This commit is contained in:
lihongkang 2020-11-27 17:41:05 +08:00
parent cf383af36e
commit 0fa0fd39bb
6 changed files with 19 additions and 5 deletions

View File

@ -374,6 +374,9 @@ class FastGelu(Cell):
Outputs:
Tensor, with the same type and shape as the `input_data`.
Supported Platforms:
``Ascend``
Examples:
>>> input_x = Tensor(np.array([[-1.0, 4.0, -8.0], [2.0, -5.0, 9.0]]), mindspore.float32)
>>> fast_gelu = nn.FastGelu()

View File

@ -309,6 +309,9 @@ class SampledSoftmaxLoss(_Loss):
Outputs:
Tensor, a tensor of shape (N) with the per-example sampled softmax losses.
Supported Platforms:
``GPU``
Examples:
>>> loss = nn.SampledSoftmaxLoss(num_sampled=4, num_classes=7, num_true=1)
>>> weights = Tensor(np.random.randint(0, 9, [7, 10]), mindspore.float32)

View File

@ -554,6 +554,8 @@ class DynamicShape(Primitive):
>>> input_tensor = Tensor(np.ones(shape=[3, 2, 1]), mindspore.float32)
>>> shape = ops.DynamicShape()
>>> output = shape(input_tensor)
>>> print(output)
[3 2 1]
"""
@prim_attr_register
@ -709,7 +711,7 @@ class Unique(Primitive):
containing indices of elements in the input coressponding to the output tensor.
Supported Platforms:
``Ascend`` ``CPU``
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> x = Tensor(np.array([1, 2, 5, 2]), mindspore.int32)
@ -779,7 +781,7 @@ class SparseGatherV2(GatherV2):
Tensor, the shape of tensor is :math:`(z_1, z_2, ..., z_N)`.
Supported Platforms:
``GPU``
``Ascend`` ``GPU``
Examples:
>>> input_params = Tensor(np.array([[1, 2, 7, 42], [3, 4, 54, 22], [2, 2, 55, 3]]), mindspore.float32)
@ -2240,7 +2242,7 @@ class Pack(PrimitiveWithInfer):
or if the shapes of elements in input_x are not the same.
Supported Platforms:
``Ascend``
``Ascend`` ``GPU``
Examples:
>>> data1 = Tensor(np.array([0, 1]).astype(np.float32))
@ -2295,7 +2297,7 @@ class Unpack(PrimitiveWithInfer):
ValueError: If axis is out of the range [-len(input_x.shape), len(input_x.shape)).
Supported Platforms:
``Ascend``
``Ascend`` ``GPU``
Examples:
>>> unpack = ops.Unpack()

View File

@ -1996,7 +1996,7 @@ class DivNoNan(_MathBinaryOp):
and the data type is the one with higher precision or higher digits among the two inputs.
Supported Platforms:
``Ascend``
``Ascend`` ``GPU``
Examples:
>>> input_x = Tensor(np.array([-1.0, 0., 1.0, 5.0, 6.0]), mindspore.float32)

View File

@ -2971,6 +2971,9 @@ class FastGelu(PrimitiveWithInfer):
Outputs:
Tensor, with the same type and shape as input.
Supported Platforms:
``Ascend``
Examples:
>>> tensor = Tensor(np.array([[-1.0, 4.0, -8.0], [2.0, -5.0, 9.0]]), mindspore.float32)
>>> fast_gelu = P.FastGelu()

View File

@ -560,6 +560,9 @@ class UniformCandidateSampler(PrimitiveWithInfer):
- **sampled_expected_count** (Tensor) - The expected counts under the sampling distribution of
each of sampled_candidates. Shape: (num_sampled, ).
Supported Platforms:
``GPU``
Examples:
>>> sampler = ops.UniformCandidateSampler(1, 3, False, 4)
>>> output1, output2, output3 = sampler(Tensor(np.array([[1],[3],[4],[6],[3]], dtype=np.int32)))