diff --git a/mindspore/nn/learning_rate_schedule.py b/mindspore/nn/learning_rate_schedule.py index bf7ea4c5939..a83cf9967b6 100644 --- a/mindspore/nn/learning_rate_schedule.py +++ b/mindspore/nn/learning_rate_schedule.py @@ -280,8 +280,8 @@ class CosineDecayLR(LearningRateSchedule): ValueError: If `min_lr` is less than 0 or `decay_steps` is less than 1. ValueError: If `max_lr` is less than or equal to 0. - Supported Platforms: - ``Ascend`` ``GPU`` ``CPU`` + Supported Platforms: + ``Ascend`` ``GPU`` Examples: >>> min_lr = 0.01 @@ -357,7 +357,7 @@ class PolynomialDecayLR(LearningRateSchedule): ValueError: If `learning_rate` or `power` is less than or equal to 0. Supported Platforms: - ``Ascend`` ``GPU`` ``CPU`` + ``Ascend`` ``GPU`` Examples: >>> learning_rate = 0.1 @@ -436,7 +436,7 @@ class WarmUpLR(LearningRateSchedule): ValueError: If `learning_rate` is less than or equal to 0. Supported Platforms: - ``Ascend`` ``GPU`` ``CPU`` + ``Ascend`` ``GPU`` Examples: >>> learning_rate = 0.1 diff --git a/mindspore/ops/operations/array_ops.py b/mindspore/ops/operations/array_ops.py index eb0de0287d1..d25bd84eb85 100644 --- a/mindspore/ops/operations/array_ops.py +++ b/mindspore/ops/operations/array_ops.py @@ -5240,7 +5240,7 @@ class Range(PrimitiveWithCheck): A 1-D Tensor, with the same type as the inputs. Supported Platforms: - ``GPU`` + ``GPU`` `CPU` Examples: >>> start = Tensor(0, mstype.int32)