fix bugs
This commit is contained in:
parent
cf383af36e
commit
0fa0fd39bb
|
@ -374,6 +374,9 @@ class FastGelu(Cell):
|
|||
Outputs:
|
||||
Tensor, with the same type and shape as the `input_data`.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend``
|
||||
|
||||
Examples:
|
||||
>>> input_x = Tensor(np.array([[-1.0, 4.0, -8.0], [2.0, -5.0, 9.0]]), mindspore.float32)
|
||||
>>> fast_gelu = nn.FastGelu()
|
||||
|
|
|
@ -309,6 +309,9 @@ class SampledSoftmaxLoss(_Loss):
|
|||
Outputs:
|
||||
Tensor, a tensor of shape (N) with the per-example sampled softmax losses.
|
||||
|
||||
Supported Platforms:
|
||||
``GPU``
|
||||
|
||||
Examples:
|
||||
>>> loss = nn.SampledSoftmaxLoss(num_sampled=4, num_classes=7, num_true=1)
|
||||
>>> weights = Tensor(np.random.randint(0, 9, [7, 10]), mindspore.float32)
|
||||
|
|
|
@ -554,6 +554,8 @@ class DynamicShape(Primitive):
|
|||
>>> input_tensor = Tensor(np.ones(shape=[3, 2, 1]), mindspore.float32)
|
||||
>>> shape = ops.DynamicShape()
|
||||
>>> output = shape(input_tensor)
|
||||
>>> print(output)
|
||||
[3 2 1]
|
||||
"""
|
||||
|
||||
@prim_attr_register
|
||||
|
@ -709,7 +711,7 @@ class Unique(Primitive):
|
|||
containing indices of elements in the input coressponding to the output tensor.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``CPU``
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
||||
Examples:
|
||||
>>> x = Tensor(np.array([1, 2, 5, 2]), mindspore.int32)
|
||||
|
@ -779,7 +781,7 @@ class SparseGatherV2(GatherV2):
|
|||
Tensor, the shape of tensor is :math:`(z_1, z_2, ..., z_N)`.
|
||||
|
||||
Supported Platforms:
|
||||
``GPU``
|
||||
``Ascend`` ``GPU``
|
||||
|
||||
Examples:
|
||||
>>> input_params = Tensor(np.array([[1, 2, 7, 42], [3, 4, 54, 22], [2, 2, 55, 3]]), mindspore.float32)
|
||||
|
@ -2240,7 +2242,7 @@ class Pack(PrimitiveWithInfer):
|
|||
or if the shapes of elements in input_x are not the same.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend``
|
||||
``Ascend`` ``GPU``
|
||||
|
||||
Examples:
|
||||
>>> data1 = Tensor(np.array([0, 1]).astype(np.float32))
|
||||
|
@ -2295,7 +2297,7 @@ class Unpack(PrimitiveWithInfer):
|
|||
ValueError: If axis is out of the range [-len(input_x.shape), len(input_x.shape)).
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend``
|
||||
``Ascend`` ``GPU``
|
||||
|
||||
Examples:
|
||||
>>> unpack = ops.Unpack()
|
||||
|
|
|
@ -1996,7 +1996,7 @@ class DivNoNan(_MathBinaryOp):
|
|||
and the data type is the one with higher precision or higher digits among the two inputs.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend``
|
||||
``Ascend`` ``GPU``
|
||||
|
||||
Examples:
|
||||
>>> input_x = Tensor(np.array([-1.0, 0., 1.0, 5.0, 6.0]), mindspore.float32)
|
||||
|
|
|
@ -2971,6 +2971,9 @@ class FastGelu(PrimitiveWithInfer):
|
|||
Outputs:
|
||||
Tensor, with the same type and shape as input.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend``
|
||||
|
||||
Examples:
|
||||
>>> tensor = Tensor(np.array([[-1.0, 4.0, -8.0], [2.0, -5.0, 9.0]]), mindspore.float32)
|
||||
>>> fast_gelu = P.FastGelu()
|
||||
|
|
|
@ -560,6 +560,9 @@ class UniformCandidateSampler(PrimitiveWithInfer):
|
|||
- **sampled_expected_count** (Tensor) - The expected counts under the sampling distribution of
|
||||
each of sampled_candidates. Shape: (num_sampled, ).
|
||||
|
||||
Supported Platforms:
|
||||
``GPU``
|
||||
|
||||
Examples:
|
||||
>>> sampler = ops.UniformCandidateSampler(1, 3, False, 4)
|
||||
>>> output1, output2, output3 = sampler(Tensor(np.array([[1],[3],[4],[6],[3]], dtype=np.int32)))
|
||||
|
|
Loading…
Reference in New Issue