||
#include "include/api/model.h"
|
||||
#include "include/api/context.h"
|
||||
#include "include/api/types.h"
|
||||
#include "include/api/serialization.h"
|
||||
#include "include/dataset/transforms.h"
|
||||
#include "include/dataset/vision_ascend.h"
|
||||
#include "include/dataset/execute.h"
|
||||
#include "include/dataset/vision.h"
|
||||
#include "inc/utils.h"
|
||||
|
||||
using mindspore::Context;
|
||||
using mindspore::Serialization;
|
||||
using mindspore::Model;
|
||||
using mindspore::Status;
|
||||
using mindspore::ModelType;
|
||||
using mindspore::GraphCell;
|
||||
using mindspore::kSuccess;
|
||||
using mindspore::MSTensor;
|
||||
using mindspore::DataType;
|
||||
using mindspore::dataset::Execute;
|
||||
using mindspore::dataset::InterpolationMode;
|
||||
using mindspore::dataset::TensorTransform;
|
||||
using mindspore::dataset::vision::Pad;
|
||||
using mindspore::dataset::vision::Resize;
|
||||
using mindspore::dataset::vision::HWC2CHW;
|
||||
using mindspore::dataset::vision::Normalize;
|
||||
using mindspore::dataset::vision::Decode;
|
||||
|
||||
|
||||
DEFINE_string(mindir_path, "", "mindir path");
|
||||
DEFINE_string(dataset_path, ".", "dataset path");
|
||||
DEFINE_int32(device_id, 0, "device id");
|
||||
DEFINE_int32(image_height, 32, "image height");
|
||||
DEFINE_int32(image_width, 100, "image width");
|
||||
|
||||
int PadImage(const MSTensor &input, MSTensor *output) {
|
||||
std::shared_ptr<TensorTransform> normalize(new Normalize({127.5, 127.5, 127.5},
|
||||
{127.5, 127.5, 127.5}));
|
||||
Execute composeNormalize({normalize});
|
||||
std::vector<int64_t> shape = input.Shape();
|
||||
auto imgResize = MSTensor();
|
||||
auto imgNormalize = MSTensor();
|
||||
int paddingSize;
|
||||
int NewWidth;
|
||||
float ratio;
|
||||
ratio = static_cast<float> (shape[1]) / static_cast<float> (shape[0]);
|
||||
NewWidth = ceil(FLAGS_image_height * ratio);
|
||||
paddingSize = FLAGS_image_width - NewWidth;
|
||||
if (NewWidth > FLAGS_image_width) {
|
||||
std::shared_ptr<TensorTransform> resize(new Resize({FLAGS_image_height, FLAGS_image_width},
|
||||
InterpolationMode::kArea));
|
||||
Execute composeResize({resize});
|
||||
composeResize(input, &imgResize);
|
||||
composeNormalize(imgResize, output);
|
||||
} else {
|
||||
std::shared_ptr<TensorTransform> resize(new Resize({FLAGS_image_height, NewWidth},
|
||||
InterpolationMode::kArea));
|
||||
Execute composeResize({resize});
|
||||
composeResize(input, &imgResize);
|
||||
composeNormalize(imgResize, &imgNormalize);
|
||||
std::shared_ptr<TensorTransform> pad(new Pad({0, 0, paddingSize, 0}));
|
||||
Execute composePad({pad});
|
||||
composePad(imgNormalize, output);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
int main(int argc, char **argv) {
|
||||
gflags::ParseCommandLineFlags(&argc, &argv, true);
|
||||
if (RealPath(FLAGS_mindir_path).empty()) {
|
||||
std::cout << "Invalid mindir" << std::endl;
|
||||
return 1;
|
||||
}
|
||||
|
||||
auto context = std::make_shared<Context>();
|
||||
auto ascend310 = std::make_shared<mindspore::Ascend310DeviceInfo>();
|
||||
ascend310->SetDeviceID(FLAGS_device_id);
|
||||
ascend310->SetPrecisionMode("allow_fp32_to_fp16");
|
||||
ascend310->SetOpSelectImplMode("high_precision");
|
||||
ascend310->SetBufferOptimizeMode("off_optimize");
|
||||
context->MutableDeviceInfo().push_back(ascend310);
|
||||
mindspore::Graph graph;
|
||||
Serialization::Load(FLAGS_mindir_path, ModelType::kMindIR, &graph);
|
||||
Model model;
|
||||
Status ret = model.Build(GraphCell(graph), context);
|
||||
if (ret != kSuccess) {
|
||||
std::cout << "ERROR: Build failed." << std::endl;
|
||||
return 1;
|
||||
}
|
||||
|
||||
auto all_files = GetAllFiles(FLAGS_dataset_path);
|
||||
std::map<double, double> costTime_map;
|
||||
size_t size = all_files.size();
|
||||
std::shared_ptr<TensorTransform> decode(new Decode());
|
||||
std::shared_ptr<TensorTransform> hwc2chw(new HWC2CHW());
|
||||
Execute composeDecode({decode});
|
||||
Execute composeTranspose({hwc2chw});
|
||||
for (size_t i = 0; i < size; ++i) {
|
||||
struct timeval start = {0};
|
||||
struct timeval end = {0};
|
||||
double startTimeMs;
|
||||
double endTimeMs;
|
||||
std::vector<MSTensor> inputs;
|
||||
std::vector<MSTensor> outputs;
|
||||
auto imgDecode = MSTensor();
|
||||
auto imgTranspose = MSTensor();
|
||||
auto imgPad = MSTensor();
|
||||
auto img = MSTensor();
|
||||
composeDecode(ReadFileToTensor(all_files[i]), &imgDecode);
|
||||
std::vector<int64_t> shape = imgDecode.Shape();
|
||||
float ratio;
|
||||
int NewWidth;
|
||||
ratio = static_cast<float> (shape[1]) / static_cast<float> (shape[0]);
|
||||
NewWidth = ceil(FLAGS_image_height * ratio);
|
||||
PadImage(imgDecode, &imgPad);
|
||||
composeTranspose(imgPad, &img);
|
||||
if (NewWidth < FLAGS_image_width) {
|
||||
int img_size = FLAGS_image_width * FLAGS_image_height * 3;
|
||||
void *netOutput;
|
||||
float *address;
|
||||
netOutput = img.MutableData();
|
||||
address = static_cast<float *>(netOutput);
|
||||
for (int j = 0; j <= img_size; j += FLAGS_image_width) {
|
||||
float temp = 0;
|
||||
address = address + NewWidth - 1;
|
||||
temp = *address;
|
||||
int n = NewWidth;
|
||||
address++;
|
||||
while (n < FLAGS_image_width) {
|
||||
*address = temp;
|
||||
address++;
|
||||
n++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<MSTensor> model_inputs = model.GetInputs();
|
||||
inputs.emplace_back(model_inputs[0].Name(), model_inputs[0].DataType(), model_inputs[0].Shape(),
|
||||
img.Data().get(), img.DataSize());
|
||||
gettimeofday(&start, nullptr);
|
||||
ret = model.Predict(inputs, &outputs);
|
||||
gettimeofday(&end, nullptr);
|
||||
if (ret != kSuccess) {
|
||||
std::cout << "Predict " << all_files[i] << " failed." << std::endl;
|
||||
return 1;
|
||||
}
|
||||
startTimeMs = (1.0 * start.tv_sec * 1000000 + start.tv_usec) / 1000;
|
||||
endTimeMs = (1.0 * end.tv_sec * 1000000 + end.tv_usec) / 1000;
|
||||
costTime_map.insert(std::pair<double, double>(startTimeMs, endTimeMs));
|
||||
WriteResult(all_files[i], outputs);
|
||||
}
|
||||
double average = 0.0;
|
||||
int inferCount = 0;
|
||||
|
||||
for (auto iter = costTime_map.begin(); iter != costTime_map.end(); iter++) {
|
||||
double diff = 0.0;
|
||||
diff = iter->second - iter->first;
|
||||
average += diff;
|
||||
inferCount++;
|
||||
}
|
||||
average = average / inferCount;
|
||||
std::stringstream timeCost;
|
||||
timeCost << "NN inference cost average time: "<< average << " ms of infer_count " << inferCount << std::endl;
|
||||
std::cout << "NN inference cost average time: "<< average << "ms of infer_count " << inferCount << std::endl;
|
||||
std::string fileName = "./time_Result" + std::string("/test_perform_static.txt");
|
||||
std::ofstream fileStream(fileName.c_str(), std::ios::trunc);
|
||||
fileStream << timeCost.str();
|
||||
fileStream.close();
|
||||
costTime_map.clear();
|
||||
return 0;
|
||||
}
|
|
@ -0,0 +1,130 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "inc/utils.h"
|
||||
|
||||
#include <fstream>
|
||||
#include <algorithm>
|
||||
#include <iostream>
|
||||
|
||||
using mindspore::MSTensor;
|
||||
using mindspore::DataType;
|
||||
|
||||
std::vector<std::string> GetAllFiles(std::string_view dirName) {
|
||||
struct dirent *filename;
|
||||
DIR *dir = OpenDir(dirName);
|
||||
if (dir == nullptr) {
|
||||
return {};
|
||||
}
|
||||
std::vector<std::string> res;
|
||||
while ((filename = readdir(dir)) != nullptr) {
|
||||
std::string dName = std::string(filename->d_name);
|
||||
if (dName == "." || dName == ".." || filename->d_type != DT_REG) {
|
||||
continue;
|
||||
}
|
||||
res.emplace_back(std::string(dirName) + "/" + filename->d_name);
|
||||
}
|
||||
std::sort(res.begin(), res.end());
|
||||
for (auto &f : res) {
|
||||
std::cout << "image file: " << f << std::endl;
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
int WriteResult(const std::string& imageFile, const std::vector<MSTensor> &outputs) {
|
||||
std::string homePath = "./result_Files";
|
||||
for (size_t i = 0; i < outputs.size(); ++i) {
|
||||
size_t outputSize;
|
||||
std::shared_ptr<const void> netOutput;
|
||||
netOutput = outputs[i].Data();
|
||||
outputSize = outputs[i].DataSize();
|
||||
int pos = imageFile.rfind('/');
|
||||
std::string fileName(imageFile, pos + 1);
|
||||
fileName.replace(fileName.find('.'), fileName.size() - fileName.find('.'), ".bin");
|
||||
std::string outFileName = homePath + "/" + fileName;
|
||||
FILE * outputFile = fopen(outFileName.c_str(), "wb");
|
||||
fwrite(netOutput.get(), outputSize, sizeof(char), outputFile);
|
||||
fclose(outputFile);
|
||||
outputFile = nullptr;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
mindspore::MSTensor ReadFileToTensor(const std::string &file) {
|
||||
if (file.empty()) {
|
||||
std::cout << "Pointer file is nullptr" << std::endl;
|
||||
return mindspore::MSTensor();
|
||||
}
|
||||
|
||||
std::ifstream ifs(file);
|
||||
if (!ifs.good()) {
|
||||
std::cout << "File: " << file << " is not exist" << std::endl;
|
||||
return mindspore::MSTensor();
|
||||
}
|
||||
|
||||
if (!ifs.is_open()) {
|
||||
std::cout << "File: " << file << "open failed" << std::endl;
|
||||
return mindspore::MSTensor();
|
||||
}
|
||||
|
||||
ifs.seekg(0, std::ios::end);
|
||||
size_t size = ifs.tellg();
|
||||
mindspore::MSTensor buffer(file, mindspore::DataType::kNumberTypeUInt8, {static_cast<int64_t>(size)}, nullptr, size);
|
||||
|
||||
ifs.seekg(0, std::ios::beg);
|
||||
ifs.read(reinterpret_cast<char *>(buffer.MutableData()), size);
|
||||
ifs.close();
|
||||
|
||||
return buffer;
|
||||
}
|
||||
|
||||
|
||||
DIR *OpenDir(std::string_view dirName) {
|
||||
if (dirName.empty()) {
|
||||
std::cout << " dirName is null ! " << std::endl;
|
||||
return nullptr;
|
||||
}
|
||||
std::string realPath = RealPath(dirName);
|
||||
struct stat s;
|
||||
lstat(realPath.c_str(), &s);
|
||||
if (!S_ISDIR(s.st_mode)) {
|
||||
std::cout << "dirName is not a valid directory !" << std::endl;
|
||||
return nullptr;
|
||||
}
|
||||
DIR *dir;
|
||||
dir = opendir(realPath.c_str());
|
||||
if (dir == nullptr) {
|
||||
std::cout << "Can not open dir " << dirName << std::endl;
|
||||
return nullptr;
|
||||
}
|
||||
std::cout << "Successfully opened the dir " << dirName << std::endl;
|
||||
return dir;
|
||||
}
|
||||
|
||||
std::string RealPath(std::string_view path) {
|
||||
char realPathMem[PATH_MAX] = {0};
|
||||
char *realPathRet = nullptr;
|
||||
realPathRet = realpath(path.data(), realPathMem);
|
||||
|
||||
if (realPathRet == nullptr) {
|
||||
std::cout << "File: " << path << " is not exist.";
|
||||
return "";
|
||||
}
|
||||
|
||||
std::string realPath(realPathMem);
|
||||
std::cout << path << " realpath is: " << realPath << std::endl;
|
||||
return realPath;
|
||||
}
|
|
@ -25,7 +25,7 @@ from src.cnn_ctc import CNNCTC_Model
|
|||
parser = argparse.ArgumentParser(description="CNNCTC_export")
|
||||
parser.add_argument("--device_id", type=int, default=0, help="Device id")
|
||||
parser.add_argument("--file_name", type=str, default="cnn_ctc", help="CNN&CTC output air name.")
|
||||
parser.add_argument("--file_format", type=str, choices=["AIR", "ONNX", "MINDIR"], default="AIR", help="file format")
|
||||
parser.add_argument("--file_format", type=str, choices=["AIR", "MINDIR"], default="AIR", help="file format")
|
||||
parser.add_argument("--device_target", type=str, choices=["Ascend", "GPU", "CPU"], default="Ascend",
|
||||
help="device target")
|
||||
parser.add_argument("--ckpt_file", type=str, default="./ckpts/cnn_ctc.ckpt", help="CNN&CTC ckpt file.")
|
||||
|
|
|
@ -0,0 +1,60 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""post process for 310 inference"""
|
||||
import os
|
||||
import argparse
|
||||
import numpy as np
|
||||
from src.config import Config_CNNCTC
|
||||
from src.util import CTCLabelConverter
|
||||
|
||||
parser = argparse.ArgumentParser(description="cnnctc acc calculation")
|
||||
parser.add_argument("--result_path", type=str, required=True, help="result files path.")
|
||||
parser.add_argument("--label_path", type=str, required=True, help="label path.")
|
||||
args = parser.parse_args()
|
||||
|
||||
|
||||
def calcul_acc(labels, preds):
|
||||
return sum(1 for x, y in zip(labels, preds) if x == y) / len(labels)
|
||||
|
||||
|
||||
def get_result(result_path, label_path):
|
||||
config = Config_CNNCTC()
|
||||
converter = CTCLabelConverter(config.CHARACTER)
|
||||
files = os.listdir(result_path)
|
||||
preds = []
|
||||
labels = []
|
||||
label_dict = {}
|
||||
with open(label_path, 'r') as f:
|
||||
lines = f.readlines()
|
||||
for line in lines:
|
||||
label_dict[line.split(',')[0]] = line.split(',')[1].replace('\n', '')
|
||||
for file in files:
|
||||
file_name = file.split('.')[0]
|
||||
label = label_dict[file_name + '.png']
|
||||
labels.append(label)
|
||||
resultPath = os.path.join(result_path, file)
|
||||
output = np.fromfile(resultPath, dtype=np.float32)
|
||||
output = np.reshape(output, (config.FINAL_FEATURE_WIDTH, config.NUM_CLASS))
|
||||
model_predict = np.squeeze(output)
|
||||
preds_size = np.array([model_predict.shape[0]] * 1)
|
||||
preds_index = np.argmax(model_predict, axis=1)
|
||||
preds_str = converter.decode(preds_index, preds_size)
|
||||
preds.append(preds_str[0].upper())
|
||||
acc = calcul_acc(labels, preds)
|
||||
print("TOtal data: {}, accuracy: {}".format(len(labels), acc))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
get_result(args.result_path, args.label_path)
|
|
@ -0,0 +1,108 @@
|
|||
#!/bin/bash
|
||||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
if [[ $# -lt 3 || $# -gt 4 ]]; then
|
||||
echo "Usage: bash run_infer_310.sh [MINDIR_PATH] [DATA_PATH] [LABEL_PATH] [DVPP] [DEVICE_ID]
|
||||
DVPP is mandatory, and must choose from [DVPP|CPU], it's case-insensitive
|
||||
DEVICE_ID is optional, it can be set by environment variable device_id, otherwise the value is zero"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
get_real_path(){
|
||||
if [ "${1:0:1}" == "/" ]; then
|
||||
echo "$1"
|
||||
else
|
||||
echo "$(realpath -m $PWD/$1)"
|
||||
fi
|
||||
}
|
||||
model=$(get_real_path $1)
|
||||
data_path=$(get_real_path $2)
|
||||
label_path=$(get_real_path $3)
|
||||
DVPP=${4^^}
|
||||
|
||||
device_id=0
|
||||
if [ $# == 5 ]; then
|
||||
device_id=$5
|
||||
fi
|
||||
|
||||
echo "mindir name: "$model
|
||||
echo "dataset path: "$data_path
|
||||
echo "label path: "$label_path
|
||||
echo "image process mode: "$DVPP
|
||||
echo "device id: "$device_id
|
||||
|
||||
export ASCEND_HOME=/usr/local/Ascend/
|
||||
if [ -d ${ASCEND_HOME}/ascend-toolkit ]; then
|
||||
export PATH=$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/ccec_compiler/bin:$ASCEND_HOME/ascend-toolkit/latest/atc/bin:$PATH
|
||||
export LD_LIBRARY_PATH=/usr/local/lib:$ASCEND_HOME/ascend-toolkit/latest/atc/lib64:$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/lib64:$ASCEND_HOME/driver/lib64:$ASCEND_HOME/add-ons:$LD_LIBRARY_PATH
|
||||
export TBE_IMPL_PATH=$ASCEND_HOME/ascend-toolkit/latest/opp/op_impl/built-in/ai_core/tbe
|
||||
export PYTHONPATH=${TBE_IMPL_PATH}:$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/python/site-packages:$PYTHONPATH
|
||||
export ASCEND_OPP_PATH=$ASCEND_HOME/ascend-toolkit/latest/opp
|
||||
else
|
||||
export PATH=$ASCEND_HOME/atc/ccec_compiler/bin:$ASCEND_HOME/atc/bin:$PATH
|
||||
export LD_LIBRARY_PATH=/usr/local/lib:$ASCEND_HOME/atc/lib64:$ASCEND_HOME/acllib/lib64:$ASCEND_HOME/driver/lib64:$ASCEND_HOME/add-ons:$LD_LIBRARY_PATH
|
||||
export PYTHONPATH=$ASCEND_HOME/atc/python/site-packages:$PYTHONPATH
|
||||
export ASCEND_OPP_PATH=$ASCEND_HOME/opp
|
||||
fi
|
||||
|
||||
function compile_app()
|
||||
{
|
||||
cd ../ascend310_infer || exit
|
||||
bash build.sh &> build.log
|
||||
}
|
||||
|
||||
function infer()
|
||||
{
|
||||
cd - || exit
|
||||
if [ -d result_Files ]; then
|
||||
rm -rf ./result_Files
|
||||
fi
|
||||
if [ -d time_Result ]; then
|
||||
rm -rf ./time_Result
|
||||
fi
|
||||
mkdir result_Files
|
||||
mkdir time_Result
|
||||
if [ "$DVPP" == "DVPP" ];then
|
||||
echo "CNNCTC ONLY SUPPORT CPU MODE"
|
||||
exit 1
|
||||
elif [ "$DVPP" == "CPU" ]; then
|
||||
../ascend310_infer/out/main --mindir_path=$model --dataset_path=$data_path --device_id=$device_id --image_height=32 --image_width=100 &> infer.log
|
||||
else
|
||||
echo "image process mode must be in [DVPP|CPU]"
|
||||
exit 1
|
||||
fi
|
||||
}
|
||||
|
||||
function cal_acc()
|
||||
{
|
||||
python3.7 ../postprocess.py --result_path=./result_Files --label_path=$label_path &> acc.log &
|
||||
}
|
||||
|
||||
compile_app
|
||||
if [ $? -ne 0 ]; then
|
||||
echo "compile app code failed"
|
||||
exit 1
|
||||
fi
|
||||
infer
|
||||
if [ $? -ne 0 ]; then
|
||||
echo " execute inference failed"
|
||||
exit 1
|
||||
fi
|
||||
cal_acc
|
||||
if [ $? -ne 0 ]; then
|
||||
echo "calculate accuracy failed"
|
||||
exit 1
|
||||
fi
|
|
@ -179,8 +179,8 @@ The ckpt_file parameter is required,
|
|||
|
||||
### Infer on Ascend310
|
||||
|
||||
Before performing inference, the mindir file must bu exported by `export.py` script. We only provide an example of inference using MINDIR model.
|
||||
Current batch_Size can only be set to 1.
|
||||
Before performing inference, the mindir file must be exported by `export.py` script. We only provide an example of inference using MINDIR model.
|
||||
Current batch_size can only be set to 1.
|
||||
|
||||
```shell
|
||||
# Ascend310 inference
|
||||
|
|
|
@ -181,8 +181,8 @@ python export.py --ckpt_file [CKPT_PATH] --file_name [FILE_NAME] --file_format [
|
|||
|
||||
### 在Ascend310执行推理
|
||||
|
||||
在执行推理前,mindir文件必须通过`export.py`脚本导出。以下展示了使用minir模型执行推理的示例。
|
||||
目前仅支持batch_Size为1的推理。
|
||||
在执行推理前,mindir文件必须通过`export.py`脚本导出。以下展示了使用mindir模型执行推理的示例。
|
||||
目前仅支持batch_size为1的推理。
|
||||
|
||||
```shell
|
||||
# Ascend310 inference
|
||||
|
|
|
@ -247,8 +247,8 @@ The ckpt_file parameter is required,
|
|||
|
||||
### Infer on Ascend310
|
||||
|
||||
Before performing inference, the mindir file must bu exported by `export.py` script. We only provide an example of inference using MINDIR model.
|
||||
Current batch_Size can only be set to 1.
|
||||
Before performing inference, the mindir file must be exported by `export.py` script. We only provide an example of inference using MINDIR model.
|
||||
Current batch_size can only be set to 1.
|
||||
|
||||
```shell
|
||||
# Ascend310 inference
|
||||
|
|
|
@ -254,8 +254,8 @@ python export.py --platform [PLATFORM] --ckpt_file [CKPT_PATH] --file_format [EX
|
|||
|
||||
### 在Ascend310执行推理
|
||||
|
||||
在执行推理前,mindir文件必须通过`export.py`脚本导出。以下展示了使用minir模型执行推理的示例。
|
||||
目前仅支持batch_Size为1的推理。
|
||||
在执行推理前,mindir文件必须通过`export.py`脚本导出。以下展示了使用mindir模型执行推理的示例。
|
||||
目前仅支持batch_size为1的推理。
|
||||
|
||||
```shell
|
||||
# Ascend310 inference
|
||||
|
|
|
@ -16,10 +16,15 @@
|
|||
- [Distributed Training](#distributed-training)
|
||||
- [Evaluation Process](#evaluation-process)
|
||||
- [Evaluation](#evaluation)
|
||||
- [Inference Process](#inference-process)
|
||||
- [Export MindIR](#export-mindir)
|
||||
- [Infer on Ascend310](#infer-on-ascend310)
|
||||
- [result](#result)
|
||||
- [Model Description](#model-description)
|
||||
- [Performance](#performance)
|
||||
- [Training Performance](#training-performance)
|
||||
- [Evaluation Performance](#evaluation-performance)
|
||||
- [Inference Performance](#inference-performance)
|
||||
- [Description of Random Situation](#description-of-random-situation)
|
||||
- [ModelZoo Homepage](#modelzoo-homepage)
|
||||
|
||||
|
@ -167,10 +172,12 @@ The dataset is self-generated using a third-party library called [captcha](https
|
|||
└──warpctc
|
||||
├── README.md # descriptions of warpctc
|
||||
├── README_CN.md # chinese descriptions of warpctc
|
||||
├── ascend310_infer # application for 310 inference
|
||||
├── script
|
||||
├── run_distribute_train.sh # launch distributed training in Ascend(8 pcs)
|
||||
├── run_distribute_train_for_gpu.sh # launch distributed training in GPU
|
||||
├── run_eval.sh # launch evaluation
|
||||
├── run_infer_310.sh # launch 310infer
|
||||
├── run_process_data.sh # launch dataset generation
|
||||
└── run_standalone_train.sh # launch standalone training(1 pcs)
|
||||
├── src
|
||||
|
@ -190,6 +197,8 @@ The dataset is self-generated using a third-party library called [captcha](https
|
|||
├── mindspore_hub_conf.py # mindspore hub interface
|
||||
├── eval.py # eval net
|
||||
├── process_data.py # dataset generation script
|
||||
├── postprocess.py # 310infer postprocess script
|
||||
├── preprocess.py # 310infer preprocess script
|
||||
└── train.py # train net
|
||||
```
|
||||
|
||||
|
@ -267,6 +276,39 @@ bash run_distribute_train_gpu.sh [RANK_SIZE] [TRAIN_DATA_DIR]
|
|||
bash run_eval.sh [TEST_DATA_DIR] [CHECKPOINT_PATH] [DEVICE_TARGET]
|
||||
```
|
||||
|
||||
## [Inference Process](#contents)
|
||||
|
||||
### Export MindIR
|
||||
|
||||
```shell
|
||||
python export.py --ckpt_file [CKPT_PATH] --file_name [FILE_NAME] --file_format [FILE_FORMAT]
|
||||
```
|
||||
|
||||
The ckpt_file parameter is required,
|
||||
`EXPORT_FORMAT` should be in ["AIR", "MINDIR"]
|
||||
|
||||
### Infer on Ascend310
|
||||
|
||||
Before performing inference, the mindir file must be exported by `export.py` script. We only provide an example of inference using MINDIR model.
|
||||
Current batch_size can only be set to 1.
|
||||
Use mindir+bin method for inferring, and bin is a binary format file of the preprocessed picture.
|
||||
|
||||
```shell
|
||||
# Ascend310 inference
|
||||
bash run_infer_310.sh [MINDIR_PATH] [DATA_PATH] [DEVICE_ID]
|
||||
```
|
||||
|
||||
- `DATA_PATH` is mandatory,the data format is the path of the bin.
|
||||
- `DEVICE_ID` is optional, default value is 0.
|
||||
|
||||
### result
|
||||
|
||||
Inference result is saved in current path, you can find result like this in acc.log file.
|
||||
|
||||
```bash
|
||||
'Accuracy': 0.952
|
||||
```
|
||||
|
||||
## [Model Description](#contents)
|
||||
|
||||
### [Performance](#contents)
|
||||
|
@ -305,6 +347,20 @@ bash run_eval.sh [TEST_DATA_DIR] [CHECKPOINT_PATH] [DEVICE_TARGET]
|
|||
| Accuracy | 99.0% |
|
||||
| Model for inference | 20.3M (.ckpt file) |
|
||||
|
||||
#### Inference Performance
|
||||
|
||||
| Parameters | Ascend |
|
||||
| ------------------- | --------------------------- |
|
||||
| Model Version | WarpCTC |
|
||||
| Resource | Ascend 310; CentOS 3.10 |
|
||||
| Uploaded Date | 24/05/2021 (month/day/year) |
|
||||
| MindSpore Version | 1.2.0 |
|
||||
| Dataset | Captcha |
|
||||
| batch_size | 1 |
|
||||
| outputs | Accuracy |
|
||||
| Accuracy | Accuracy=0.952 |
|
||||
| Model for inference | 40.6M(.ckpt file) |
|
||||
|
||||
## [Description of Random Situation](#contents)
|
||||
|
||||
In dataset.py, we set the seed inside “create_dataset" function. We also use random seed in train.py for weight initialization.
|
||||
|
|
|
@ -19,10 +19,15 @@
|
|||
- [分布式训练](#分布式训练)
|
||||
- [评估过程](#评估过程)
|
||||
- [评估](#评估)
|
||||
- [推理过程](#推理过程)
|
||||
- [导出MindIR](#导出mindir)
|
||||
- [在Ascend310执行推理](#在ascend310执行推理)
|
||||
- [结果](#结果)
|
||||
- [模型描述](#模型描述)
|
||||
- [性能](#性能)
|
||||
- [训练性能](#训练性能)
|
||||
- [评估性能](#评估性能)
|
||||
- [推理性能](#推理性能)
|
||||
- [随机情况说明](#随机情况说明)
|
||||
- [ModelZoo主页](#modelzoo主页)
|
||||
|
||||
|
@ -171,10 +176,12 @@ WarpCTC是带有一层FC神经网络的二层堆叠LSTM模型。详细信息请
|
|||
└──warpctc
|
||||
├── README.md # warpctc文档说明
|
||||
├── README_CN.md # warpctc中文文档说明
|
||||
├── ascend310_infer # 用于310推理
|
||||
├── script
|
||||
├── run_distribute_train.sh # 启动Ascend分布式训练(8卡)
|
||||
├── run_distribute_train_for_gpu.sh # 启动GPU分布式训练
|
||||
├── run_eval.sh # 启动评估
|
||||
├── run_infer_310.sh # 启动310推理
|
||||
├── run_process_data.sh # 启动数据集生成
|
||||
└── run_standalone_train.sh # 启动单机训练(1卡)
|
||||
├── src
|
||||
|
@ -194,6 +201,8 @@ WarpCTC是带有一层FC神经网络的二层堆叠LSTM模型。详细信息请
|
|||
├── mindspore_hub_conf.py # Mindspore Hub接口
|
||||
├── eval.py # 评估网络
|
||||
├── process_data.py # 数据集生成脚本
|
||||
├── postprocess.py # 310推理后处理脚本
|
||||
├── preprocess.py # 将数据前处理脚本
|
||||
└── train.py # 训练网络
|
||||
```
|
||||
|
||||
|
@ -271,6 +280,39 @@ bash run_distribute_train_gpu.sh [RANK_SIZE] [TRAIN_DATA_DIR]
|
|||
bash run_eval.sh [TEST_DATA_DIR] [CHECKPOINT_PATH] [DEVICE_TARGET]
|
||||
```
|
||||
|
||||
## 推理过程
|
||||
|
||||
### 导出MindIR
|
||||
|
||||
```shell
|
||||
python export.py --ckpt_file [CKPT_PATH] --file_name [FILE_NAME] --file_format [FILE_FORMAT]
|
||||
```
|
||||
|
||||
参数ckpt_file为必填项,
|
||||
`EXPORT_FORMAT` 必须在 ["AIR", "MINDIR"]中选择。
|
||||
|
||||
### 在Ascend310执行推理
|
||||
|
||||
在执行推理前,mindir文件必须通过`export.py`脚本导出。以下展示了使用mindir模型执行推理的示例。
|
||||
目前仅支持batch_size为1的推理。
|
||||
采用mindir+bin方式进行推理,其中bin为预处理完的图片的二进制文件。
|
||||
|
||||
```shell
|
||||
# Ascend310 inference
|
||||
bash run_infer_310.sh [MINDIR_PATH] [DATA_PATH] [DEVICE_ID]
|
||||
```
|
||||
|
||||
- `DATA_PATH` 为必填项,数据格式为bin的路径。
|
||||
- `DEVICE_ID` 可选,默认值为0。
|
||||
|
||||
### 结果
|
||||
|
||||
推理结果保存在脚本执行的当前路径,你可以在acc.log中看到以下精度计算结果。
|
||||
|
||||
```bash
|
||||
'Accuracy':0.952
|
||||
```
|
||||
|
||||
## 模型描述
|
||||
|
||||
### 性能
|
||||
|
@ -309,6 +351,20 @@ bash run_eval.sh [TEST_DATA_DIR] [CHECKPOINT_PATH] [DEVICE_TARGET]
|
|||
| 准确率 | 99.0% |
|
||||
| 推理模型 | 20.3M (.ckpt文件) |
|
||||
|
||||
### 推理性能
|
||||
|
||||
| 参数 | Ascend |
|
||||
| ------------- | ----------------------------|
|
||||
| 模型版本 | WarpCTC |
|
||||
| 资源 | Ascend 310;系统 CentOS 3.10 |
|
||||
| 上传日期 | 2021-05-24 |
|
||||
| MindSpore版本 | 1.2.0 |
|
||||
| 数据集 | Captcha |
|
||||
| batch_size | 1 |
|
||||
| 输出 | Accuracy |
|
||||
| 准确率 | Accuracy=0.952 |
|
||||
| 推理模型 | 40.6M(.ckpt文件) |
|
||||
|
||||
## 随机情况说明
|
||||
|
||||
在dataset.py中设置“create_dataset”函数内的种子。使用train.py中的随机种子进行权重初始化。
|
||||
|
|
|
@ -0,0 +1,14 @@
|
|||
cmake_minimum_required(VERSION 3.14.1)
|
||||
project(Ascend310Infer)
|
||||
add_compile_definitions(_GLIBCXX_USE_CXX11_ABI=0)
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -O0 -g -std=c++17 -Werror -Wall -fPIE -Wl,--allow-shlib-undefined")
|
||||
set(PROJECT_SRC_ROOT ${CMAKE_CURRENT_LIST_DIR}/)
|
||||
option(MINDSPORE_PATH "mindspore install path" "")
|
||||
include_directories(${MINDSPORE_PATH})
|
||||
include_directories(${MINDSPORE_PATH}/include)
|
||||
include_directories(${PROJECT_SRC_ROOT})
|
||||
find_library(MS_LIB libmindspore.so ${MINDSPORE_PATH}/lib)
|
||||
file(GLOB_RECURSE MD_LIB ${MINDSPORE_PATH}/_c_dataengine*)
|
||||
|
||||
add_executable(main src/main.cc src/utils.cc)
|
||||
target_link_libraries(main ${MS_LIB} ${MD_LIB} gflags)
|
|
@ -0,0 +1,23 @@
|
|||
#!/bin/bash
|
||||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
if [ ! -d out ]; then
|
||||
mkdir out
|
||||
fi
|
||||
cd out || exit
|
||||
cmake .. \
|
||||
-DMINDSPORE_PATH="`pip show mindspore-ascend | grep Location | awk '{print $2"/mindspore"}' | xargs realpath`"
|
||||
make
|
|
@ -0,0 +1,32 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_INFERENCE_UTILS_H_
|
||||
#define MINDSPORE_INFERENCE_UTILS_H_
|
||||
|
||||
#include <sys/stat.h>
|
||||
#include <dirent.h>
|
||||
#include <vector>
|
||||
#include <string>
|
||||
#include <memory>
|
||||
#include "include/api/types.h"
|
||||
|
||||
std::vector<std::string> GetAllFiles(std::string_view dirName);
|
||||
DIR *OpenDir(std::string_view dirName);
|
||||
std::string RealPath(std::string_view path);
|
||||
mindspore::MSTensor ReadFileToTensor(const std::string &file);
|
||||
int WriteResult(const std::string& imageFile, const std::vector<mindspore::MSTensor> &outputs);
|
||||
#endif
|
|
@ -0,0 +1,127 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#include <sys/time.h>
|
||||
#include <gflags/gflags.h>
|
||||
#include <dirent.h>
|
||||
#include <iostream>
|
||||
#include <string>
|
||||
#include <algorithm>
|
||||
#include <iosfwd>
|
||||
#include <vector>
|
||||
#include <fstream>
|
||||
#include <sstream>
|
||||
|
||||
#include "include/api/model.h"
|
||||
#include "include/api/context.h"
|
||||
#include "include/api/types.h"
|
||||
#include "include/api/serialization.h"
|
||||
#include "inc/utils.h"
|
||||
|
||||
using mindspore::Context;
|
||||
using mindspore::Serialization;
|
||||
using mindspore::Model;
|
||||
using mindspore::Status;
|
||||
using mindspore::ModelType;
|
||||
using mindspore::GraphCell;
|
||||
using mindspore::kSuccess;
|
||||
using mindspore::MSTensor;
|
||||
|
||||
DEFINE_string(mindir_path, "", "mindir path");
|
||||
DEFINE_string(input0_path, ".", "input0 path");
|
||||
DEFINE_int32(device_id, 0, "device id");
|
||||
|
||||
int main(int argc, char **argv) {
|
||||
gflags::ParseCommandLineFlags(&argc, &argv, true);
|
||||
if (RealPath(FLAGS_mindir_path).empty()) {
|
||||
std::cout << "Invalid mindir" << std::endl;
|
||||
return 1;
|
||||
}
|
||||
|
||||
auto context = std::make_shared<Context>();
|
||||
auto ascend310 = std::make_shared<mindspore::Ascend310DeviceInfo>();
|
||||
ascend310->SetDeviceID(FLAGS_device_id);
|
||||
context->MutableDeviceInfo().push_back(ascend310);
|
||||
mindspore::Graph graph;
|
||||
Serialization::Load(FLAGS_mindir_path, ModelType::kMindIR, &graph);
|
||||
|
||||
Model model;
|
||||
Status ret = model.Build(GraphCell(graph), context);
|
||||
if (ret != kSuccess) {
|
||||
std::cout << "ERROR: Build failed." << std::endl;
|
||||
return 1;
|
||||
}
|
||||
|
||||
std::vector<MSTensor> model_inputs = model.GetInputs();
|
||||
if (model_inputs.empty()) {
|
||||
std::cout << "Invalid model, inputs is empty." << std::endl;
|
||||
return 1;
|
||||
}
|
||||
|
||||
auto input0_files = GetAllFiles(FLAGS_input0_path);
|
||||
|
||||
if (input0_files.empty()) {
|
||||
std::cout << "ERROR: input data empty." << std::endl;
|
||||
return 1;
|
||||
}
|
||||
|
||||
std::map<double, double> costTime_map;
|
||||
size_t size = input0_files.size();
|
||||
|
||||
for (size_t i = 0; i < size; ++i) {
|
||||
struct timeval start = {0};
|
||||
struct timeval end = {0};
|
||||
double startTimeMs;
|
||||
double endTimeMs;
|
||||
std::vector<MSTensor> inputs;
|
||||
std::vector<MSTensor> outputs;
|
||||
std::cout << "Start predict input files:" << input0_files[i] << std::endl;
|
||||
|
||||
auto input0 = ReadFileToTensor(input0_files[i]);
|
||||
inputs.emplace_back(model_inputs[0].Name(), model_inputs[0].DataType(), model_inputs[0].Shape(),
|
||||
input0.Data().get(), input0.DataSize());
|
||||
|
||||
gettimeofday(&start, nullptr);
|
||||
ret = model.Predict(inputs, &outputs);
|
||||
gettimeofday(&end, nullptr);
|
||||
if (ret != kSuccess) {
|
||||
std::cout << "Predict " << input0_files[i] << " failed." << std::endl;
|
||||
return 1;
|
||||
}
|
||||
startTimeMs = (1.0 * start.tv_sec * 1000000 + start.tv_usec) / 1000;
|
||||
endTimeMs = (1.0 * end.tv_sec * 1000000 + end.tv_usec) / 1000;
|
||||
costTime_map.insert(std::pair<double, double>(startTimeMs, endTimeMs));
|
||||
WriteResult(input0_files[i], outputs);
|
||||
}
|
||||
double average = 0.0;
|
||||
int inferCount = 0;
|
||||
|
||||
for (auto iter = costTime_map.begin(); iter != costTime_map.end(); iter++) {
|
||||
double diff = 0.0;
|
||||
diff = iter->second - iter->first;
|
||||
average += diff;
|
||||
inferCount++;
|
||||
}
|
||||
average = average / inferCount;
|
||||
std::stringstream timeCost;
|
||||
timeCost << "NN inference cost average time: "<< average << " ms of infer_count " << inferCount << std::endl;
|
||||
std::cout << "NN inference cost average time: "<< average << "ms of infer_count " << inferCount << std::endl;
|
||||
std::string fileName = "./time_Result" + std::string("/test_perform_static.txt");
|
||||
std::ofstream fileStream(fileName.c_str(), std::ios::trunc);
|
||||
fileStream << timeCost.str();
|
||||
fileStream.close();
|
||||
costTime_map.clear();
|
||||
return 0;
|
||||
}
|
|
@ -0,0 +1,130 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "inc/utils.h"
|
||||
|
||||
#include <fstream>
|
||||
#include <algorithm>
|
||||
#include <iostream>
|
||||
|
||||
using mindspore::MSTensor;
|
||||
using mindspore::DataType;
|
||||
|
||||
std::vector<std::string> GetAllFiles(std::string_view dirName) {
|
||||
struct dirent *filename;
|
||||
DIR *dir = OpenDir(dirName);
|
||||
if (dir == nullptr) {
|
||||
return {};
|
||||
}
|
||||
std::vector<std::string> res;
|
||||
while ((filename = readdir(dir)) != nullptr) {
|
||||
std::string dName = std::string(filename->d_name);
|
||||
if (dName == "." || dName == ".." || filename->d_type != DT_REG) {
|
||||
continue;
|
||||
}
|
||||
res.emplace_back(std::string(dirName) + "/" + filename->d_name);
|
||||
}
|
||||
std::sort(res.begin(), res.end());
|
||||
for (auto &f : res) {
|
||||
std::cout << "image file: " << f << std::endl;
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
int WriteResult(const std::string& imageFile, const std::vector<MSTensor> &outputs) {
|
||||
std::string homePath = "./result_Files";
|
||||
for (size_t i = 0; i < outputs.size(); ++i) {
|
||||
size_t outputSize;
|
||||
std::shared_ptr<const void> netOutput;
|
||||
netOutput = outputs[i].Data();
|
||||
outputSize = outputs[i].DataSize();
|
||||
int pos = imageFile.rfind('/');
|
||||
std::string fileName(imageFile, pos + 1);
|
||||
fileName.replace(fileName.find('.'), fileName.size() - fileName.find('.'), ".bin");
|
||||
std::string outFileName = homePath + "/" + fileName;
|
||||
FILE * outputFile = fopen(outFileName.c_str(), "wb");
|
||||
fwrite(netOutput.get(), outputSize, sizeof(char), outputFile);
|
||||
fclose(outputFile);
|
||||
outputFile = nullptr;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
mindspore::MSTensor ReadFileToTensor(const std::string &file) {
|
||||
if (file.empty()) {
|
||||
std::cout << "Pointer file is nullptr" << std::endl;
|
||||
return mindspore::MSTensor();
|
||||
}
|
||||
|
||||
std::ifstream ifs(file);
|
||||
if (!ifs.good()) {
|
||||
std::cout << "File: " << file << " is not exist" << std::endl;
|
||||
return mindspore::MSTensor();
|
||||
}
|
||||
|
||||
if (!ifs.is_open()) {
|
||||
std::cout << "File: " << file << "open failed" << std::endl;
|
||||
return mindspore::MSTensor();
|
||||
}
|
||||
|
||||
ifs.seekg(0, std::ios::end);
|
||||
size_t size = ifs.tellg();
|
||||
mindspore::MSTensor buffer(file, mindspore::DataType::kNumberTypeUInt8, {static_cast<int64_t>(size)}, nullptr, size);
|
||||
|
||||
ifs.seekg(0, std::ios::beg);
|
||||
ifs.read(reinterpret_cast<char *>(buffer.MutableData()), size);
|
||||
ifs.close();
|
||||
|
||||
return buffer;
|
||||
}
|
||||
|
||||
|
||||
DIR *OpenDir(std::string_view dirName) {
|
||||
if (dirName.empty()) {
|
||||
std::cout << " dirName is null ! " << std::endl;
|
||||
return nullptr;
|
||||
}
|
||||
std::string realPath = RealPath(dirName);
|
||||
struct stat s;
|
||||
lstat(realPath.c_str(), &s);
|
||||
if (!S_ISDIR(s.st_mode)) {
|
||||
std::cout << "dirName is not a valid directory !" << std::endl;
|
||||
return nullptr;
|
||||
}
|
||||
DIR *dir;
|
||||
dir = opendir(realPath.c_str());
|
||||
if (dir == nullptr) {
|
||||
std::cout << "Can not open dir " << dirName << std::endl;
|
||||
return nullptr;
|
||||
}
|
||||
std::cout << "Successfully opened the dir " << dirName << std::endl;
|
||||
return dir;
|
||||
}
|
||||
|
||||
std::string RealPath(std::string_view path) {
|
||||
char realPathMem[PATH_MAX] = {0};
|
||||
char *realPathRet = nullptr;
|
||||
realPathRet = realpath(path.data(), realPathMem);
|
||||
|
||||
if (realPathRet == nullptr) {
|
||||
std::cout << "File: " << path << " is not exist.";
|
||||
return "";
|
||||
}
|
||||
|
||||
std::string realPath(realPathMem);
|
||||
std::cout << path << " realpath is: " << realPath << std::endl;
|
||||
return realPath;
|
||||
}
|
|
@ -0,0 +1,84 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""post process for 310 inference"""
|
||||
import os
|
||||
import argparse
|
||||
import numpy as np
|
||||
|
||||
batch_Size = 1
|
||||
parser = argparse.ArgumentParser(description="warpctc acc calculation")
|
||||
parser.add_argument("--result_path", type=str, required=True, help="result files path.")
|
||||
parser.add_argument("--label_path", type=str, required=True, help="label path.")
|
||||
args = parser.parse_args()
|
||||
|
||||
|
||||
def is_eq(pred_lbl, target):
|
||||
pred_diff = len(target) - len(pred_lbl)
|
||||
if pred_diff > 0:
|
||||
pred_lbl.extend([10] * pred_diff)
|
||||
return pred_lbl == target
|
||||
|
||||
|
||||
def get_prediction(y_pred):
|
||||
seq_len, batch_size, _ = y_pred.shape
|
||||
indices = y_pred.argmax(axis=2)
|
||||
lens = [seq_len] * batch_size
|
||||
pred_lbl = []
|
||||
for i in range(batch_size):
|
||||
idx = indices[:, i]
|
||||
last_idx = 10
|
||||
pred_lbl = []
|
||||
for j in range(lens[i]):
|
||||
cur_idx = idx[j]
|
||||
if cur_idx not in [last_idx, 10]:
|
||||
pred_lbl.append(cur_idx)
|
||||
last_idx = cur_idx
|
||||
return pred_lbl
|
||||
|
||||
|
||||
def calcul_acc(y_pred, y):
|
||||
correct_num = 0
|
||||
total_num = 0
|
||||
for b_idx, target in enumerate(y):
|
||||
if is_eq(y_pred[b_idx], target):
|
||||
correct_num += 1
|
||||
total_num += 1
|
||||
if total_num == 0:
|
||||
raise RuntimeError('Accuracy can not be calculated, because the number of samples is 0.')
|
||||
return correct_num / total_num
|
||||
|
||||
|
||||
def get_result(result_path, label_path):
|
||||
files = os.listdir(result_path)
|
||||
preds = []
|
||||
labels = []
|
||||
label_dict = {}
|
||||
with open(label_path, 'r') as file:
|
||||
lines = file.readlines()
|
||||
for line in lines:
|
||||
label_dict[line.split(',')[0]] = np.array(
|
||||
line.replace('\n', '').replace('[', '').replace(']', '').split(',')[1:]).astype(dtype=int).tolist()
|
||||
for file in files:
|
||||
label = label_dict[file]
|
||||
labels.append(label)
|
||||
resultPath = os.path.join(result_path, file)
|
||||
output = np.fromfile(resultPath, dtype=np.float16).reshape((-1, batch_Size, 11))
|
||||
preds.append(get_prediction(output))
|
||||
acc = calcul_acc(preds, labels)
|
||||
print("Total data: {}, accuracy: {}".format(len(labels), acc))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
get_result(args.result_path, args.label_path)
|
|
@ -0,0 +1,49 @@
|
|||
# Copyright 2020-2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import os
|
||||
import math as m
|
||||
import argparse
|
||||
from src.config import config as cf
|
||||
from src.dataset import create_dataset
|
||||
|
||||
batch_size = 1
|
||||
parser = argparse.ArgumentParser(description="Warpctc preprocess")
|
||||
parser.add_argument("--dataset_path", type=str, default=None, help="Dataset, default is None.")
|
||||
parser.add_argument("--output_path", type=str, default=None, help="output path")
|
||||
|
||||
args_opt = parser.parse_args()
|
||||
|
||||
if __name__ == "__main__":
|
||||
input_size = m.ceil(cf.captcha_height / 64) * 64 * 3
|
||||
dataset = create_dataset(dataset_path=args_opt.dataset_path,
|
||||
batch_size=batch_size,
|
||||
device_target="Ascend")
|
||||
|
||||
img_path = args_opt.output_path
|
||||
if not os.path.isdir(img_path):
|
||||
os.makedirs(img_path)
|
||||
total = dataset.get_dataset_size()
|
||||
iter_num = 0
|
||||
label_dict = {}
|
||||
for data in dataset.create_dict_iterator(output_numpy=True):
|
||||
file_name = str(iter_num) + ".bin"
|
||||
img = data["image"]
|
||||
label_dict[file_name] = data["label"][0].tolist()
|
||||
img.tofile(os.path.join(img_path, file_name))
|
||||
iter_num += 1
|
||||
with open('./label.txt', 'w') as file:
|
||||
for k, v in label_dict.items():
|
||||
file.write(str(k) + ',' + str(v) + '\n')
|
||||
print("total image num:", total)
|
|
@ -0,0 +1,109 @@
|
|||
#!/bin/bash
|
||||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
if [[ $# -lt 2 || $# -gt 3 ]]; then
|
||||
echo "Usage: bash run_infer_310.sh [MINDIR_PATH] [DATA_PATH] [DEVICE_ID]"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
get_real_path(){
|
||||
if [ "${1:0:1}" == "/" ]; then
|
||||
echo "$1"
|
||||
else
|
||||
echo "$(realpath -m $PWD/$1)"
|
||||
fi
|
||||
}
|
||||
model=$(get_real_path $1)
|
||||
input0_path=$(get_real_path $2)
|
||||
|
||||
device_id=0
|
||||
if [ $# == 3 ]; then
|
||||
device_id=$3
|
||||
fi
|
||||
|
||||
echo "mindir name: "$model
|
||||
echo "input0 path: "$input0_path
|
||||
echo "device id: "$device_id
|
||||
|
||||
export ASCEND_HOME=/usr/local/Ascend/
|
||||
if [ -d ${ASCEND_HOME}/ascend-toolkit ]; then
|
||||
export PATH=$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/ccec_compiler/bin:$ASCEND_HOME/ascend-toolkit/latest/atc/bin:$PATH
|
||||
export LD_LIBRARY_PATH=/usr/local/lib:$ASCEND_HOME/ascend-toolkit/latest/atc/lib64:$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/lib64:$ASCEND_HOME/driver/lib64:$ASCEND_HOME/add-ons:$LD_LIBRARY_PATH
|
||||
export TBE_IMPL_PATH=$ASCEND_HOME/ascend-toolkit/latest/opp/op_impl/built-in/ai_core/tbe
|
||||
export PYTHONPATH=${TBE_IMPL_PATH}:$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/python/site-packages:$PYTHONPATH
|
||||
export ASCEND_OPP_PATH=$ASCEND_HOME/ascend-toolkit/latest/opp
|
||||
else
|
||||
export PATH=$ASCEND_HOME/atc/ccec_compiler/bin:$ASCEND_HOME/atc/bin:$PATH
|
||||
export LD_LIBRARY_PATH=/usr/local/lib:$ASCEND_HOME/atc/lib64:$ASCEND_HOME/acllib/lib64:$ASCEND_HOME/driver/lib64:$ASCEND_HOME/add-ons:$LD_LIBRARY_PATH
|
||||
export PYTHONPATH=$ASCEND_HOME/atc/python/site-packages:$PYTHONPATH
|
||||
export ASCEND_OPP_PATH=$ASCEND_HOME/opp
|
||||
fi
|
||||
|
||||
function preprocess_data()
|
||||
{
|
||||
if [ -d preprocess_Result ]; then
|
||||
rm -rf ./preprocess_Result
|
||||
fi
|
||||
mkdir preprocess_Result
|
||||
python3.7 ../preprocess.py --dataset_path=$input0_path --output_path=./preprocess_Result &> preprocess.log &
|
||||
input0_path=./preprocess_Result
|
||||
}
|
||||
|
||||
function compile_app()
|
||||
{
|
||||
cd ../ascend310_infer || exit
|
||||
bash build.sh &> build.log
|
||||
}
|
||||
|
||||
function infer()
|
||||
{
|
||||
cd - || exit
|
||||
if [ -d result_Files ]; then
|
||||
rm -rf ./result_Files
|
||||
fi
|
||||
if [ -d time_Result ]; then
|
||||
rm -rf ./time_Result
|
||||
fi
|
||||
mkdir result_Files
|
||||
mkdir time_Result
|
||||
../ascend310_infer/out/main --mindir_path=$model --input0_path=$input0_path --device_id=$device_id &> infer.log
|
||||
}
|
||||
|
||||
function cal_acc()
|
||||
{
|
||||
python3.7 ../postprocess.py --result_path=./result_Files --label_path=./label.txt &> acc.log &
|
||||
}
|
||||
|
||||
preprocess_data
|
||||
if [ $? -ne 0 ]; then
|
||||
echo "preprocess data failed"
|
||||
exit 1
|
||||
fi
|
||||
compile_app
|
||||
if [ $? -ne 0 ]; then
|
||||
echo "compile app code failed"
|
||||
exit 1
|
||||
fi
|
||||
infer
|
||||
if [ $? -ne 0 ]; then
|
||||
echo " execute inference failed"
|
||||
exit 1
|
||||
fi
|
||||
cal_acc
|
||||
if [ $? -ne 0 ]; then
|
||||
echo "calculate accuracy failed"
|
||||
exit 1
|
||||
fi
|
Loading…
Reference in New Issue