foundationdb/flow/Platform.actor.cpp

4261 lines
136 KiB
C++

/*
* Platform.actor.cpp
*
* This source file is part of the FoundationDB open source project
*
* Copyright 2013-2022 Apple Inc. and the FoundationDB project authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifdef _WIN32
// This has to come as the first include on Win32 for rand_s() to be found
#define _CRT_RAND_S
#include <stdlib.h>
#include <math.h> // For _set_FMA3_enable workaround in platformInit
#endif
#include <errno.h>
#include "fmt/format.h"
#include "flow/Platform.h"
#include "flow/Platform.actor.h"
#include "flow/Arena.h"
#include "flow/StreamCipher.h"
#include "flow/BlobCipher.h"
#include "flow/Trace.h"
#include "flow/Error.h"
#include "flow/Knobs.h"
#include <iostream>
#include <fstream>
#include <sstream>
#include <cstring>
#include <algorithm>
#include <boost/format.hpp>
#include <boost/filesystem.hpp>
#include <boost/filesystem/operations.hpp>
#include <sys/types.h>
#include <time.h>
#include <sys/stat.h>
#include <fcntl.h>
#include "flow/UnitTest.h"
#include "flow/FaultInjection.h"
#ifdef _WIN32
#include <windows.h>
#include <winioctl.h>
#include <io.h>
#include <psapi.h>
#include <stdio.h>
#include <conio.h>
#include <direct.h>
#include <pdh.h>
#include <pdhmsg.h>
#pragma comment(lib, "pdh.lib")
// for SHGetFolderPath
#include <ShlObj.h>
#pragma comment(lib, "Shell32.lib")
#define CANONICAL_PATH_SEPARATOR '\\'
#define PATH_MAX MAX_PATH
#endif
#ifdef __unixish__
#define CANONICAL_PATH_SEPARATOR '/'
#include <dirent.h>
#include <sys/time.h>
#include <sys/mman.h>
#include <unistd.h>
#include <ftw.h>
#include <pwd.h>
#include <sched.h>
#if !defined(__aarch64__) && !defined(__powerpc64__)
#include <cpuid.h>
#endif
/* Needed for disk capacity */
#include <sys/statvfs.h>
/* getifaddrs */
#include <sys/socket.h>
#include <ifaddrs.h>
#include <arpa/inet.h>
#include "stacktrace/stacktrace.h"
#ifdef __linux__
/* Needed for memory allocation */
#include <linux/mman.h>
/* Needed for processor affinity */
#include <sched.h>
/* Needed for getProcessorTime* and setpriority */
#include <sys/syscall.h>
/* Needed for setpriority */
#include <sys/resource.h>
/* Needed for crash handler */
#include <signal.h>
/* Needed for gnu_dev_{major,minor} */
#include <sys/sysmacros.h>
#endif
#ifdef __FreeBSD__
/* Needed for processor affinity */
#include <sys/sched.h>
/* Needed for getProcessorTime and setpriority */
#include <sys/syscall.h>
/* Needed for setpriority */
#include <sys/resource.h>
/* Needed for crash handler */
#include <sys/signal.h>
/* Needed for proc info */
#include <sys/user.h>
/* Needed for vm info */
#include <sys/param.h>
#include <sys/sysctl.h>
#include <sys/vmmeter.h>
#include <sys/cpuset.h>
#include <sys/resource.h>
/* Needed for sysctl info */
#include <sys/sysctl.h>
#include <sys/fcntl.h>
/* Needed for network info */
#include <net/if.h>
#include <net/if_mib.h>
#include <net/if_var.h>
#include <netinet/in.h>
#include <netinet/tcp.h>
#include <netinet/tcp_var.h>
/* Needed for device info */
#include <devstat.h>
#include <kvm.h>
#include <libutil.h>
#endif
#ifdef __APPLE__
#include <sys/uio.h>
#include <sys/syslimits.h>
#include <mach/mach.h>
#include <mach-o/dyld.h>
#include <sys/param.h>
#include <sys/mount.h>
#include <sys/sysctl.h>
#include <netinet/in.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/route.h>
#include <CoreFoundation/CoreFoundation.h>
#include <IOKit/IOKitLib.h>
#include <IOKit/storage/IOBlockStorageDriver.h>
#include <IOKit/storage/IOMedia.h>
#include <IOKit/IOBSD.h>
#endif
#endif
#include "flow/actorcompiler.h" // This must be the last #include.
std::string removeWhitespace(const std::string& t) {
static const std::string ws(" \t\r");
std::string str = t;
size_t found = str.find_last_not_of(ws);
if (found != std::string::npos)
str.erase(found + 1);
else
str.clear(); // str is all whitespace
found = str.find_first_not_of(ws);
if (found != std::string::npos)
str.erase(0, found);
else
str.clear(); // str is all whitespace
return str;
}
#ifdef _WIN32
#define ALLOC_FAIL nullptr
#elif defined(__unixish__)
#define ALLOC_FAIL MAP_FAILED
#else
#error What platform is this?
#endif
#if defined(_WIN32)
__int64 FiletimeAsInt64(FILETIME& t) {
return *(__int64*)&t;
}
#endif
#ifdef _WIN32
bool handlePdhStatus(const PDH_STATUS& status, std::string message) {
if (status != ERROR_SUCCESS) {
TraceEvent(SevWarnAlways, message.c_str()).GetLastError().detail("Status", status);
return false;
}
return true;
}
bool setPdhString(int id, std::string& out) {
char buf[512];
DWORD sz = 512;
if (!handlePdhStatus(PdhLookupPerfNameByIndex(nullptr, id, buf, &sz), "PdhLookupPerfByNameIndex"))
return false;
out = buf;
return true;
}
#endif
#ifdef __unixish__
static double getProcessorTimeGeneric(int who) {
struct rusage r_usage;
if (getrusage(who, &r_usage)) {
TraceEvent(SevError, "GetCPUTime").detail("Who", who).GetLastError();
throw platform_error();
}
return (r_usage.ru_utime.tv_sec + (r_usage.ru_utime.tv_usec / double(1e6)) + r_usage.ru_stime.tv_sec +
(r_usage.ru_stime.tv_usec / double(1e6)));
}
#endif
double getProcessorTimeThread() {
INJECT_FAULT(platform_error, "getProcessorTimeThread"); // Get Thread CPU Time failed
#if defined(_WIN32)
FILETIME ftCreate, ftExit, ftKernel, ftUser;
if (!GetThreadTimes(GetCurrentThread(), &ftCreate, &ftExit, &ftKernel, &ftUser)) {
TraceEvent(SevError, "GetThreadCPUTime").GetLastError();
throw platform_error();
}
return FiletimeAsInt64(ftKernel) / double(1e7) + FiletimeAsInt64(ftUser) / double(1e7);
#elif defined(__linux__) || defined(__FreeBSD__)
return getProcessorTimeGeneric(RUSAGE_THREAD);
#elif defined(__APPLE__)
/* No RUSAGE_THREAD so we use the lower level interface */
struct thread_basic_info info;
mach_msg_type_number_t info_count = THREAD_BASIC_INFO_COUNT;
if (KERN_SUCCESS != thread_info(mach_thread_self(), THREAD_BASIC_INFO, (thread_info_t)&info, &info_count)) {
TraceEvent(SevError, "GetThreadCPUTime").GetLastError();
throw platform_error();
}
return (info.user_time.seconds + (info.user_time.microseconds / double(1e6)) + info.system_time.seconds +
(info.system_time.microseconds / double(1e6)));
#else
#warning getProcessorTimeThread unimplemented on this platform
return 0.0;
#endif
}
double getProcessorTimeProcess() {
INJECT_FAULT(platform_error, "getProcessorTimeProcess"); // Get CPU Process Time failed
#if defined(_WIN32)
FILETIME ftCreate, ftExit, ftKernel, ftUser;
if (!GetProcessTimes(GetCurrentProcess(), &ftCreate, &ftExit, &ftKernel, &ftUser)) {
TraceEvent(SevError, "GetProcessCPUTime").GetLastError();
throw platform_error();
}
return FiletimeAsInt64(ftKernel) / double(1e7) + FiletimeAsInt64(ftUser) / double(1e7);
#elif defined(__unixish__)
return getProcessorTimeGeneric(RUSAGE_SELF);
#else
#warning getProcessorTimeProcess unimplemented on this platform
return 0.0;
#endif
}
uint64_t getResidentMemoryUsage() {
#if defined(__linux__)
uint64_t rssize = 0;
std::ifstream stat_stream("/proc/self/statm", std::ifstream::in);
std::string ignore;
if (!stat_stream.good()) {
TraceEvent(SevError, "GetResidentMemoryUsage").GetLastError();
throw platform_error();
}
stat_stream >> ignore;
stat_stream >> rssize;
rssize *= sysconf(_SC_PAGESIZE);
return rssize;
#elif defined(__FreeBSD__)
uint64_t rssize = 0;
int status;
pid_t ppid = getpid();
int pidinfo[4];
pidinfo[0] = CTL_KERN;
pidinfo[1] = KERN_PROC;
pidinfo[2] = KERN_PROC_PID;
pidinfo[3] = (int)ppid;
struct kinfo_proc procstk;
size_t len = sizeof(procstk);
status = sysctl(pidinfo, nitems(pidinfo), &procstk, &len, nullptr, 0);
if (status < 0) {
TraceEvent(SevError, "GetResidentMemoryUsage").GetLastError();
throw platform_error();
}
rssize = (uint64_t)procstk.ki_rssize;
return rssize;
#elif defined(_WIN32)
PROCESS_MEMORY_COUNTERS_EX pmc;
if (!GetProcessMemoryInfo(GetCurrentProcess(), (PPROCESS_MEMORY_COUNTERS)&pmc, sizeof(pmc))) {
TraceEvent(SevError, "GetResidentMemoryUsage").GetLastError();
throw platform_error();
}
return pmc.WorkingSetSize;
#elif defined(__APPLE__)
struct task_basic_info info;
mach_msg_type_number_t info_count = TASK_BASIC_INFO_COUNT;
if (KERN_SUCCESS != task_info(mach_task_self(), TASK_BASIC_INFO, (task_info_t)&info, &info_count)) {
TraceEvent(SevError, "GetResidentMemoryUsage").GetLastError();
throw platform_error();
}
return info.resident_size;
#else
#warning getMemoryUsage unimplemented on this platform
return 0;
#endif
}
uint64_t getMemoryUsage() {
#if defined(__linux__)
uint64_t vmsize = 0;
std::ifstream stat_stream("/proc/self/statm", std::ifstream::in);
if (!stat_stream.good()) {
TraceEvent(SevError, "GetMemoryUsage").GetLastError();
throw platform_error();
}
stat_stream >> vmsize;
vmsize *= sysconf(_SC_PAGESIZE);
return vmsize;
#elif defined(__FreeBSD__)
uint64_t vmsize = 0;
int status;
pid_t ppid = getpid();
int pidinfo[4];
pidinfo[0] = CTL_KERN;
pidinfo[1] = KERN_PROC;
pidinfo[2] = KERN_PROC_PID;
pidinfo[3] = (int)ppid;
struct kinfo_proc procstk;
size_t len = sizeof(procstk);
status = sysctl(pidinfo, nitems(pidinfo), &procstk, &len, nullptr, 0);
if (status < 0) {
TraceEvent(SevError, "GetMemoryUsage").GetLastError();
throw platform_error();
}
vmsize = (uint64_t)procstk.ki_size >> PAGE_SHIFT;
return vmsize;
#elif defined(_WIN32)
PROCESS_MEMORY_COUNTERS_EX pmc;
if (!GetProcessMemoryInfo(GetCurrentProcess(), (PPROCESS_MEMORY_COUNTERS)&pmc, sizeof(pmc))) {
TraceEvent(SevError, "GetMemoryUsage").GetLastError();
throw platform_error();
}
return pmc.PagefileUsage;
#elif defined(__APPLE__)
struct task_basic_info info;
mach_msg_type_number_t info_count = TASK_BASIC_INFO_COUNT;
if (KERN_SUCCESS != task_info(mach_task_self(), TASK_BASIC_INFO, (task_info_t)&info, &info_count)) {
TraceEvent(SevError, "GetMemoryUsage").GetLastError();
throw platform_error();
}
return info.virtual_size;
#else
#warning getMemoryUsage unimplemented on this platform
return 0;
#endif
}
#if defined(__linux__)
void getMemoryInfo(std::map<StringRef, int64_t>& request, std::stringstream& memInfoStream) {
size_t count = request.size();
if (count == 0)
return;
while (count > 0 && !memInfoStream.eof()) {
std::string key;
memInfoStream >> key;
auto item = request.find(StringRef(key));
if (item != request.end()) {
int64_t value;
memInfoStream >> value;
item->second = value;
count--;
}
memInfoStream.ignore(std::numeric_limits<std::streamsize>::max(), '\n');
}
}
int64_t getLowWatermark(std::stringstream& zoneInfoStream) {
int64_t lowWatermark = 0;
while (!zoneInfoStream.eof()) {
std::string key;
zoneInfoStream >> key;
if (key == "low") {
int64_t value;
zoneInfoStream >> value;
lowWatermark += value;
}
zoneInfoStream.ignore(std::numeric_limits<std::streamsize>::max(), '\n');
}
return lowWatermark;
}
#endif
void getMachineRAMInfo(MachineRAMInfo& memInfo) {
#if defined(__linux__)
std::ifstream zoneInfoFileStream("/proc/zoneinfo", std::ifstream::in);
int64_t lowWatermark = 0;
if (!zoneInfoFileStream.good()) {
TraceEvent(SevWarnAlways, "GetMachineZoneInfo").GetLastError();
} else {
std::stringstream zoneInfoStream;
zoneInfoStream << zoneInfoFileStream.rdbuf();
lowWatermark = getLowWatermark(zoneInfoStream) * 4; // Convert from 4K pages to KB
}
std::ifstream fileStream("/proc/meminfo", std::ifstream::in);
if (!fileStream.good()) {
TraceEvent(SevError, "GetMachineMemInfo").GetLastError();
throw platform_error();
}
std::map<StringRef, int64_t> request = {
{ LiteralStringRef("MemTotal:"), 0 }, { LiteralStringRef("MemFree:"), 0 },
{ LiteralStringRef("MemAvailable:"), -1 }, { LiteralStringRef("Active(file):"), 0 },
{ LiteralStringRef("Inactive(file):"), 0 }, { LiteralStringRef("SwapTotal:"), 0 },
{ LiteralStringRef("SwapFree:"), 0 }, { LiteralStringRef("SReclaimable:"), 0 },
};
std::stringstream memInfoStream;
memInfoStream << fileStream.rdbuf();
getMemoryInfo(request, memInfoStream);
int64_t memFree = request[LiteralStringRef("MemFree:")];
int64_t pageCache = request[LiteralStringRef("Active(file):")] + request[LiteralStringRef("Inactive(file):")];
int64_t slabReclaimable = request[LiteralStringRef("SReclaimable:")];
int64_t usedSwap = request[LiteralStringRef("SwapTotal:")] - request[LiteralStringRef("SwapFree:")];
memInfo.total = 1024 * request[LiteralStringRef("MemTotal:")];
if (request[LiteralStringRef("MemAvailable:")] != -1) {
memInfo.available = 1024 * (request[LiteralStringRef("MemAvailable:")] - usedSwap);
} else {
memInfo.available =
1024 * (std::max<int64_t>(0,
(memFree - lowWatermark) + std::max(pageCache - lowWatermark, pageCache / 2) +
std::max(slabReclaimable - lowWatermark, slabReclaimable / 2)) -
usedSwap);
}
memInfo.committed = memInfo.total - memInfo.available;
#elif defined(__FreeBSD__)
int status;
u_int page_size;
u_int free_count;
u_int active_count;
u_int inactive_count;
u_int wire_count;
size_t uint_size;
uint_size = sizeof(page_size);
status = sysctlbyname("vm.stats.vm.v_page_size", &page_size, &uint_size, nullptr, 0);
if (status < 0) {
TraceEvent(SevError, "GetMachineMemInfo").GetLastError();
throw platform_error();
}
status = sysctlbyname("vm.stats.vm.v_free_count", &free_count, &uint_size, nullptr, 0);
if (status < 0) {
TraceEvent(SevError, "GetMachineMemInfo").GetLastError();
throw platform_error();
}
status = sysctlbyname("vm.stats.vm.v_active_count", &active_count, &uint_size, nullptr, 0);
if (status < 0) {
TraceEvent(SevError, "GetMachineMemInfo").GetLastError();
throw platform_error();
}
status = sysctlbyname("vm.stats.vm.v_inactive_count", &inactive_count, &uint_size, nullptr, 0);
if (status < 0) {
TraceEvent(SevError, "GetMachineMemInfo").GetLastError();
throw platform_error();
}
status = sysctlbyname("vm.stats.vm.v_wire_count", &wire_count, &uint_size, nullptr, 0);
if (status < 0) {
TraceEvent(SevError, "GetMachineMemInfo").GetLastError();
throw platform_error();
}
memInfo.total = (int64_t)((free_count + active_count + inactive_count + wire_count) * (u_int64_t)(page_size));
memInfo.available = (int64_t)(free_count * (u_int64_t)(page_size));
memInfo.committed = memInfo.total - memInfo.available;
#elif defined(_WIN32)
MEMORYSTATUSEX mem_status;
mem_status.dwLength = sizeof(mem_status);
if (!GlobalMemoryStatusEx(&mem_status)) {
TraceEvent(SevError, "WindowsGetMemStatus").GetLastError();
throw platform_error();
}
PERFORMACE_INFORMATION perf;
if (!GetPerformanceInfo(&perf, sizeof(perf))) {
TraceEvent(SevError, "WindowsGetMemPerformanceInfo").GetLastError();
throw platform_error();
}
memInfo.total = mem_status.ullTotalPhys;
memInfo.committed = perf.PageSize * perf.CommitTotal;
memInfo.available = memInfo.total - memInfo.committed;
#elif defined(__APPLE__)
vm_statistics_data_t vm_stat;
vm_size_t pagesize;
mach_msg_type_number_t host_size = sizeof(vm_statistics_data_t) / sizeof(integer_t);
if (KERN_SUCCESS != host_statistics(mach_host_self(), HOST_VM_INFO, (host_info_t)&vm_stat, &host_size)) {
TraceEvent(SevError, "GetMachineMemInfo").GetLastError();
throw platform_error();
}
host_page_size(mach_host_self(), &pagesize);
memInfo.total =
pagesize * (vm_stat.free_count + vm_stat.active_count + vm_stat.inactive_count + vm_stat.wire_count);
memInfo.available = pagesize * vm_stat.free_count;
memInfo.committed = memInfo.total - memInfo.available;
#else
#warning getMachineRAMInfo unimplemented on this platform
#endif
}
Error systemErrorCodeToError() {
#if defined(_WIN32)
if (GetLastError() == ERROR_IO_DEVICE) {
return io_error();
}
#elif defined(__unixish__)
if (errno == EIO || errno == EROFS) {
return io_error();
}
#else
#error Port me!
#endif
return platform_error();
}
void getDiskBytes(std::string const& directory, int64_t& free, int64_t& total) {
INJECT_FAULT(platform_error, "getDiskBytes"); // Get disk bytes failed
#if defined(__unixish__)
#if defined(__linux__) || defined(__FreeBSD__)
struct statvfs buf;
if (statvfs(directory.c_str(), &buf)) {
Error e = systemErrorCodeToError();
TraceEvent(SevError, "GetDiskBytesStatvfsError").error(e).detail("Directory", directory).GetLastError();
throw e;
}
uint64_t blockSize = buf.f_frsize;
#elif defined(__APPLE__)
struct statfs buf;
if (statfs(directory.c_str(), &buf)) {
Error e = systemErrorCodeToError();
TraceEvent(SevError, "GetDiskBytesStatfsError").error(e).detail("Directory", directory).GetLastError();
throw e;
}
uint64_t blockSize = buf.f_bsize;
#else
#error Unknown unix
#endif
free = std::min((uint64_t)std::numeric_limits<int64_t>::max(), buf.f_bavail * blockSize);
total = std::min((uint64_t)std::numeric_limits<int64_t>::max(), buf.f_blocks * blockSize);
#elif defined(_WIN32)
std::string fullPath = abspath(directory);
//TraceEvent("FullDiskPath").detail("Path", fullPath).detail("Disk", (char)toupper(fullPath[0]));
ULARGE_INTEGER freeSpace;
ULARGE_INTEGER totalSpace;
ULARGE_INTEGER totalFreeSpace;
if (!GetDiskFreeSpaceEx(fullPath.c_str(), &freeSpace, &totalSpace, &totalFreeSpace)) {
Error e = systemErrorCodeToError();
TraceEvent(SevError, "DiskFreeError").error(e).detail("Path", fullPath).GetLastError();
throw e;
}
total = std::min((uint64_t)std::numeric_limits<int64_t>::max(), totalSpace.QuadPart);
free = std::min((uint64_t)std::numeric_limits<int64_t>::max(), freeSpace.QuadPart);
#else
#warning getDiskBytes unimplemented on this platform
free = 1LL << 50;
total = 1LL << 50;
#endif
}
#ifdef __unixish__
const char* getInterfaceName(const IPAddress& _ip) {
INJECT_FAULT(platform_error, "getInterfaceName"); // Get interface name failed
static char iname[20];
struct ifaddrs* interfaces = nullptr;
const char* ifa_name = nullptr;
if (getifaddrs(&interfaces)) {
TraceEvent(SevWarnAlways, "GetInterfaceAddrs").GetLastError();
throw platform_error();
}
for (struct ifaddrs* iter = interfaces; iter; iter = iter->ifa_next) {
if (!iter->ifa_addr)
continue;
if (iter->ifa_addr->sa_family == AF_INET && _ip.isV4()) {
uint32_t ip = ntohl((reinterpret_cast<struct sockaddr_in*>(iter->ifa_addr))->sin_addr.s_addr);
if (ip == _ip.toV4()) {
ifa_name = iter->ifa_name;
break;
}
} else if (iter->ifa_addr->sa_family == AF_INET6 && _ip.isV6()) {
struct sockaddr_in6* ifa_addr = reinterpret_cast<struct sockaddr_in6*>(iter->ifa_addr);
if (memcmp(_ip.toV6().data(), &ifa_addr->sin6_addr, 16) == 0) {
ifa_name = iter->ifa_name;
break;
}
}
}
if (ifa_name) {
strncpy(iname, ifa_name, 19);
iname[19] = 0;
}
freeifaddrs(interfaces);
if (ifa_name)
return iname;
else
return nullptr;
}
#endif
#if defined(__linux__)
void getNetworkTraffic(const IPAddress& ip,
uint64_t& bytesSent,
uint64_t& bytesReceived,
uint64_t& outSegs,
uint64_t& retransSegs) {
INJECT_FAULT(
platform_error,
"getNetworkTraffic"); // getNetworkTraffic: Even though this function doesn't throw errors, the equivalents for
// other platforms do, and since all of our simulation testing is on Linux...
const char* ifa_name = nullptr;
try {
ifa_name = getInterfaceName(ip);
} catch (Error& e) {
if (e.code() != error_code_platform_error) {
throw;
}
}
if (!ifa_name)
return;
std::ifstream dev_stream("/proc/net/dev", std::ifstream::in);
dev_stream.ignore(std::numeric_limits<std::streamsize>::max(), '\n');
dev_stream.ignore(std::numeric_limits<std::streamsize>::max(), '\n');
std::string iface;
std::string ignore;
uint64_t bytesSentSum = 0;
uint64_t bytesReceivedSum = 0;
while (dev_stream.good()) {
dev_stream >> iface;
if (dev_stream.eof())
break;
if (!strncmp(iface.c_str(), ifa_name, strlen(ifa_name))) {
uint64_t sent = 0, received = 0;
dev_stream >> received;
for (int i = 0; i < 7; i++)
dev_stream >> ignore;
dev_stream >> sent;
bytesSentSum += sent;
bytesReceivedSum += received;
dev_stream.ignore(std::numeric_limits<std::streamsize>::max(), '\n');
}
}
if (bytesSentSum > 0) {
bytesSent = bytesSentSum;
}
if (bytesReceivedSum > 0) {
bytesReceived = bytesReceivedSum;
}
std::ifstream snmp_stream("/proc/net/snmp", std::ifstream::in);
std::string label;
while (snmp_stream.good()) {
snmp_stream >> label;
snmp_stream.ignore(std::numeric_limits<std::streamsize>::max(), '\n');
if (label == "Tcp:")
break;
}
/* Ignore the first 11 columns of the Tcp line */
for (int i = 0; i < 11; i++)
snmp_stream >> ignore;
snmp_stream >> outSegs;
snmp_stream >> retransSegs;
}
void getMachineLoad(uint64_t& idleTime, uint64_t& totalTime, bool logDetails) {
INJECT_FAULT(platform_error,
"getMachineLoad"); // getMachineLoad: Even though this function doesn't throw errors, the equivalents
// for other platforms do, and since all of our simulation testing is on Linux...
std::ifstream stat_stream("/proc/stat", std::ifstream::in);
std::string ignore;
stat_stream >> ignore;
uint64_t t_user, t_nice, t_system, t_idle, t_iowait, t_irq, t_softirq, t_steal, t_guest;
stat_stream >> t_user >> t_nice >> t_system >> t_idle >> t_iowait >> t_irq >> t_softirq >> t_steal >> t_guest;
totalTime = t_user + t_nice + t_system + t_idle + t_iowait + t_irq + t_softirq + t_steal + t_guest;
idleTime = t_idle + t_iowait;
if (!DEBUG_DETERMINISM && logDetails)
TraceEvent("MachineLoadDetail")
.detail("User", t_user)
.detail("Nice", t_nice)
.detail("System", t_system)
.detail("Idle", t_idle)
.detail("IOWait", t_iowait)
.detail("IRQ", t_irq)
.detail("SoftIRQ", t_softirq)
.detail("Steal", t_steal)
.detail("Guest", t_guest);
}
void getDiskStatistics(std::string const& directory,
uint64_t& currentIOs,
uint64_t& readMilliSecs,
uint64_t& writeMilliSecs,
uint64_t& IOMilliSecs,
uint64_t& reads,
uint64_t& writes,
uint64_t& writeSectors,
uint64_t& readSectors) {
INJECT_FAULT(platform_error, "getDiskStatistics"); // Getting disks statistics failed
currentIOs = 0;
struct stat buf;
if (stat(directory.c_str(), &buf)) {
TraceEvent(SevError, "GetDiskStatisticsStatError").detail("Directory", directory).GetLastError();
throw platform_error();
}
std::ifstream proc_stream("/proc/diskstats", std::ifstream::in);
while (proc_stream.good()) {
std::string line;
getline(proc_stream, line);
std::istringstream disk_stream(line, std::istringstream::in);
unsigned int majorId;
unsigned int minorId;
disk_stream >> majorId;
disk_stream >> minorId;
if (majorId == (unsigned int)gnu_dev_major(buf.st_dev) && minorId == (unsigned int)gnu_dev_minor(buf.st_dev)) {
std::string ignore;
uint64_t rd_ios; /* # of reads completed */
// This is the total number of reads completed successfully.
uint64_t rd_merges; /* # of reads merged */
// Reads and writes which are adjacent to each other may be merged for
// efficiency. Thus two 4K reads may become one 8K read before it is
// ultimately handed to the disk, and so it will be counted (and queued)
// as only one I/O. This field lets you know how often this was done.
uint64_t rd_sectors; /*# of sectors read */
// This is the total number of sectors read successfully.
uint64_t rd_ticks; /* # of milliseconds spent reading */
// This is the total number of milliseconds spent by all reads (as
// measured from __make_request() to end_that_request_last()).
uint64_t wr_ios; /* # of writes completed */
// This is the total number of writes completed successfully.
uint64_t wr_merges; /* # of writes merged */
// Reads and writes which are adjacent to each other may be merged for
// efficiency. Thus two 4K reads may become one 8K read before it is
// ultimately handed to the disk, and so it will be counted (and queued)
// as only one I/O. This field lets you know how often this was done.
uint64_t wr_sectors; /* # of sectors written */
// This is the total number of sectors written successfully.
uint64_t wr_ticks; /* # of milliseconds spent writing */
// This is the total number of milliseconds spent by all writes (as
// measured from __make_request() to end_that_request_last()).
uint64_t cur_ios; /* # of I/Os currently in progress */
// The only field that should go to zero. Incremented as requests are
// given to appropriate struct request_queue and decremented as they finish.
uint64_t ticks; /* # of milliseconds spent doing I/Os */
// This field increases so long as field 9 is nonzero.
uint64_t aveq; /* weighted # of milliseconds spent doing I/Os */
// This field is incremented at each I/O start, I/O completion, I/O
// merge, or read of these stats by the number of I/Os in progress
// (field 9) times the number of milliseconds spent doing I/O since the
// last update of this field. This can provide an easy measure of both
// I/O completion time and the backlog that may be accumulating.
disk_stream >> ignore;
disk_stream >> rd_ios;
disk_stream >> rd_merges;
disk_stream >> rd_sectors;
disk_stream >> rd_ticks;
disk_stream >> wr_ios;
disk_stream >> wr_merges;
disk_stream >> wr_sectors;
disk_stream >> wr_ticks;
disk_stream >> cur_ios;
disk_stream >> ticks;
disk_stream >> aveq;
currentIOs = cur_ios;
readMilliSecs = rd_ticks;
writeMilliSecs = wr_ticks;
IOMilliSecs = ticks;
reads = rd_ios;
writes = wr_ios;
writeSectors = wr_sectors;
readSectors = rd_sectors;
//TraceEvent("DiskMetricsRaw").detail("Input", line).detail("Ignore", ignore).detail("RdIos", rd_ios)
// .detail("RdMerges", rd_merges).detail("RdSectors", rd_sectors).detail("RdTicks",
// rd_ticks).detail("WrIos", wr_ios).detail("WrMerges", wr_merges) .detail("WrSectors",
// wr_sectors).detail("WrTicks", wr_ticks).detail("CurIos", cur_ios).detail("Ticks", ticks).detail("Aveq",
// aveq) .detail("CurrentIOs", currentIOs).detail("BusyTicks", busyTicks).detail("Reads",
// reads).detail("Writes", writes).detail("WriteSectors", writeSectors)
// .detail("ReadSectors", readSectors);
return;
} else
disk_stream.ignore(std::numeric_limits<std::streamsize>::max(), '\n');
}
if (!g_network->isSimulated())
TraceEvent(SevWarn, "GetDiskStatisticsDeviceNotFound").detail("Directory", directory);
}
dev_t getDeviceId(std::string path) {
struct stat statInfo;
while (true) {
int returnValue = stat(path.c_str(), &statInfo);
if (!returnValue)
break;
if (errno == ENOENT) {
path = parentDirectory(path);
} else {
TraceEvent(SevError, "GetDeviceIdError").detail("Path", path).GetLastError();
throw platform_error();
}
}
return statInfo.st_dev;
}
#endif
#if defined(__FreeBSD__)
void getNetworkTraffic(const IPAddress ip,
uint64_t& bytesSent,
uint64_t& bytesReceived,
uint64_t& outSegs,
uint64_t& retransSegs) {
INJECT_FAULT(platform_error, "getNetworkTraffic"); // Get Network traffic failed
const char* ifa_name = nullptr;
try {
ifa_name = getInterfaceName(ip);
} catch (Error& e) {
if (e.code() != error_code_platform_error) {
throw;
}
}
if (!ifa_name)
return;
struct ifaddrs* interfaces = nullptr;
if (getifaddrs(&interfaces)) {
TraceEvent(SevError, "GetNetworkTrafficError").GetLastError();
throw platform_error();
}
int if_count, i;
int mib[6];
size_t ifmiblen;
struct ifmibdata ifmd;
mib[0] = CTL_NET;
mib[1] = PF_LINK;
mib[2] = NETLINK_GENERIC;
mib[3] = IFMIB_IFDATA;
mib[4] = IFMIB_IFCOUNT;
mib[5] = IFDATA_GENERAL;
ifmiblen = sizeof(ifmd);
for (i = 1; i <= if_count; i++) {
mib[4] = i;
sysctl(mib, 6, &ifmd, &ifmiblen, (void*)0, 0);
if (!strcmp(ifmd.ifmd_name, ifa_name)) {
bytesSent = ifmd.ifmd_data.ifi_obytes;
bytesReceived = ifmd.ifmd_data.ifi_ibytes;
break;
}
}
freeifaddrs(interfaces);
struct tcpstat tcpstat;
size_t stat_len;
stat_len = sizeof(tcpstat);
int tcpstatus = sysctlbyname("net.inet.tcp.stats", &tcpstat, &stat_len, nullptr, 0);
if (tcpstatus < 0) {
TraceEvent(SevError, "GetNetworkTrafficError").GetLastError();
throw platform_error();
}
outSegs = tcpstat.tcps_sndtotal;
retransSegs = tcpstat.tcps_sndrexmitpack;
}
void getMachineLoad(uint64_t& idleTime, uint64_t& totalTime, bool logDetails) {
INJECT_FAULT(platform_error, "getMachineLoad"); // Getting machine load failed
long cur[CPUSTATES], last[CPUSTATES];
size_t cur_sz = sizeof cur;
int cpustate;
long sum;
memset(last, 0, sizeof last);
if (sysctlbyname("kern.cp_time", &cur, &cur_sz, nullptr, 0) < 0) {
TraceEvent(SevError, "GetMachineLoad").GetLastError();
throw platform_error();
}
sum = 0;
for (cpustate = 0; cpustate < CPUSTATES; cpustate++) {
long tmp = cur[cpustate];
cur[cpustate] -= last[cpustate];
last[cpustate] = tmp;
sum += cur[cpustate];
}
totalTime = (uint64_t)(cur[CP_USER] + cur[CP_NICE] + cur[CP_SYS] + cur[CP_IDLE]);
idleTime = (uint64_t)(cur[CP_IDLE]);
// need to add logging here to TraceEvent
}
void getDiskStatistics(std::string const& directory,
uint64_t& currentIOs,
uint64_t& readMilliSecs,
uint64_t& writeMilliSecs,
uint64_t& IOMilliSecs,
uint64_t& reads,
uint64_t& writes,
uint64_t& writeSectors,
uint64_t& readSectors) {
INJECT_FAULT(platform_error, "getDiskStatistics"); // getting disk stats failed
currentIOs = 0;
readMilliSecs = 0; // This will not be used because we cannot get its value.
writeMilliSecs = 0; // This will not be used because we cannot get its value.
IOMilliSecs = 0;
reads = 0;
writes = 0;
writeSectors = 0;
readSectors = 0;
struct stat buf;
if (stat(directory.c_str(), &buf)) {
TraceEvent(SevError, "GetDiskStatisticsStatError").detail("Directory", directory).GetLastError();
throw platform_error();
}
static struct statinfo dscur;
double etime;
struct timespec ts;
static int num_devices;
kvm_t* kd = nullptr;
etime = ts.tv_nsec * 1e-6;
;
int dn;
u_int64_t total_transfers_read, total_transfers_write;
u_int64_t total_blocks_read, total_blocks_write;
u_int64_t queue_len;
long double ms_per_transaction;
dscur.dinfo = (struct devinfo*)calloc(1, sizeof(struct devinfo));
if (dscur.dinfo == nullptr) {
TraceEvent(SevError, "GetDiskStatisticsStatError").GetLastError();
throw platform_error();
}
if (devstat_getdevs(kd, &dscur) == -1) {
TraceEvent(SevError, "GetDiskStatisticsStatError").GetLastError();
throw platform_error();
}
num_devices = dscur.dinfo->numdevs;
for (dn = 0; dn < num_devices; dn++) {
if (devstat_compute_statistics(&dscur.dinfo->devices[dn],
nullptr,
etime,
DSM_MS_PER_TRANSACTION,
&ms_per_transaction,
DSM_TOTAL_TRANSFERS_READ,
&total_transfers_read,
DSM_TOTAL_TRANSFERS_WRITE,
&total_transfers_write,
DSM_TOTAL_BLOCKS_READ,
&total_blocks_read,
DSM_TOTAL_BLOCKS_WRITE,
&total_blocks_write,
DSM_QUEUE_LENGTH,
&queue_len,
DSM_NONE) != 0) {
TraceEvent(SevError, "GetDiskStatisticsStatError").GetLastError();
throw platform_error();
}
currentIOs += queue_len;
IOMilliSecs += (u_int64_t)ms_per_transaction;
reads += total_transfers_read;
writes += total_transfers_write;
writeSectors += total_blocks_read;
readSectors += total_blocks_write;
}
}
dev_t getDeviceId(std::string path) {
struct stat statInfo;
while (true) {
int returnValue = stat(path.c_str(), &statInfo);
if (!returnValue)
break;
if (errno == ENOENT) {
path = parentDirectory(path);
} else {
TraceEvent(SevError, "GetDeviceIdError").detail("Path", path).GetLastError();
throw platform_error();
}
}
return statInfo.st_dev;
}
#endif
#ifdef __APPLE__
void getNetworkTraffic(const IPAddress& ip,
uint64_t& bytesSent,
uint64_t& bytesReceived,
uint64_t& outSegs,
uint64_t& retransSegs) {
INJECT_FAULT(platform_error, "getNetworkTraffic"); // Get network traffic failed (macOS)
const char* ifa_name = nullptr;
try {
ifa_name = getInterfaceName(ip);
} catch (Error& e) {
if (e.code() != error_code_platform_error) {
throw;
}
}
if (!ifa_name)
return;
int mib[] = {
CTL_NET, PF_ROUTE, 0,
AF_INET, NET_RT_IFLIST2, 0 /* If we could get an interface index instead of name, we would pass it here */
};
size_t len;
if (sysctl(mib, 6, nullptr, &len, nullptr, 0) < 0) {
TraceEvent(SevError, "GetNetworkTrafficError").GetLastError();
throw platform_error();
}
char* buf = (char*)malloc(len);
if (sysctl(mib, 6, buf, &len, nullptr, 0) < 0) {
free(buf);
TraceEvent(SevError, "GetNetworkTrafficReadInterfacesError").GetLastError();
throw platform_error();
}
char* lim = buf + len;
for (char* next = buf; next < lim;) {
struct if_msghdr* ifm = (struct if_msghdr*)next;
next += ifm->ifm_msglen;
if ((ifm->ifm_type = RTM_IFINFO2)) {
struct if_msghdr2* if2m = (struct if_msghdr2*)ifm;
struct sockaddr_dl* sdl = (struct sockaddr_dl*)(if2m + 1);
if (sdl->sdl_nlen == strlen(ifa_name) && !strncmp(ifa_name, sdl->sdl_data, sdl->sdl_nlen)) {
bytesSent = if2m->ifm_data.ifi_obytes;
bytesReceived = if2m->ifm_data.ifi_ibytes;
outSegs = if2m->ifm_data.ifi_opackets;
retransSegs = 0;
break;
}
}
}
free(buf);
}
void getMachineLoad(uint64_t& idleTime, uint64_t& totalTime, bool logDetails) {
INJECT_FAULT(platform_error, "getMachineLoad"); // Getting machine load filed (macOS)
mach_msg_type_number_t count = HOST_CPU_LOAD_INFO_COUNT;
host_cpu_load_info_data_t r_load;
if (host_statistics(mach_host_self(), HOST_CPU_LOAD_INFO, (host_info_t)&r_load, &count) != KERN_SUCCESS) {
TraceEvent(SevError, "GetMachineLoad").GetLastError();
throw platform_error();
}
idleTime = r_load.cpu_ticks[CPU_STATE_IDLE];
totalTime = r_load.cpu_ticks[CPU_STATE_IDLE] + r_load.cpu_ticks[CPU_STATE_USER] + r_load.cpu_ticks[CPU_STATE_NICE] +
r_load.cpu_ticks[CPU_STATE_SYSTEM];
}
void getDiskStatistics(std::string const& directory,
uint64_t& currentIOs,
uint64_t& readMilliSecs,
uint64_t& writeMilliSecs,
uint64_t& IOMilliSecs,
uint64_t& reads,
uint64_t& writes,
uint64_t& writeSectors,
uint64_t& readSectors) {
INJECT_FAULT(platform_error, "getDiskStatistics"); // Getting disk stats failed (macOS)
currentIOs = 0; // This will not be used because we cannot get its value.
readMilliSecs = 0;
writeMilliSecs = 0;
IOMilliSecs = 0;
writeSectors = 0;
readSectors = 0;
struct statfs buf;
if (statfs(directory.c_str(), &buf)) {
Error e = systemErrorCodeToError();
TraceEvent(SevError, "GetDiskStatisticsStatfsError").error(e).detail("Directory", directory).GetLastError();
throw e;
}
const char* dev = strrchr(buf.f_mntfromname, '/');
if (!dev) {
TraceEvent(SevError, "GetDiskStatisticsStrrchrError").detail("Directory", directory).GetLastError();
throw platform_error();
}
dev++;
io_iterator_t disk_list;
// According to Apple docs, if this gets passed to IOServiceGetMatchingServices, we aren't responsible for the
// memory anymore, the only case where it isn't passed is if it's null, in which case we also aren't responsible. So
// no need to call CFRelease on this variable.
CFMutableDictionaryRef match = IOBSDNameMatching(kIOMasterPortDefault, kNilOptions, dev);
if (!match) {
TraceEvent(SevError, "IOBSDNameMatching").log();
throw platform_error();
}
if (IOServiceGetMatchingServices(kIOMasterPortDefault, match, &disk_list) != kIOReturnSuccess) {
TraceEvent(SevError, "IOServiceGetMatchingServices").log();
throw platform_error();
}
io_registry_entry_t disk = IOIteratorNext(disk_list);
if (!disk) {
IOObjectRelease(disk_list);
TraceEvent(SevError, "IOIteratorNext").log();
throw platform_error();
}
io_registry_entry_t tdisk = disk;
while (!IOObjectConformsTo(disk, "IOBlockStorageDriver")) {
IORegistryEntryGetParentEntry(disk, kIOServicePlane, &tdisk);
IOObjectRelease(disk);
disk = tdisk;
}
CFDictionaryRef disk_dict = nullptr;
if (IORegistryEntryCreateCFProperties(
disk, (CFMutableDictionaryRef*)&disk_dict, kCFAllocatorDefault, kNilOptions) != kIOReturnSuccess) {
IOObjectRelease(disk);
IOObjectRelease(disk_list);
TraceEvent(SevError, "IORegistryEntryCreateCFProperties").log();
throw platform_error();
}
// Here and below, note that memory returned by CFDictionaryGetValue() is not owned by us, and should not be
// CFRelease()'d by us.
CFDictionaryRef stats_dict =
(CFDictionaryRef)CFDictionaryGetValue(disk_dict, CFSTR(kIOBlockStorageDriverStatisticsKey));
if (stats_dict == nullptr) {
CFRelease(disk_dict);
IOObjectRelease(disk);
IOObjectRelease(disk_list);
TraceEvent(SevError, "CFDictionaryGetValue").log();
throw platform_error();
}
CFNumberRef number;
if ((number = (CFNumberRef)CFDictionaryGetValue(stats_dict, CFSTR(kIOBlockStorageDriverStatisticsReadsKey)))) {
CFNumberGetValue(number, kCFNumberSInt64Type, &reads);
}
if ((number = (CFNumberRef)CFDictionaryGetValue(stats_dict, CFSTR(kIOBlockStorageDriverStatisticsWritesKey)))) {
CFNumberGetValue(number, kCFNumberSInt64Type, &writes);
}
uint64_t nanoSecs;
if ((number =
(CFNumberRef)CFDictionaryGetValue(stats_dict, CFSTR(kIOBlockStorageDriverStatisticsTotalReadTimeKey)))) {
CFNumberGetValue(number, kCFNumberSInt64Type, &nanoSecs);
readMilliSecs += nanoSecs;
IOMilliSecs += nanoSecs;
}
if ((number =
(CFNumberRef)CFDictionaryGetValue(stats_dict, CFSTR(kIOBlockStorageDriverStatisticsTotalWriteTimeKey)))) {
CFNumberGetValue(number, kCFNumberSInt64Type, &nanoSecs);
writeMilliSecs += nanoSecs;
IOMilliSecs += nanoSecs;
}
// nanoseconds to milliseconds
readMilliSecs /= 1000000;
writeMilliSecs /= 1000000;
IOMilliSecs /= 1000000;
CFRelease(disk_dict);
IOObjectRelease(disk);
IOObjectRelease(disk_list);
}
#endif
#if defined(_WIN32)
std::vector<std::string> expandWildcardPath(const char* wildcardPath) {
PDH_STATUS Status;
char* EndOfPaths;
char* Paths = nullptr;
DWORD BufferSize = 0;
std::vector<std::string> results;
Status = PdhExpandCounterPath(wildcardPath, Paths, &BufferSize);
if (Status != PDH_MORE_DATA) {
TraceEvent(SevWarn, "PdhExpandCounterPathError")
.detail("Reason", "Expand Path call made no sense")
.detail("Status", Status);
goto Cleanup;
}
Paths = (char*)malloc(BufferSize);
Status = PdhExpandCounterPath(wildcardPath, Paths, &BufferSize);
if (Status != ERROR_SUCCESS) {
TraceEvent(SevWarn, "PdhExpandCounterPathError")
.detail("Reason", "Expand Path call failed")
.detail("Status", Status);
goto Cleanup;
}
if (Paths == nullptr) {
TraceEvent("WindowsPdhExpandCounterPathError").detail("Reason", "Path could not be expanded");
goto Cleanup;
}
EndOfPaths = Paths + BufferSize;
for (char* p = Paths; ((p != EndOfPaths) && (*p != '\0')); p += strlen(p) + 1) {
results.push_back(p);
// printf("Counter: %s\n", p);
}
Cleanup:
if (Paths) {
free(Paths);
}
return results;
}
std::vector<HCOUNTER> addCounters(HQUERY Query, const char* path) {
std::vector<HCOUNTER> counters;
std::vector<std::string> paths = expandWildcardPath(path);
for (int i = 0; i < paths.size(); i++) {
HCOUNTER counter;
handlePdhStatus(PdhAddCounter(Query, paths[i].c_str(), 0, &counter), "PdhAddCounter");
counters.push_back(counter);
}
return counters;
}
#endif
struct SystemStatisticsState {
double lastTime;
double lastClockThread;
double lastClockProcess;
uint64_t processLastSent;
uint64_t processLastReceived;
#if defined(_WIN32)
struct {
std::string diskDevice;
std::string physicalDisk;
std::string processor;
std::string networkDevice;
std::string tcpv4;
std::string pctIdle;
std::string diskQueueLength;
std::string diskReadsPerSec;
std::string diskWritesPerSec;
std::string diskWriteBytesPerSec;
std::string bytesSentPerSec;
std::string bytesRecvPerSec;
std::string segmentsOutPerSec;
std::string segmentsRetransPerSec;
} pdhStrings;
PDH_STATUS Status;
HQUERY Query;
HCOUNTER QueueLengthCounter;
HCOUNTER DiskTimeCounter;
HCOUNTER ReadsCounter;
HCOUNTER WritesCounter;
HCOUNTER WriteBytesCounter;
std::vector<HCOUNTER> SendCounters;
std::vector<HCOUNTER> ReceiveCounters;
HCOUNTER SegmentsOutCounter;
HCOUNTER SegmentsRetransCounter;
HCOUNTER ProcessorIdleCounter;
SystemStatisticsState()
: Query(nullptr), QueueLengthCounter(nullptr), DiskTimeCounter(nullptr), ReadsCounter(nullptr),
WritesCounter(nullptr), WriteBytesCounter(nullptr), ProcessorIdleCounter(nullptr), lastTime(0),
lastClockThread(0), lastClockProcess(0), processLastSent(0), processLastReceived(0) {}
#elif defined(__unixish__)
uint64_t machineLastSent, machineLastReceived;
uint64_t machineLastOutSegs, machineLastRetransSegs;
uint64_t lastReadMilliSecs, lastWriteMilliSecs, lastIOMilliSecs, lastReads, lastWrites, lastWriteSectors,
lastReadSectors;
uint64_t lastClockIdleTime, lastClockTotalTime;
SystemStatisticsState()
: lastTime(0), lastClockThread(0), lastClockProcess(0), processLastSent(0), processLastReceived(0),
machineLastSent(0), machineLastReceived(0), machineLastOutSegs(0), machineLastRetransSegs(0),
lastReadMilliSecs(0), lastWriteMilliSecs(0), lastIOMilliSecs(0), lastReads(0), lastWrites(0),
lastWriteSectors(0), lastReadSectors(0), lastClockIdleTime(0), lastClockTotalTime(0) {}
#else
#error Port me!
#endif
};
#if defined(_WIN32)
void initPdhStrings(SystemStatisticsState* state, std::string dataFolder) {
if (setPdhString(234, state->pdhStrings.physicalDisk) && setPdhString(238, state->pdhStrings.processor) &&
setPdhString(510, state->pdhStrings.networkDevice) && setPdhString(638, state->pdhStrings.tcpv4) &&
setPdhString(1482, state->pdhStrings.pctIdle) && setPdhString(198, state->pdhStrings.diskQueueLength) &&
setPdhString(214, state->pdhStrings.diskReadsPerSec) && setPdhString(216, state->pdhStrings.diskWritesPerSec) &&
setPdhString(222, state->pdhStrings.diskWriteBytesPerSec) &&
setPdhString(506, state->pdhStrings.bytesSentPerSec) && setPdhString(264, state->pdhStrings.bytesRecvPerSec) &&
setPdhString(654, state->pdhStrings.segmentsOutPerSec) &&
setPdhString(656, state->pdhStrings.segmentsRetransPerSec)) {
if (!dataFolder.empty()) {
dataFolder = abspath(dataFolder);
char buf[512], buf2[512];
DWORD sz = 512, sz2 = 512;
if (!GetVolumePathName(dataFolder.c_str(), buf, 512)) {
TraceEvent(SevWarn, "GetVolumePathName").GetLastError().detail("Path", dataFolder);
return;
}
if (!GetVolumeNameForVolumeMountPoint(buf, buf2, 512)) {
TraceEvent(SevWarn, "GetVolumeNameForVolumeMountPoint").GetLastError().detail("Path", dataFolder);
return;
}
if (!strlen(buf2)) {
TraceEvent(SevWarn, "WinDiskStatsGetPathError").detail("Path", dataFolder);
return;
}
if (buf2[strlen(buf2) - 1] == '\\')
buf2[strlen(buf2) - 1] = 0;
HANDLE hDevice = CreateFile(buf2, 0, 0, nullptr, OPEN_EXISTING, 0, nullptr);
if (hDevice == INVALID_HANDLE_VALUE) {
TraceEvent(SevWarn, "CreateFile").GetLastError().detail("Path", dataFolder);
return;
}
STORAGE_DEVICE_NUMBER storage_device;
if (!DeviceIoControl(hDevice,
IOCTL_STORAGE_GET_DEVICE_NUMBER,
nullptr,
0,
&storage_device,
sizeof(storage_device),
&sz,
nullptr)) {
TraceEvent(SevWarn, "DeviceIoControl").GetLastError().detail("Path", dataFolder);
return;
}
// Find the drive letter involved!
sz = 512;
if (handlePdhStatus(PdhEnumObjectItems(nullptr,
nullptr,
state->pdhStrings.physicalDisk.c_str(),
buf2,
&sz2,
buf,
&sz,
PERF_DETAIL_NOVICE,
0),
"PdhEnumObjectItems")) {
char* ptr = buf;
while (*ptr) {
if (isdigit(*ptr) && atoi(ptr) == storage_device.DeviceNumber) {
state->pdhStrings.diskDevice = ptr;
break;
}
ptr += strlen(ptr) + 1;
}
}
if (state->pdhStrings.diskDevice.empty()) {
TraceEvent(SevWarn, "WinDiskStatsGetPathError").detail("Path", dataFolder);
return;
}
}
}
}
#endif
SystemStatistics getSystemStatistics(std::string const& dataFolder,
const IPAddress* ip,
SystemStatisticsState** statState,
bool logDetails) {
if ((*statState) == nullptr)
(*statState) = new SystemStatisticsState();
SystemStatistics returnStats;
double nowTime = timer();
double nowClockProcess = getProcessorTimeProcess();
double nowClockThread = getProcessorTimeThread();
returnStats.elapsed = nowTime - (*statState)->lastTime;
returnStats.initialized = (*statState)->lastTime != 0;
if (returnStats.initialized) {
returnStats.processCPUSeconds = (nowClockProcess - (*statState)->lastClockProcess);
returnStats.mainThreadCPUSeconds = (nowClockThread - (*statState)->lastClockThread);
}
returnStats.processMemory = getMemoryUsage();
returnStats.processResidentMemory = getResidentMemoryUsage();
MachineRAMInfo memInfo;
getMachineRAMInfo(memInfo);
returnStats.machineTotalRAM = memInfo.total;
returnStats.machineCommittedRAM = memInfo.committed;
returnStats.machineAvailableRAM = memInfo.available;
if (dataFolder != "") {
int64_t diskTotal, diskFree;
getDiskBytes(dataFolder, diskFree, diskTotal);
returnStats.processDiskTotalBytes = diskTotal;
returnStats.processDiskFreeBytes = diskFree;
}
#if defined(_WIN32)
if ((*statState)->Query == nullptr) {
initPdhStrings(*statState, dataFolder);
TraceEvent("SetupQuery").log();
handlePdhStatus(PdhOpenQuery(nullptr, NULL, &(*statState)->Query), "PdhOpenQuery");
if (!(*statState)->pdhStrings.diskDevice.empty()) {
handlePdhStatus(
PdhAddCounter((*statState)->Query,
("\\" + (*statState)->pdhStrings.physicalDisk + "(" +
(*statState)->pdhStrings.diskDevice + ")\\" + (*statState)->pdhStrings.pctIdle)
.c_str(),
0,
&(*statState)->DiskTimeCounter),
"PdhAddCounter");
handlePdhStatus(
PdhAddCounter((*statState)->Query,
("\\" + (*statState)->pdhStrings.physicalDisk + "(" +
(*statState)->pdhStrings.diskDevice + ")\\" + (*statState)->pdhStrings.diskQueueLength)
.c_str(),
0,
&(*statState)->QueueLengthCounter),
"PdhAddCounter");
handlePdhStatus(
PdhAddCounter((*statState)->Query,
("\\" + (*statState)->pdhStrings.physicalDisk + "(" +
(*statState)->pdhStrings.diskDevice + ")\\" + (*statState)->pdhStrings.diskReadsPerSec)
.c_str(),
0,
&(*statState)->ReadsCounter),
"PdhAddCounter");
handlePdhStatus(
PdhAddCounter((*statState)->Query,
("\\" + (*statState)->pdhStrings.physicalDisk + "(" +
(*statState)->pdhStrings.diskDevice + ")\\" + (*statState)->pdhStrings.diskWritesPerSec)
.c_str(),
0,
&(*statState)->WritesCounter),
"PdhAddCounter");
handlePdhStatus(PdhAddCounter((*statState)->Query,
("\\" + (*statState)->pdhStrings.physicalDisk + "(" +
(*statState)->pdhStrings.diskDevice + ")\\" +
(*statState)->pdhStrings.diskWriteBytesPerSec)
.c_str(),
0,
&(*statState)->WriteBytesCounter),
"PdhAddCounter");
}
(*statState)->SendCounters = addCounters(
(*statState)->Query,
("\\" + (*statState)->pdhStrings.networkDevice + "(*)\\" + (*statState)->pdhStrings.bytesSentPerSec)
.c_str());
(*statState)->ReceiveCounters = addCounters(
(*statState)->Query,
("\\" + (*statState)->pdhStrings.networkDevice + "(*)\\" + (*statState)->pdhStrings.bytesRecvPerSec)
.c_str());
handlePdhStatus(
PdhAddCounter(
(*statState)->Query,
("\\" + (*statState)->pdhStrings.tcpv4 + "\\" + (*statState)->pdhStrings.segmentsOutPerSec).c_str(),
0,
&(*statState)->SegmentsOutCounter),
"PdhAddCounter");
handlePdhStatus(
PdhAddCounter(
(*statState)->Query,
("\\" + (*statState)->pdhStrings.tcpv4 + "\\" + (*statState)->pdhStrings.segmentsRetransPerSec).c_str(),
0,
&(*statState)->SegmentsRetransCounter),
"PdhAddCounter");
handlePdhStatus(
PdhAddCounter(
(*statState)->Query,
("\\" + (*statState)->pdhStrings.processor + "(*)\\" + (*statState)->pdhStrings.pctIdle).c_str(),
0,
&(*statState)->ProcessorIdleCounter),
"PdhAddCounter");
}
handlePdhStatus(PdhCollectQueryData((*statState)->Query), "PdhCollectQueryData");
PDH_FMT_COUNTERVALUE DisplayValue;
if (returnStats.initialized) {
if (!(*statState)->pdhStrings.diskDevice.empty()) {
if (handlePdhStatus(
PdhGetFormattedCounterValue((*statState)->DiskTimeCounter, PDH_FMT_DOUBLE, 0, &DisplayValue),
"DiskTimeCounter"))
returnStats.processDiskIdleSeconds = DisplayValue.doubleValue * returnStats.elapsed / 100.0;
if (handlePdhStatus(
PdhGetFormattedCounterValue((*statState)->QueueLengthCounter, PDH_FMT_DOUBLE, 0, &DisplayValue),
"QueueLengthCounter"))
returnStats.processDiskQueueDepth = DisplayValue.doubleValue;
if (handlePdhStatus(
PdhGetFormattedCounterValue((*statState)->ReadsCounter, PDH_FMT_DOUBLE, 0, &DisplayValue),
"ReadsCounter"))
returnStats.processDiskRead = DisplayValue.doubleValue * returnStats.elapsed;
if (handlePdhStatus(
PdhGetFormattedCounterValue((*statState)->WritesCounter, PDH_FMT_DOUBLE, 0, &DisplayValue),
"WritesCounter"))
returnStats.processDiskWrite = DisplayValue.doubleValue * returnStats.elapsed;
if (handlePdhStatus(
PdhGetFormattedCounterValue((*statState)->WriteBytesCounter, PDH_FMT_DOUBLE, 0, &DisplayValue),
"WriteBytesCounter"))
returnStats.processDiskWriteSectors = DisplayValue.doubleValue * returnStats.elapsed / 512.0;
}
returnStats.machineMegabitsSent = 0.0;
for (int i = 0; i < (*statState)->SendCounters.size(); i++)
if (handlePdhStatus(
PdhGetFormattedCounterValue((*statState)->SendCounters[i], PDH_FMT_DOUBLE, 0, &DisplayValue),
"SendCounter"))
returnStats.machineMegabitsSent += DisplayValue.doubleValue * 7.62939453e-6;
returnStats.machineMegabitsSent *= returnStats.elapsed;
returnStats.machineMegabitsReceived = 0.0;
for (int i = 0; i < (*statState)->ReceiveCounters.size(); i++)
if (handlePdhStatus(
PdhGetFormattedCounterValue((*statState)->ReceiveCounters[i], PDH_FMT_DOUBLE, 0, &DisplayValue),
"ReceiveCounter"))
returnStats.machineMegabitsReceived += DisplayValue.doubleValue * 7.62939453e-6;
returnStats.machineMegabitsReceived *= returnStats.elapsed;
if (handlePdhStatus(
PdhGetFormattedCounterValue((*statState)->SegmentsOutCounter, PDH_FMT_DOUBLE, 0, &DisplayValue),
"SegmentsOutCounter"))
returnStats.machineOutSegs = DisplayValue.doubleValue * returnStats.elapsed;
if (handlePdhStatus(
PdhGetFormattedCounterValue((*statState)->SegmentsRetransCounter, PDH_FMT_DOUBLE, 0, &DisplayValue),
"SegmentsRetransCounter"))
returnStats.machineRetransSegs = DisplayValue.doubleValue * returnStats.elapsed;
if (handlePdhStatus(
PdhGetFormattedCounterValue((*statState)->ProcessorIdleCounter, PDH_FMT_DOUBLE, 0, &DisplayValue),
"ProcessorIdleCounter"))
returnStats.machineCPUSeconds = (100 - DisplayValue.doubleValue) * returnStats.elapsed / 100.0;
}
#elif defined(__unixish__)
uint64_t machineNowSent = (*statState)->machineLastSent;
uint64_t machineNowReceived = (*statState)->machineLastReceived;
uint64_t machineOutSegs = (*statState)->machineLastOutSegs;
uint64_t machineRetransSegs = (*statState)->machineLastRetransSegs;
getNetworkTraffic(*ip, machineNowSent, machineNowReceived, machineOutSegs, machineRetransSegs);
if (returnStats.initialized) {
returnStats.machineMegabitsSent = ((machineNowSent - (*statState)->machineLastSent) * 8e-6);
returnStats.machineMegabitsReceived = ((machineNowReceived - (*statState)->machineLastReceived) * 8e-6);
returnStats.machineOutSegs = machineOutSegs - (*statState)->machineLastOutSegs;
returnStats.machineRetransSegs = machineRetransSegs - (*statState)->machineLastRetransSegs;
}
(*statState)->machineLastSent = machineNowSent;
(*statState)->machineLastReceived = machineNowReceived;
(*statState)->machineLastOutSegs = machineOutSegs;
(*statState)->machineLastRetransSegs = machineRetransSegs;
uint64_t currentIOs;
uint64_t nowReadMilliSecs = (*statState)->lastReadMilliSecs;
uint64_t nowWriteMilliSecs = (*statState)->lastWriteMilliSecs;
uint64_t nowIOMilliSecs = (*statState)->lastIOMilliSecs;
uint64_t nowReads = (*statState)->lastReads;
uint64_t nowWrites = (*statState)->lastWrites;
uint64_t nowWriteSectors = (*statState)->lastWriteSectors;
uint64_t nowReadSectors = (*statState)->lastReadSectors;
if (dataFolder != "") {
getDiskStatistics(dataFolder,
currentIOs,
nowReadMilliSecs,
nowWriteMilliSecs,
nowIOMilliSecs,
nowReads,
nowWrites,
nowWriteSectors,
nowReadSectors);
returnStats.processDiskQueueDepth = currentIOs;
returnStats.processDiskReadCount = nowReads;
returnStats.processDiskWriteCount = nowWrites;
if (returnStats.initialized) {
returnStats.processDiskIdleSeconds = std::max<double>(
0,
returnStats.elapsed -
std::min<double>(returnStats.elapsed, (nowIOMilliSecs - (*statState)->lastIOMilliSecs) / 1000.0));
returnStats.processDiskReadSeconds = std::max<double>(
0,
returnStats.elapsed - std::min<double>(returnStats.elapsed,
(nowReadMilliSecs - (*statState)->lastReadMilliSecs) / 1000.0));
returnStats.processDiskWriteSeconds =
std::max<double>(0,
returnStats.elapsed -
std::min<double>(returnStats.elapsed,
(nowWriteMilliSecs - (*statState)->lastWriteMilliSecs) / 1000.0));
returnStats.processDiskRead = (nowReads - (*statState)->lastReads);
returnStats.processDiskWrite = (nowWrites - (*statState)->lastWrites);
returnStats.processDiskWriteSectors = (nowWriteSectors - (*statState)->lastWriteSectors);
returnStats.processDiskReadSectors = (nowReadSectors - (*statState)->lastReadSectors);
}
(*statState)->lastIOMilliSecs = nowIOMilliSecs;
(*statState)->lastReadMilliSecs = nowReadMilliSecs;
(*statState)->lastWriteMilliSecs = nowWriteMilliSecs;
(*statState)->lastReads = nowReads;
(*statState)->lastWrites = nowWrites;
(*statState)->lastWriteSectors = nowWriteSectors;
(*statState)->lastReadSectors = nowReadSectors;
}
uint64_t clockIdleTime = (*statState)->lastClockIdleTime;
uint64_t clockTotalTime = (*statState)->lastClockTotalTime;
getMachineLoad(clockIdleTime, clockTotalTime, logDetails);
returnStats.machineCPUSeconds = clockTotalTime - (*statState)->lastClockTotalTime != 0
? (1 - ((clockIdleTime - (*statState)->lastClockIdleTime) /
((double)(clockTotalTime - (*statState)->lastClockTotalTime)))) *
returnStats.elapsed
: 0;
(*statState)->lastClockIdleTime = clockIdleTime;
(*statState)->lastClockTotalTime = clockTotalTime;
#endif
(*statState)->lastTime = nowTime;
(*statState)->lastClockProcess = nowClockProcess;
(*statState)->lastClockThread = nowClockThread;
return returnStats;
}
#ifdef _WIN32
struct OffsetTimer {
double secondsPerCount, offset;
static const int64_t FILETIME_C_EPOCH =
11644473600LL *
10000000LL; // Difference between FILETIME epoch (1601) and Unix epoch (1970) in 100ns FILETIME ticks
OffsetTimer() {
long long countsPerSecond;
if (!QueryPerformanceFrequency((LARGE_INTEGER*)&countsPerSecond))
throw performance_counter_error();
secondsPerCount = 1.0 / countsPerSecond;
FILETIME fileTime;
offset = 0;
double timer = now();
GetSystemTimeAsFileTime(&fileTime);
static_assert(sizeof(fileTime) == sizeof(uint64_t), "FILETIME size wrong");
offset = (*(uint64_t*)&fileTime - FILETIME_C_EPOCH) * 100e-9 - timer;
}
double now() {
long long count;
if (!QueryPerformanceCounter((LARGE_INTEGER*)&count))
throw performance_counter_error();
return offset + count * secondsPerCount;
}
};
#elif defined(__linux__) || defined(__FreeBSD__)
#define DOUBLETIME(ts) (double(ts.tv_sec) + (ts.tv_nsec * 1e-9))
#ifndef CLOCK_MONOTONIC_RAW
#define CLOCK_MONOTONIC_RAW \
4 // Confirmed safe to do with glibc >= 2.11 and kernel >= 2.6.28. No promises with older glibc. Older kernel
// definitely breaks it.
#endif
struct OffsetTimer {
double offset;
OffsetTimer() {
struct timespec ts;
clock_gettime(CLOCK_REALTIME, &ts);
offset = DOUBLETIME(ts);
clock_gettime(CLOCK_MONOTONIC, &ts);
offset -= DOUBLETIME(ts);
}
double now() {
struct timespec ts;
clock_gettime(CLOCK_MONOTONIC, &ts);
return (offset + DOUBLETIME(ts));
}
};
#elif defined(__APPLE__)
#include <mach/mach.h>
#include <mach/mach_time.h>
struct OffsetTimer {
mach_timebase_info_data_t timebase_info;
uint64_t offset;
double offset_seconds;
OffsetTimer() {
mach_timebase_info(&timebase_info);
offset = mach_absolute_time();
struct timeval tv;
gettimeofday(&tv, nullptr);
offset_seconds = tv.tv_sec + 1e-6 * tv.tv_usec;
}
double now() {
uint64_t elapsed = mach_absolute_time() - offset;
return offset_seconds + double((elapsed * timebase_info.numer) / timebase_info.denom) * 1e-9;
}
};
#else
#error Port me!
#endif
double timer_monotonic() {
static OffsetTimer theTimer;
return theTimer.now();
}
double timer() {
#ifdef _WIN32
static const int64_t FILETIME_C_EPOCH =
11644473600LL *
10000000LL; // Difference between FILETIME epoch (1601) and Unix epoch (1970) in 100ns FILETIME ticks
FILETIME fileTime;
GetSystemTimeAsFileTime(&fileTime);
static_assert(sizeof(fileTime) == sizeof(uint64_t), "FILETIME size wrong");
return (*(uint64_t*)&fileTime - FILETIME_C_EPOCH) * 100e-9;
#elif defined(__linux__) || defined(__FreeBSD__)
struct timespec ts;
clock_gettime(CLOCK_REALTIME, &ts);
return double(ts.tv_sec) + (ts.tv_nsec * 1e-9);
#elif defined(__APPLE__)
struct timeval tv;
gettimeofday(&tv, nullptr);
return double(tv.tv_sec) + (tv.tv_usec * 1e-6);
#else
#error Port me!
#endif
};
uint64_t timer_int() {
#ifdef _WIN32
static const int64_t FILETIME_C_EPOCH =
11644473600LL *
10000000LL; // Difference between FILETIME epoch (1601) and Unix epoch (1970) in 100ns FILETIME ticks
FILETIME fileTime;
GetSystemTimeAsFileTime(&fileTime);
static_assert(sizeof(fileTime) == sizeof(uint64_t), "FILETIME size wrong");
return (*(uint64_t*)&fileTime - FILETIME_C_EPOCH);
#elif defined(__linux__) || defined(__FreeBSD__)
struct timespec ts;
clock_gettime(CLOCK_REALTIME, &ts);
return uint64_t(ts.tv_sec) * 1e9 + ts.tv_nsec;
#elif defined(__APPLE__)
struct timeval tv;
gettimeofday(&tv, nullptr);
return uint64_t(tv.tv_sec) * 1e9 + (tv.tv_usec * 1e3);
#else
#error Port me!
#endif
};
void getLocalTime(const time_t* timep, struct tm* result) {
#ifdef _WIN32
if (localtime_s(result, timep) != 0) {
TraceEvent(SevError, "GetLocalTimeError").GetLastError();
throw platform_error();
}
#elif defined(__unixish__)
if (localtime_r(timep, result) == nullptr) {
TraceEvent(SevError, "GetLocalTimeError").GetLastError();
throw platform_error();
}
#else
#error Port me!
#endif
}
// Outputs a GMT time string for the given epoch seconds, which looks like
// 2013-04-28 20:57:01.000 +0000
std::string epochsToGMTString(double epochs) {
auto time = (time_t)epochs;
char buff[50];
auto size = strftime(buff, 50, "%Y-%m-%d %H:%M:%S", gmtime(&time));
std::string timeString = std::string(std::begin(buff), std::begin(buff) + size);
// Add fractional seconds and GMT timezone.
double integerPart;
timeString += format(".%03.3d +0000", (int)(1000 * modf(epochs, &integerPart)));
return timeString;
}
void setMemoryQuota(size_t limit) {
if (limit == 0) {
return;
}
#if defined(USE_SANITIZER)
// ASAN doesn't work with memory quotas: https://github.com/google/sanitizers/wiki/AddressSanitizer#ulimit--v
return;
#endif
INJECT_FAULT(platform_error, "setMemoryQuota"); // setting memory quota failed
#if defined(_WIN32)
HANDLE job = CreateJobObject(nullptr, nullptr);
if (!job) {
TraceEvent(SevError, "WinCreateJobError").GetLastError();
throw platform_error();
}
JOBOBJECT_EXTENDED_LIMIT_INFORMATION limits;
limits.BasicLimitInformation.LimitFlags = JOB_OBJECT_LIMIT_JOB_MEMORY;
limits.JobMemoryLimit = limit;
if (!SetInformationJobObject(job, JobObjectExtendedLimitInformation, &limits, sizeof(limits))) {
TraceEvent(SevError, "FailedToSetInfoOnJobObject").detail("Limit", limit).GetLastError();
throw platform_error();
}
if (!AssignProcessToJobObject(job, GetCurrentProcess()))
TraceEvent(SevWarn, "FailedToSetMemoryLimit").GetLastError();
#elif defined(__linux__) || defined(__FreeBSD__)
struct rlimit rlim;
if (getrlimit(RLIMIT_AS, &rlim)) {
TraceEvent(SevError, "GetMemoryLimit").GetLastError();
throw platform_error();
} else if (limit > rlim.rlim_max) {
TraceEvent(SevError, "MemoryLimitTooHigh").detail("Limit", limit).detail("ResidentMaxLimit", rlim.rlim_max);
throw platform_error();
}
rlim.rlim_cur = limit;
if (setrlimit(RLIMIT_AS, &rlim)) {
TraceEvent(SevError, "SetMemoryLimit").detail("Limit", limit).GetLastError();
throw platform_error();
}
#endif
}
#ifdef _WIN32
static int ModifyPrivilege(const char* szPrivilege, bool fEnable) {
HRESULT hr = S_OK;
TOKEN_PRIVILEGES NewState;
LUID luid;
HANDLE hToken = nullptr;
// Open the process token for this process.
if (!OpenProcessToken(GetCurrentProcess(), TOKEN_ADJUST_PRIVILEGES | TOKEN_QUERY, &hToken)) {
TraceEvent(SevWarn, "OpenProcessTokenError").error(large_alloc_failed()).GetLastError();
return ERROR_FUNCTION_FAILED;
}
// Get the local unique ID for the privilege.
if (!LookupPrivilegeValue(nullptr, szPrivilege, &luid)) {
CloseHandle(hToken);
TraceEvent(SevWarn, "LookupPrivilegeValue").error(large_alloc_failed()).GetLastError();
return ERROR_FUNCTION_FAILED;
}
// std::cout << luid.HighPart << " " << luid.LowPart << std::endl;
// Assign values to the TOKEN_PRIVILEGE structure.
NewState.PrivilegeCount = 1;
NewState.Privileges[0].Luid = luid;
NewState.Privileges[0].Attributes = (fEnable ? SE_PRIVILEGE_ENABLED : 0);
// Adjust the token privilege.
if (!AdjustTokenPrivileges(hToken, FALSE, &NewState, 0, nullptr, nullptr)) {
TraceEvent(SevWarn, "AdjustTokenPrivileges").error(large_alloc_failed()).GetLastError();
hr = ERROR_FUNCTION_FAILED;
}
// Close the handle.
CloseHandle(hToken);
return hr;
}
#endif
static bool largePagesPrivilegeEnabled = false;
static void enableLargePages() {
if (largePagesPrivilegeEnabled)
return;
#ifdef _WIN32
ModifyPrivilege(SE_LOCK_MEMORY_NAME, true);
largePagesPrivilegeEnabled = true;
#else
// SOMEDAY: can/should we teach the client how to enable large pages
// on Linux? Or just rely on the system to have been configured as
// desired?
#endif
}
#ifndef _WIN32
static void* mmapSafe(void* addr, size_t len, int prot, int flags, int fd, off_t offset) {
void* result = mmap(addr, len, prot, flags, fd, offset);
if (result == MAP_FAILED) {
int err = errno;
fprintf(stderr,
"Error calling mmap(%p, %zu, %d, %d, %d, %jd): %s\n",
addr,
len,
prot,
flags,
fd,
(intmax_t)offset,
strerror(err));
fflush(stderr);
std::abort();
}
return result;
}
static void mprotectSafe(void* p, size_t s, int prot) {
if (mprotect(p, s, prot) != 0) {
int err = errno;
fprintf(stderr, "Error calling mprotect(%p, %zu, %d): %s\n", p, s, prot, strerror(err));
fflush(stderr);
std::abort();
}
}
static void* mmapInternal(size_t length, int flags, bool guardPages) {
if (guardPages) {
static size_t pageSize = sysconf(_SC_PAGESIZE);
length = RightAlign(length, pageSize);
length += 2 * pageSize; // Map enough for the guard pages
void* resultWithGuardPages = mmapSafe(nullptr, length, PROT_READ | PROT_WRITE, flags, -1, 0);
// left guard page
mprotectSafe(resultWithGuardPages, pageSize, PROT_NONE);
// right guard page
mprotectSafe((void*)(uintptr_t(resultWithGuardPages) + length - pageSize), pageSize, PROT_NONE);
return (void*)(uintptr_t(resultWithGuardPages) + pageSize);
} else {
return mmapSafe(nullptr, length, PROT_READ | PROT_WRITE, flags, -1, 0);
}
}
#endif
static void* allocateInternal(size_t length, bool largePages, bool guardPages) {
#ifdef _WIN32
DWORD allocType = MEM_COMMIT | MEM_RESERVE;
if (largePages)
allocType |= MEM_LARGE_PAGES;
return VirtualAlloc(nullptr, length, allocType, PAGE_READWRITE);
#elif defined(__linux__)
int flags = MAP_PRIVATE | MAP_ANONYMOUS;
if (largePages)
flags |= MAP_HUGETLB;
return mmapInternal(length, flags, guardPages);
#elif defined(__APPLE__) || defined(__FreeBSD__)
int flags = MAP_PRIVATE | MAP_ANON;
return mmapInternal(length, flags, guardPages);
#else
#error Port me!
#endif
}
static bool largeBlockFail = false;
void* allocate(size_t length, bool allowLargePages, bool includeGuardPages) {
if (allowLargePages)
enableLargePages();
void* block = ALLOC_FAIL;
if (allowLargePages && !largeBlockFail) {
block = allocateInternal(length, true, includeGuardPages);
if (block == ALLOC_FAIL)
largeBlockFail = true;
}
if (block == ALLOC_FAIL)
block = allocateInternal(length, false, includeGuardPages);
// FIXME: SevWarnAlways trace if "close" to out of memory
if (block == ALLOC_FAIL)
platform::outOfMemory();
return block;
}
#if 0
void* numaAllocate(size_t size) {
void* thePtr = (void*)0xA00000000LL;
enableLargePages();
size_t vaPageSize = 2<<20;//64<<10;
int nVAPages = size / vaPageSize;
int nodes;
if (!GetNumaHighestNodeNumber((PULONG)&nodes)) {
TraceEvent(SevError, "GetNumaHighestNodeNumber").getLastError();
throw platform_error();
}
++nodes;
for(int i=0; i<nodes; i++) {
char* p = (char*)thePtr + i*nVAPages/nodes*vaPageSize;
char* e = (char*)thePtr + (i+1)*nVAPages/nodes*vaPageSize;
//printf(" %p + %lld\n", p, e-p);
// SOMEDAY: removed NUMA extensions for compatibity with Windows Server 2003 -- make execution dynamic
if (!VirtualAlloc/*ExNuma*/(/*GetCurrentProcess(),*/ p, e-p, MEM_COMMIT|MEM_RESERVE|MEM_LARGE_PAGES, PAGE_READWRITE/*, i*/)) {
Error e = platform_error();
TraceEvent(e, "VirtualAlloc").GetLastError();
throw e;
}
}
return thePtr;
}
#endif
void setAffinity(int proc) {
#if defined(_WIN32)
/*if (SetProcessAffinityMask(GetCurrentProcess(), 0x5555))//0x5555555555555555UL))
printf("Set affinity mask\n");
else
printf("Failed to set affinity mask: error %d\n", GetLastError());*/
SetThreadAffinityMask(GetCurrentThread(), 1ULL << proc);
#elif defined(__linux__)
cpu_set_t set;
CPU_ZERO(&set);
CPU_SET(proc, &set);
sched_setaffinity(0, sizeof(cpu_set_t), &set);
#elif defined(__FreeBSD__)
cpuset_t set;
CPU_ZERO(&set);
CPU_SET(proc, &set);
cpuset_setaffinity(CPU_LEVEL_WHICH, CPU_WHICH_PID, -1, sizeof(set), &set);
#endif
}
namespace platform {
int getRandomSeed() {
INJECT_FAULT(platform_error, "getRandomSeed"); // getting a random seed failed
int randomSeed;
int retryCount = 0;
#ifdef _WIN32
do {
retryCount++;
if (rand_s((unsigned int*)&randomSeed) != 0) {
TraceEvent(SevError, "WindowsRandomSeedError").log();
throw platform_error();
}
} while (randomSeed == 0 &&
retryCount <
FLOW_KNOBS->RANDOMSEED_RETRY_LIMIT); // randomSeed cannot be 0 since we use mersenne twister in
// DeterministicRandom. Get a new one if randomSeed is 0.
#else
int devRandom = open("/dev/urandom", O_RDONLY | O_CLOEXEC);
do {
retryCount++;
if (read(devRandom, &randomSeed, sizeof(randomSeed)) != sizeof(randomSeed)) {
TraceEvent(SevError, "OpenURandom").GetLastError();
throw platform_error();
}
} while (randomSeed == 0 && retryCount < FLOW_KNOBS->RANDOMSEED_RETRY_LIMIT);
close(devRandom);
#endif
if (randomSeed == 0) {
TraceEvent(SevError, "RandomSeedZeroError").log();
throw platform_error();
}
return randomSeed;
}
} // namespace platform
std::string joinPath(std::string const& directory, std::string const& filename) {
auto d = directory;
auto f = filename;
while (f.size() && (f[0] == '/' || f[0] == CANONICAL_PATH_SEPARATOR))
f = f.substr(1);
while (d.size() && (d.back() == '/' || d.back() == CANONICAL_PATH_SEPARATOR))
d.resize(d.size() - 1);
return d + CANONICAL_PATH_SEPARATOR + f;
}
void renamedFile() {
INJECT_FAULT(io_error, "renameFile"); // renaming file failed
}
void renameFile(std::string const& fromPath, std::string const& toPath) {
INJECT_FAULT(io_error, "renameFile"); // rename file failed
#ifdef _WIN32
if (MoveFileExA(fromPath.c_str(),
toPath.c_str(),
MOVEFILE_COPY_ALLOWED | MOVEFILE_REPLACE_EXISTING | MOVEFILE_WRITE_THROUGH)) {
// renamedFile();
return;
}
#elif (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__))
if (!rename(fromPath.c_str(), toPath.c_str())) {
// FIXME: We cannot inject faults after renaming the file, because we could end up with two asyncFileNonDurable
// open for the same file renamedFile();
return;
}
#else
#error Port me!
#endif
TraceEvent(SevError, "RenameFile").detail("FromPath", fromPath).detail("ToPath", toPath).GetLastError();
throw io_error();
}
#if defined(__linux__)
#define FOPEN_CLOEXEC_MODE "e"
#elif defined(_WIN32)
#define FOPEN_CLOEXEC_MODE "N"
#else
#define FOPEN_CLOEXEC_MODE ""
#endif
void atomicReplace(std::string const& path, std::string const& content, bool textmode) {
FILE* f = 0;
try {
INJECT_FAULT(io_error, "atomicReplace"); // atomic rename failed
std::string tempfilename =
joinPath(parentDirectory(path), deterministicRandom()->randomUniqueID().toString() + ".tmp");
f = textmode ? fopen(tempfilename.c_str(), "wt" FOPEN_CLOEXEC_MODE) : fopen(tempfilename.c_str(), "wb");
if (!f)
throw io_error();
#ifdef _WIN32
// In Windows case, ReplaceFile API is used which preserves the ownership,
// ACLs and other attributes of the original file
#elif defined(__unixish__)
// get the uid/gid/mode bits of old file and set it on new file, else fail
struct stat info;
bool exists = true;
if (stat(path.c_str(), &info) < 0) {
if (errno == ENOENT) {
exists = false;
} else {
TraceEvent("StatFailed").detail("Path", path);
throw io_error();
}
}
if (exists && chown(tempfilename.c_str(), info.st_uid, info.st_gid) < 0) {
TraceEvent("ChownFailed")
.detail("TempFilename", tempfilename)
.detail("OriginalFile", path)
.detail("Uid", info.st_uid)
.detail("Gid", info.st_gid);
deleteFile(tempfilename);
throw io_error();
}
if (exists && chmod(tempfilename.c_str(), info.st_mode) < 0) {
TraceEvent("ChmodFailed")
.detail("TempFilename", tempfilename)
.detail("OriginalFile", path)
.detail("Mode", info.st_mode);
deleteFile(tempfilename);
throw io_error();
}
#else
#error Port me!
#endif
if (textmode && fprintf(f, "%s", content.c_str()) < 0)
throw io_error();
if (!textmode && fwrite(content.c_str(), sizeof(uint8_t), content.size(), f) != content.size())
throw io_error();
if (fflush(f) != 0)
throw io_error();
#ifdef _WIN32
HANDLE h = (HANDLE)_get_osfhandle(_fileno(f));
if (!g_network->isSimulated()) {
if (!FlushFileBuffers(h))
throw io_error();
}
if (fclose(f) != 0) {
f = 0;
throw io_error();
}
f = 0;
if (!MoveFileExA(tempfilename.c_str(),
path.c_str(),
MOVEFILE_COPY_ALLOWED | MOVEFILE_REPLACE_EXISTING | MOVEFILE_WRITE_THROUGH)) {
throw io_error();
}
#elif defined(__unixish__)
if (!g_network->isSimulated()) {
if (fsync(fileno(f)) != 0)
throw io_error();
}
if (fclose(f) != 0) {
f = 0;
throw io_error();
}
f = 0;
if (rename(tempfilename.c_str(), path.c_str()) != 0)
throw io_error();
#else
#error Port me!
#endif
INJECT_FAULT(io_error, "atomicReplace"); // io_error after atomic rename
} catch (Error& e) {
TraceEvent(SevWarn, "AtomicReplace").error(e).detail("Path", path).GetLastError();
if (f)
fclose(f);
throw;
}
}
static bool deletedFile() {
INJECT_FAULT(platform_error, "deleteFile"); // delete file failed
return true;
}
bool deleteFile(std::string const& filename) {
INJECT_FAULT(platform_error, "deleteFile"); // file deletion failed
#ifdef _WIN32
if (DeleteFile(filename.c_str()))
return deletedFile();
if (GetLastError() == ERROR_FILE_NOT_FOUND)
return false;
#elif defined(__unixish__)
if (!unlink(filename.c_str()))
return deletedFile();
if (errno == ENOENT)
return false;
#else
#error Port me!
#endif
Error e = systemErrorCodeToError();
TraceEvent(SevError, "DeleteFile").error(e).detail("Filename", filename).GetLastError();
throw e;
}
static void createdDirectory() {
INJECT_FAULT(platform_error, "createDirectory"); // create dir (noargs) failed
}
namespace platform {
bool createDirectory(std::string const& directory) {
INJECT_FAULT(platform_error, "createDirectory"); // create dir failed
#ifdef _WIN32
if (CreateDirectory(directory.c_str(), nullptr)) {
createdDirectory();
return true;
}
if (GetLastError() == ERROR_ALREADY_EXISTS)
return false;
if (GetLastError() == ERROR_PATH_NOT_FOUND) {
size_t delim = directory.find_last_of("/\\");
if (delim != std::string::npos) {
createDirectory(directory.substr(0, delim));
return createDirectory(directory);
}
}
Error e = systemErrorCodeToError();
TraceEvent(SevError, "CreateDirectory").error(e).detail("Directory", directory).GetLastError();
throw e;
#elif (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__))
size_t sep = 0;
do {
sep = directory.find_first_of('/', sep + 1);
if (mkdir(directory.substr(0, sep).c_str(), 0755) != 0) {
if (errno == EEXIST)
continue;
auto mkdirErrno = errno;
// check if directory already exists
// necessary due to old kernel bugs
struct stat s;
const char* dirname = directory.c_str();
if (stat(dirname, &s) != -1 && S_ISDIR(s.st_mode)) {
TraceEvent("DirectoryAlreadyExists").detail("Directory", dirname).detail("IgnoredError", mkdirErrno);
continue;
}
Error e;
if (mkdirErrno == EACCES) {
e = file_not_writable();
} else {
e = systemErrorCodeToError();
}
TraceEvent(SevError, "CreateDirectory")
.error(e)
.detail("Directory", directory)
.detailf("UnixErrorCode", "%x", errno)
.detail("UnixError", strerror(mkdirErrno));
throw e;
}
createdDirectory();
} while (sep != std::string::npos && sep != directory.length() - 1);
return true;
#else
#error Port me!
#endif
}
} // namespace platform
const uint8_t separatorChar = CANONICAL_PATH_SEPARATOR;
StringRef separator(&separatorChar, 1);
StringRef dotdot = LiteralStringRef("..");
std::string cleanPath(std::string const& path) {
std::vector<StringRef> finalParts;
bool absolute = !path.empty() && path[0] == CANONICAL_PATH_SEPARATOR;
StringRef p(path);
while (p.size() != 0) {
StringRef part = p.eat(separator);
if (part.size() == 0 || (part.size() == 1 && part[0] == '.'))
continue;
if (part == dotdot) {
if (!finalParts.empty() && finalParts.back() != dotdot) {
finalParts.pop_back();
continue;
}
if (absolute) {
continue;
}
}
finalParts.push_back(part);
}
std::string result;
result.reserve(PATH_MAX);
if (absolute) {
result.append(1, CANONICAL_PATH_SEPARATOR);
}
for (int i = 0; i < finalParts.size(); ++i) {
if (i != 0) {
result.append(1, CANONICAL_PATH_SEPARATOR);
}
result.append((const char*)finalParts[i].begin(), finalParts[i].size());
}
return result.empty() ? "." : result;
}
std::string popPath(const std::string& path) {
int i = path.size() - 1;
// Skip over any trailing separators
while (i >= 0 && path[i] == CANONICAL_PATH_SEPARATOR) {
--i;
}
// Skip over non separators
while (i >= 0 && path[i] != CANONICAL_PATH_SEPARATOR) {
--i;
}
// Skip over trailing separators again
bool foundSeparator = false;
while (i >= 0 && path[i] == CANONICAL_PATH_SEPARATOR) {
--i;
foundSeparator = true;
}
if (foundSeparator) {
++i;
} else {
// If absolute then we popped off the only path component so return "/"
if (!path.empty() && path.front() == CANONICAL_PATH_SEPARATOR) {
return "/";
}
}
return path.substr(0, i + 1);
}
std::string abspath(std::string const& path_, bool resolveLinks, bool mustExist) {
if (path_.empty()) {
Error e = platform_error();
Severity sev = e.code() == error_code_io_error ? SevError : SevWarnAlways;
TraceEvent(sev, "AbsolutePathError").error(e).detail("Path", path_);
throw e;
}
std::string path = path_.back() == '\\' ? path_.substr(0, path_.size() - 1) : path_;
// Returns an absolute path canonicalized to use only CANONICAL_PATH_SEPARATOR
INJECT_FAULT(platform_error, "abspath"); // abspath failed
if (!resolveLinks) {
// TODO: Not resolving symbolic links does not yet behave well on Windows because of drive letters
// and network names, so it's not currently allowed here (but it is allowed in fdbmonitor which is unix-only)
ASSERT(false);
// Treat paths starting with ~ or separator as absolute, meaning they shouldn't be appended to the current
// working dir
bool absolute = !path.empty() && (path[0] == CANONICAL_PATH_SEPARATOR || path[0] == '~');
std::string clean = cleanPath(absolute ? path : joinPath(platform::getWorkingDirectory(), path));
if (mustExist && !fileExists(clean)) {
Error e = systemErrorCodeToError();
Severity sev = e.code() == error_code_io_error ? SevError : SevWarnAlways;
TraceEvent(sev, "AbsolutePathError").error(e).detail("Path", path).GetLastError();
throw e;
}
return clean;
}
#ifdef _WIN32
char nameBuffer[MAX_PATH];
if (!GetFullPathName(path.c_str(), MAX_PATH, nameBuffer, nullptr) || (mustExist && !fileExists(nameBuffer))) {
Error e = systemErrorCodeToError();
Severity sev = e.code() == error_code_io_error ? SevError : SevWarnAlways;
TraceEvent(sev, "AbsolutePathError").error(e).detail("Path", path).GetLastError();
throw e;
}
// Not totally obvious from the help whether GetFullPathName canonicalizes slashes, so let's do it...
for (char* x = nameBuffer; *x; x++)
if (*x == '/')
*x = CANONICAL_PATH_SEPARATOR;
return nameBuffer;
#elif (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__))
char result[PATH_MAX];
// Must resolve links, so first try realpath on the whole thing
const char* r = realpath(path.c_str(), result);
if (r == nullptr) {
// If the error was ENOENT and the path doesn't have to exist,
// try to resolve symlinks in progressively shorter prefixes of the path
if (errno == ENOENT && !mustExist) {
std::string prefix = popPath(path);
std::string suffix = path.substr(prefix.size());
if (prefix.empty() && (suffix.empty() || suffix[0] != '~')) {
prefix = ".";
}
if (!prefix.empty()) {
return cleanPath(joinPath(abspath(prefix, true, false), suffix));
}
}
Error e = systemErrorCodeToError();
Severity sev = e.code() == error_code_io_error ? SevError : SevWarnAlways;
TraceEvent(sev, "AbsolutePathError").error(e).detail("Path", path).GetLastError();
throw e;
}
return std::string(r);
#else
#error Port me!
#endif
}
std::string parentDirectory(std::string const& path, bool resolveLinks, bool mustExist) {
return popPath(abspath(path, resolveLinks, mustExist));
}
std::string basename(std::string const& filename) {
auto abs = abspath(filename);
size_t sep = abs.find_last_of(CANONICAL_PATH_SEPARATOR);
if (sep == std::string::npos)
return filename;
return abs.substr(sep + 1);
}
std::string getUserHomeDirectory() {
#if defined(__unixish__)
const char* ret = getenv("HOME");
if (!ret) {
if (struct passwd* pw = getpwuid(getuid())) {
ret = pw->pw_dir;
}
}
return ret;
#elif defined(_WIN32)
TCHAR szPath[MAX_PATH];
if (SHGetFolderPath(nullptr, CSIDL_PROFILE, nullptr, 0, szPath) != S_OK) {
TraceEvent(SevError, "GetUserHomeDirectory").GetLastError();
throw platform_error();
}
std::string path(szPath);
return path;
#else
#error Port me!
#endif
}
#ifdef _WIN32
#define FILE_ATTRIBUTE_DATA DWORD
bool acceptFile(FILE_ATTRIBUTE_DATA fileAttributes, std::string const& name, std::string const& extension) {
return !(fileAttributes & FILE_ATTRIBUTE_DIRECTORY) && StringRef(name).endsWith(extension);
}
bool acceptDirectory(FILE_ATTRIBUTE_DATA fileAttributes, std::string const& name, std::string const& extension) {
return (fileAttributes & FILE_ATTRIBUTE_DIRECTORY) != 0;
}
ACTOR Future<std::vector<std::string>> findFiles(std::string directory,
std::string extension,
bool directoryOnly,
bool async) {
INJECT_FAULT(platform_error, "findFiles"); // findFiles failed (Win32)
state std::vector<std::string> result;
state int64_t tsc_begin = timestampCounter();
state WIN32_FIND_DATA fd;
state HANDLE h = FindFirstFile((directory + "/*" + extension).c_str(), &fd);
if (h == INVALID_HANDLE_VALUE) {
if (GetLastError() != ERROR_FILE_NOT_FOUND && GetLastError() != ERROR_PATH_NOT_FOUND) {
TraceEvent(SevError, "FindFirstFile")
.detail("Directory", directory)
.detail("Extension", extension)
.GetLastError();
throw platform_error();
}
} else {
loop {
std::string name = fd.cFileName;
if ((directoryOnly && acceptDirectory(fd.dwFileAttributes, name, extension)) ||
(!directoryOnly && acceptFile(fd.dwFileAttributes, name, extension))) {
result.push_back(name);
}
if (!FindNextFile(h, &fd))
break;
if (async && timestampCounter() - tsc_begin > FLOW_KNOBS->TSC_YIELD_TIME && !g_network->isSimulated()) {
wait(yield());
tsc_begin = timestampCounter();
}
}
if (GetLastError() != ERROR_NO_MORE_FILES) {
TraceEvent(SevError, "FindNextFile")
.detail("Directory", directory)
.detail("Extension", extension)
.GetLastError();
FindClose(h);
throw platform_error();
}
FindClose(h);
}
std::sort(result.begin(), result.end());
return result;
}
#elif (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__))
#define FILE_ATTRIBUTE_DATA mode_t
bool acceptFile(FILE_ATTRIBUTE_DATA fileAttributes, std::string const& name, std::string const& extension) {
return S_ISREG(fileAttributes) && StringRef(name).endsWith(extension);
}
bool acceptDirectory(FILE_ATTRIBUTE_DATA fileAttributes, std::string const& name, std::string const& extension) {
return S_ISDIR(fileAttributes);
}
ACTOR Future<std::vector<std::string>> findFiles(std::string directory,
std::string extension,
bool directoryOnly,
bool async) {
INJECT_FAULT(platform_error, "findFiles"); // findFiles failed
state std::vector<std::string> result;
state int64_t tsc_begin = timestampCounter();
state DIR* dip = nullptr;
if ((dip = opendir(directory.c_str())) != nullptr) {
loop {
struct dirent* dit;
dit = readdir(dip);
if (dit == nullptr) {
break;
}
std::string name(dit->d_name);
struct stat buf;
if (stat(joinPath(directory, name).c_str(), &buf)) {
bool isError = errno != ENOENT;
TraceEvent(isError ? SevError : SevWarn, "StatFailed")
.detail("Directory", directory)
.detail("Extension", extension)
.detail("Name", name)
.GetLastError();
if (isError)
throw platform_error();
else
continue;
}
if ((directoryOnly && acceptDirectory(buf.st_mode, name, extension)) ||
(!directoryOnly && acceptFile(buf.st_mode, name, extension))) {
result.push_back(name);
}
if (async && timestampCounter() - tsc_begin > FLOW_KNOBS->TSC_YIELD_TIME && !g_network->isSimulated()) {
wait(yield());
tsc_begin = timestampCounter();
}
}
closedir(dip);
}
std::sort(result.begin(), result.end());
return result;
}
#else
#error Port me!
#endif
namespace platform {
std::vector<std::string> listFiles(std::string const& directory, std::string const& extension) {
return findFiles(directory, extension, false /* directoryOnly */, false).get();
}
Future<std::vector<std::string>> listFilesAsync(std::string const& directory, std::string const& extension) {
return findFiles(directory, extension, false /* directoryOnly */, true);
}
std::vector<std::string> listDirectories(std::string const& directory) {
return findFiles(directory, "", true /* directoryOnly */, false).get();
}
Future<std::vector<std::string>> listDirectoriesAsync(std::string const& directory) {
return findFiles(directory, "", true /* directoryOnly */, true);
}
void findFilesRecursively(std::string const& path, std::vector<std::string>& out) {
// Add files to output, prefixing path
std::vector<std::string> files = platform::listFiles(path);
for (auto const& f : files)
out.push_back(joinPath(path, f));
// Recurse for directories
std::vector<std::string> directories = platform::listDirectories(path);
for (auto const& dir : directories) {
if (dir != "." && dir != "..")
findFilesRecursively(joinPath(path, dir), out);
}
}
ACTOR Future<Void> findFilesRecursivelyAsync(std::string path, std::vector<std::string>* out) {
// Add files to output, prefixing path
state std::vector<std::string> files = wait(listFilesAsync(path, ""));
for (auto const& f : files)
out->push_back(joinPath(path, f));
// Recurse for directories
state std::vector<std::string> directories = wait(listDirectoriesAsync(path));
for (auto const& dir : directories) {
if (dir != "." && dir != "..")
wait(findFilesRecursivelyAsync(joinPath(path, dir), out));
}
return Void();
}
} // namespace platform
void threadSleep(double seconds) {
#ifdef _WIN32
Sleep((DWORD)(seconds * 1e3));
#elif (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__))
struct timespec req, rem;
req.tv_sec = seconds;
req.tv_nsec = (seconds - req.tv_sec) * 1e9L;
while (nanosleep(&req, &rem) == -1 && errno == EINTR) {
req.tv_sec = rem.tv_sec;
req.tv_nsec = rem.tv_nsec;
}
#else
#error Port me!
#endif
}
void threadYield() {
#ifdef _WIN32
Sleep(0);
#elif defined(__unixish__)
sched_yield();
#else
#error Port me!
#endif
}
namespace platform {
void makeTemporary(const char* filename) {
#ifdef _WIN32
SetFileAttributes(filename, FILE_ATTRIBUTE_TEMPORARY);
#endif
}
void setCloseOnExec(int fd) {
#if defined(__unixish__)
int options = fcntl(fd, F_GETFD);
if (options != -1) {
options = fcntl(fd, F_SETFD, options | FD_CLOEXEC);
}
if (options == -1) {
TraceEvent(SevWarnAlways, "PlatformSetCloseOnExecError").suppressFor(60).GetLastError();
}
#endif
}
} // namespace platform
#ifdef _WIN32
THREAD_HANDLE startThread(void (*func)(void*), void* arg, int stackSize, const char* name) {
return (void*)_beginthread(func, stackSize, arg);
}
#elif (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__))
THREAD_HANDLE startThread(void* (*func)(void*), void* arg, int stackSize, const char* name) {
pthread_t t;
pthread_attr_t attr;
pthread_attr_init(&attr);
if (stackSize != 0) {
if (pthread_attr_setstacksize(&attr, stackSize) != 0) {
// If setting the stack size fails the default stack size will be used, so failure to set
// the stack size is treated as a warning.
// Logging a trace event here is a bit risky because startThread() could be used early
// enough that TraceEvent can't be used yet, though currently it is not used with a nonzero
// stack size that early in execution.
TraceEvent(SevWarnAlways, "StartThreadInvalidStackSize").detail("StackSize", stackSize);
};
}
pthread_create(&t, &attr, func, arg);
pthread_attr_destroy(&attr);
#if defined(__linux__)
if (name != nullptr) {
// TODO: Should this just truncate?
int retVal = pthread_setname_np(t, name);
if (!retVal)
return t;
// In simulation and unit testing a thread may return before the name can be set, this will
// return ENOENT or ESRCH. We'll log when ENOENT or ESRCH is encountered and continue, otherwise we'll log and
// throw a platform_error.
if (errno == ENOENT || errno == ESRCH) {
TraceEvent(SevWarn, "PthreadSetNameNp").detail("Name", name).detail("ReturnCode", retVal).GetLastError();
} else {
TraceEvent(SevError, "PthreadSetNameNp").detail("Name", name).detail("ReturnCode", retVal).GetLastError();
throw platform_error();
}
}
#endif
return t;
}
#else
#error Port me!
#endif
void waitThread(THREAD_HANDLE thread) {
#ifdef _WIN32
WaitForSingleObject(thread, INFINITE);
#elif (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__))
pthread_join(thread, nullptr);
#else
#error Port me!
#endif
}
void setThreadPriority(int pri) {
#ifdef __linux__
int tid = syscall(SYS_gettid);
setpriority(PRIO_PROCESS, tid, pri);
#elif defined(_WIN32)
#endif
}
bool fileExists(std::string const& filename) {
FILE* f = fopen(filename.c_str(), "rb" FOPEN_CLOEXEC_MODE);
if (!f)
return false;
fclose(f);
return true;
}
bool directoryExists(std::string const& path) {
#ifdef _WIN32
DWORD bits = ::GetFileAttributes(path.c_str());
return bits != INVALID_FILE_ATTRIBUTES && (bits & FILE_ATTRIBUTE_DIRECTORY);
#else
DIR* d = opendir(path.c_str());
if (d == nullptr)
return false;
closedir(d);
return true;
#endif
}
int64_t fileSize(std::string const& filename) {
#ifdef _WIN32
struct _stati64 file_status;
if (_stati64(filename.c_str(), &file_status) != 0)
return 0;
else
return file_status.st_size;
#elif (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__))
struct stat file_status;
if (stat(filename.c_str(), &file_status) != 0)
return 0;
else
return file_status.st_size;
#else
#error Port me!
#endif
}
size_t readFileBytes(std::string const& filename, uint8_t* buff, size_t len) {
std::fstream ifs(filename, std::fstream::in | std::fstream::binary);
if (!ifs.good()) {
TraceEvent("ileBytes_FileOpenError").detail("Filename", filename).GetLastError();
throw io_error();
}
size_t bytesRead = len;
ifs.seekg(0, std::fstream::beg);
ifs.read((char*)buff, len);
if (!ifs) {
bytesRead = ifs.gcount();
TraceEvent("ReadFileBytes_ShortRead")
.detail("Filename", filename)
.detail("Requested", len)
.detail("Actual", bytesRead);
}
return bytesRead;
}
std::string readFileBytes(std::string const& filename, int maxSize) {
if (!fileExists(filename)) {
TraceEvent("ReadFileBytes_FileNotFound").detail("Filename", filename);
throw file_not_found();
}
size_t size = fileSize(filename);
if (size > maxSize) {
TraceEvent("ReadFileBytes_FileTooLarge").detail("Filename", filename);
throw file_too_large();
}
std::string ret;
ret.resize(size);
readFileBytes(filename, (uint8_t*)ret.data(), size);
return ret;
}
void writeFileBytes(std::string const& filename, const uint8_t* data, size_t count) {
std::ofstream ofs(filename, std::fstream::out | std::fstream::binary);
if (!ofs.good()) {
TraceEvent("WriteFileBytes_FileOpenError").detail("Filename", filename).GetLastError();
throw io_error();
}
ofs.write((const char*)data, count);
}
void writeFile(std::string const& filename, std::string const& content) {
writeFileBytes(filename, (const uint8_t*)(content.c_str()), content.size());
}
namespace platform {
bool getEnvironmentVar(const char* name, std::string& value) {
#if defined(__unixish__)
char* val = getenv(name);
if (val) {
value = std::string(val);
return true;
}
return false;
#elif defined(_WIN32)
int len = GetEnvironmentVariable(name, nullptr, 0);
if (len == 0) {
if (GetLastError() == ERROR_ENVVAR_NOT_FOUND) {
return false;
}
TraceEvent(SevError, "GetEnvironmentVariable").detail("Name", name).GetLastError();
throw platform_error();
}
value.resize(len);
int rc = GetEnvironmentVariable(name, &value[0], len);
if (rc + 1 != len) {
TraceEvent(SevError, "WrongEnvVarLength").detail("ExpectedLength", len).detail("ReceivedLength", rc + 1);
throw platform_error();
}
value.resize(len - 1);
return true;
#else
#error Port me!
#endif
}
int setEnvironmentVar(const char* name, const char* value, int overwrite) {
#if defined(_WIN32)
int errcode = 0;
if (!overwrite) {
size_t envsize = 0;
errcode = getenv_s(&envsize, nullptr, 0, name);
if (errcode || envsize)
return errcode;
}
return _putenv_s(name, value);
#else
return setenv(name, value, overwrite);
#endif
}
#if defined(_WIN32)
#define getcwd(buf, maxlen) _getcwd(buf, maxlen)
#endif
std::string getWorkingDirectory() {
char* buf;
if ((buf = getcwd(nullptr, 0)) == nullptr) {
TraceEvent(SevWarnAlways, "GetWorkingDirectoryError").GetLastError();
throw platform_error();
}
std::string result(buf);
free(buf);
return result;
}
} // namespace platform
extern std::string format(const char* form, ...);
namespace platform {
std::string getDefaultConfigPath() {
#ifdef _WIN32
TCHAR szPath[MAX_PATH];
if (SHGetFolderPath(nullptr, CSIDL_COMMON_APPDATA, nullptr, 0, szPath) != S_OK) {
TraceEvent(SevError, "WindowsAppDataError").GetLastError();
throw platform_error();
}
std::string _filepath(szPath);
return _filepath + "\\foundationdb";
#elif defined(__linux__)
return "/etc/foundationdb";
#elif defined(__APPLE__) || defined(__FreeBSD__)
return "/usr/local/etc/foundationdb";
#else
#error Port me!
#endif
}
std::string getDefaultClusterFilePath() {
return joinPath(getDefaultConfigPath(), "fdb.cluster");
}
} // namespace platform
#ifdef ALLOC_INSTRUMENTATION
#define TRACEALLOCATOR(size) \
TraceEvent("MemSample") \
.detail("Count", FastAllocator<size>::getApproximateMemoryUnused() / size) \
.detail("TotalSize", FastAllocator<size>::getApproximateMemoryUnused()) \
.detail("SampleCount", 1) \
.detail("Hash", "FastAllocatedUnused" #size) \
.detail("Bt", "na")
#ifdef __linux__
#include <cxxabi.h>
#endif
uint8_t* g_extra_memory;
#endif
namespace platform {
void outOfMemory() {
#ifdef ALLOC_INSTRUMENTATION
delete[] g_extra_memory;
std::vector<std::pair<std::string, const char*>> typeNames;
for (auto i = allocInstr.begin(); i != allocInstr.end(); ++i) {
std::string s;
#ifdef __linux__
char* demangled = abi::__cxa_demangle(i->first, nullptr, nullptr, nullptr);
if (demangled) {
s = demangled;
if (StringRef(s).startsWith(LiteralStringRef("(anonymous namespace)::")))
s = s.substr(LiteralStringRef("(anonymous namespace)::").size());
free(demangled);
} else
s = i->first;
#else
s = i->first;
if (StringRef(s).startsWith(LiteralStringRef("class `anonymous namespace'::")))
s = s.substr(LiteralStringRef("class `anonymous namespace'::").size());
else if (StringRef(s).startsWith(LiteralStringRef("class ")))
s = s.substr(LiteralStringRef("class ").size());
else if (StringRef(s).startsWith(LiteralStringRef("struct ")))
s = s.substr(LiteralStringRef("struct ").size());
#endif
typeNames.emplace_back(s, i->first);
}
std::sort(typeNames.begin(), typeNames.end());
for (int i = 0; i < typeNames.size(); i++) {
const char* n = typeNames[i].second;
auto& f = allocInstr[n];
if (f.maxAllocated > 10000)
TraceEvent("AllocInstrument")
.detail("CurrentAlloc", f.allocCount - f.deallocCount)
.detail("Name", typeNames[i].first.c_str());
}
std::unordered_map<uint32_t, BackTraceAccount> traceCounts;
size_t memSampleSize;
memSample_entered = true;
{
ThreadSpinLockHolder holder(memLock);
traceCounts = backTraceLookup;
memSampleSize = memSample.size();
}
memSample_entered = false;
TraceEvent("MemSampleSummary")
.detail("InverseByteSampleRatio", SAMPLE_BYTES)
.detail("MemorySamples", memSampleSize)
.detail("BackTraces", traceCounts.size());
for (auto i = traceCounts.begin(); i != traceCounts.end(); ++i) {
char buf[1024];
std::vector<void*>* frames = i->second.backTrace;
std::string backTraceStr;
#if defined(_WIN32)
for (int j = 1; j < frames->size(); j++) {
_snprintf(buf, 1024, "%p ", frames->at(j));
backTraceStr += buf;
}
#else
backTraceStr = format_backtrace(&(*frames)[0], frames->size());
#endif
TraceEvent("MemSample")
.detail("Count", (int64_t)i->second.count)
.detail("TotalSize", i->second.totalSize)
.detail("SampleCount", i->second.sampleCount)
.detail("Hash", format("%lld", i->first))
.detail("Bt", backTraceStr);
}
TraceEvent("MemSample")
.detail("Count", traceCounts.size())
.detail("TotalSize", traceCounts.size() * ((int)(sizeof(uint32_t) + sizeof(size_t) + sizeof(size_t))))
.detail("SampleCount", traceCounts.size())
.detail("Hash", "backTraces")
.detail("Bt", "na");
TraceEvent("MemSample")
.detail("Count", memSampleSize)
.detail("TotalSize", memSampleSize * ((int)(sizeof(void*) + sizeof(uint32_t) + sizeof(size_t))))
.detail("SapmleCount", memSampleSize)
.detail("Hash", "memSamples")
.detail("Bt", "na");
TRACEALLOCATOR(16);
TRACEALLOCATOR(32);
TRACEALLOCATOR(64);
TRACEALLOCATOR(96);
TRACEALLOCATOR(128);
TRACEALLOCATOR(256);
TRACEALLOCATOR(512);
TRACEALLOCATOR(1024);
TRACEALLOCATOR(2048);
TRACEALLOCATOR(4096);
TRACEALLOCATOR(8192);
g_traceBatch.dump();
#endif
criticalError(FDB_EXIT_NO_MEM, "OutOfMemory", "Out of memory");
}
// Because the lambda used with nftw below cannot capture
int __eraseDirectoryRecurseiveCount;
int eraseDirectoryRecursive(std::string const& dir) {
__eraseDirectoryRecurseiveCount = 0;
#ifdef _WIN32
system(("rd /s /q \"" + dir + "\"").c_str());
#elif defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__)
int error = nftw(
dir.c_str(),
[](const char* fpath, const struct stat* sb, int typeflag, struct FTW* ftwbuf) -> int {
int r = remove(fpath);
if (r == 0)
++__eraseDirectoryRecurseiveCount;
return r;
},
64,
FTW_DEPTH | FTW_PHYS);
/* Looks like calling code expects this to continue silently if
the directory we're deleting doesn't exist in the first
place */
if (error && errno != ENOENT) {
Error e = systemErrorCodeToError();
TraceEvent(SevError, "EraseDirectoryRecursiveError").error(e).detail("Directory", dir).GetLastError();
throw e;
}
#else
#error Port me!
#endif
// INJECT_FAULT( platform_error, "eraseDirectoryRecursive" );
return __eraseDirectoryRecurseiveCount;
}
TmpFile::TmpFile() : filename("") {
createTmpFile(boost::filesystem::temp_directory_path().string(), TmpFile::defaultPrefix);
}
TmpFile::TmpFile(const std::string& tmpDir) : filename("") {
std::string dir = removeWhitespace(tmpDir);
createTmpFile(dir, TmpFile::defaultPrefix);
}
TmpFile::TmpFile(const std::string& tmpDir, const std::string& prefix) : filename("") {
std::string dir = removeWhitespace(tmpDir);
createTmpFile(dir, prefix);
}
TmpFile::~TmpFile() {
if (!filename.empty()) {
destroyFile();
}
}
void TmpFile::createTmpFile(const std::string_view dir, const std::string_view prefix) {
std::string modelPattern = "%%%%-%%%%-%%%%-%%%%";
boost::format fmter("%s/%s-%s");
std::string modelPath = boost::str(boost::format(fmter % dir % prefix % modelPattern));
boost::filesystem::path filePath = boost::filesystem::unique_path(modelPath);
filename = filePath.string();
// Create empty tmp file
std::fstream tmpFile(filename, std::fstream::out);
if (!tmpFile.good()) {
TraceEvent("TmpFile_CreateFileError").detail("Filename", filename);
throw io_error();
}
TraceEvent("TmpFile_CreateSuccess").detail("Filename", filename);
}
size_t TmpFile::read(uint8_t* buff, size_t len) {
return readFileBytes(filename, buff, len);
}
void TmpFile::write(const uint8_t* buff, size_t len) {
writeFileBytes(filename, buff, len);
}
bool TmpFile::destroyFile() {
bool deleted = deleteFile(filename);
if (deleted) {
TraceEvent("TmpFileDestory_Success").detail("Filename", filename);
} else {
TraceEvent("TmpFileDestory_Failed").detail("Filename", filename);
}
return deleted;
}
} // namespace platform
extern "C" void criticalError(int exitCode, const char* type, const char* message) {
// Be careful! This function may be called asynchronously from a thread or in other weird conditions
fprintf(stderr, "ERROR: %s\n", message);
if (g_network && !g_network->isSimulated()) {
TraceEvent ev(SevError, type);
ev.detail("Message", message);
}
flushAndExit(exitCode);
}
extern void flushTraceFileVoid();
#ifdef USE_GCOV
extern "C" void __gcov_flush();
#endif
extern "C" void flushAndExit(int exitCode) {
flushTraceFileVoid();
fflush(stdout);
closeTraceFile();
// Flush all output streams. The original intent is to flush the outfile for contrib/debug_determinism.
fflush(nullptr);
#ifdef USE_GCOV
__gcov_flush();
#endif
#ifdef _WIN32
// This function is documented as being asynchronous, but we suspect it might actually be synchronous in the
// case that it is passed a handle to the current process. If not, then there may be cases where we escalate
// to the crashAndDie call below.
TerminateProcess(GetCurrentProcess(), exitCode);
#else
_exit(exitCode);
#endif
// should never reach here, but you never know
crashAndDie();
}
#ifdef __unixish__
#include <dlfcn.h>
#ifdef __linux__
#include <link.h>
#endif
platform::ImageInfo getImageInfo(const void* symbol) {
Dl_info info;
platform::ImageInfo imageInfo;
#ifdef __linux__
link_map* linkMap = nullptr;
int res = dladdr1(symbol, &info, (void**)&linkMap, RTLD_DL_LINKMAP);
#else
int res = dladdr(symbol, &info);
#endif
if (res != 0) {
imageInfo.fileName = info.dli_fname;
std::string imageFile = basename(info.dli_fname);
// If we have a client library that doesn't end in the appropriate extension, we will get the wrong debug
// suffix. This should only be a cosmetic problem, though.
#ifdef __linux__
imageInfo.offset = (void*)linkMap->l_addr;
if (imageFile.length() >= 3 && imageFile.rfind(".so") == imageFile.length() - 3) {
imageInfo.symbolFileName = imageFile + "-debug";
}
#else
imageInfo.offset = info.dli_fbase;
if (imageFile.length() >= 6 && imageFile.rfind(".dylib") == imageFile.length() - 6) {
imageInfo.symbolFileName = imageFile + "-debug";
}
#endif
else {
imageInfo.symbolFileName = imageFile + ".debug";
}
}
return imageInfo;
}
platform::ImageInfo getCachedImageInfo() {
// The use of "getCachedImageInfo" is arbitrary and was a best guess at a good way to get the image of the
// most likely candidate for the "real" flow library or binary
static platform::ImageInfo info = getImageInfo((const void*)&getCachedImageInfo);
return info;
}
#include <execinfo.h>
namespace platform {
ImageInfo getImageInfo() {
return getCachedImageInfo();
}
size_t raw_backtrace(void** addresses, int maxStackDepth) {
#if !defined(__APPLE__)
// absl::GetStackTrace doesn't have an implementation for MacOS.
return absl::GetStackTrace(addresses, maxStackDepth, 0);
#else
return backtrace(addresses, maxStackDepth);
#endif
}
std::string format_backtrace(void** addresses, int numAddresses) {
ImageInfo const& imageInfo = getCachedImageInfo();
#ifdef __APPLE__
std::string s = format("atos -o %s -arch x86_64 -l %p", imageInfo.symbolFileName.c_str(), imageInfo.offset);
for (int i = 1; i < numAddresses; i++) {
s += format(" %p", addresses[i]);
}
#else
std::string s = format("addr2line -e %s -p -C -f -i", imageInfo.symbolFileName.c_str());
for (int i = 1; i < numAddresses; i++) {
s += format(" %p", (char*)addresses[i] - (char*)imageInfo.offset);
}
#endif
return s;
}
std::string get_backtrace() {
void* addresses[50];
size_t size = raw_backtrace(addresses, 50);
return format_backtrace(addresses, size);
}
} // namespace platform
#else
namespace platform {
std::string get_backtrace() {
return std::string();
}
std::string format_backtrace(void** addresses, int numAddresses) {
return std::string();
}
ImageInfo getImageInfo() {
return ImageInfo();
}
} // namespace platform
#endif
bool isLibraryLoaded(const char* lib_path) {
#if !defined(__linux__) && !defined(__APPLE__) && !defined(_WIN32) && !defined(__FreeBSD__)
#error Port me!
#endif
void* dlobj = nullptr;
#if defined(__unixish__)
dlobj = dlopen(lib_path, RTLD_NOLOAD | RTLD_LAZY);
#else
dlobj = GetModuleHandle(lib_path);
#endif
return dlobj != nullptr;
}
void* loadLibrary(const char* lib_path) {
#if !defined(__linux__) && !defined(__APPLE__) && !defined(_WIN32) && !defined(__FreeBSD__)
#error Port me!
#endif
void* dlobj = nullptr;
#if defined(__unixish__)
dlobj = dlopen(lib_path, RTLD_LAZY | RTLD_LOCAL);
if (dlobj == nullptr) {
TraceEvent(SevWarn, "LoadLibraryFailed").detail("Library", lib_path).detail("Error", dlerror());
}
#else
dlobj = LoadLibrary(lib_path);
if (dlobj == nullptr) {
TraceEvent(SevWarn, "LoadLibraryFailed").detail("Library", lib_path).GetLastError();
}
#endif
return dlobj;
}
void* loadFunction(void* lib, const char* func_name) {
void* dlfcn = nullptr;
#if defined(__unixish__)
dlfcn = dlsym(lib, func_name);
if (dlfcn == nullptr) {
TraceEvent(SevWarn, "LoadFunctionFailed").detail("Function", func_name).detail("Error", dlerror());
}
#else
dlfcn = GetProcAddress((HINSTANCE)lib, func_name);
if (dlfcn == nullptr) {
TraceEvent(SevWarn, "LoadFunctionFailed").detail("Function", func_name).GetLastError();
}
#endif
return dlfcn;
}
void closeLibrary(void* handle) {
#ifdef __unixish__
dlclose(handle);
#else
FreeLibrary(reinterpret_cast<HMODULE>(handle));
#endif
}
std::string exePath() {
#if defined(__linux__)
std::unique_ptr<char[]> buf(new char[PATH_MAX]);
auto len = readlink("/proc/self/exe", buf.get(), PATH_MAX);
if (len > 0 && len < PATH_MAX) {
buf[len] = '\0';
return std::string(buf.get());
} else {
throw platform_error();
}
#elif defined(__FreeBSD__)
char binPath[2048];
int mib[4];
mib[0] = CTL_KERN;
mib[1] = KERN_PROC;
mib[2] = KERN_PROC_PATHNAME;
mib[3] = -1;
size_t len = sizeof(binPath);
if (sysctl(mib, 4, binPath, &len, nullptr, 0) != 0) {
binPath[0] = '\0';
return std::string(binPath);
} else {
throw platform_error();
}
#elif defined(__APPLE__)
uint32_t bufSize = 1024;
std::unique_ptr<char[]> buf(new char[bufSize]);
while (true) {
auto res = _NSGetExecutablePath(buf.get(), &bufSize);
if (res == -1) {
buf.reset(new char[bufSize]);
} else {
return std::string(buf.get());
}
}
#elif defined(_WIN32)
DWORD bufSize = 1024;
std::unique_ptr<char[]> buf(new char[bufSize]);
while (true) {
auto s = GetModuleFileName(nullptr, buf.get(), bufSize);
if (s >= 0) {
if (GetLastError() == ERROR_INSUFFICIENT_BUFFER) {
bufSize *= 2;
buf.reset(new char[bufSize]);
continue;
}
return std::string(buf.get());
} else {
throw platform_error();
}
}
#else
#error Port me!
#endif
}
void platformInit() {
#ifdef WIN32
_set_FMA3_enable(
0); // Workaround for VS 2013 code generation bug. See
// https://connect.microsoft.com/VisualStudio/feedback/details/811093/visual-studio-2013-rtm-c-x64-code-generation-bug-for-avx2-instructions
#endif
#ifdef __linux__
struct timespec ts;
if (clock_gettime(CLOCK_MONOTONIC, &ts) != 0) {
criticalError(FDB_EXIT_ERROR,
"MonotonicTimeUnavailable",
"clock_gettime(CLOCK_MONOTONIC, ...) returned an error. Check your kernel and glibc versions.");
}
#endif
}
// The crashHandler function is registered to handle signals before the process terminates.
// Basic information about the crash is printed/traced, and stdout and trace events are flushed.
void crashHandler(int sig) {
#ifdef __linux__
// Pretty much all of this handler is risking undefined behavior and hangs,
// but the idea is that we're about to crash anyway...
std::string backtrace = platform::get_backtrace();
bool error = (sig != SIGUSR2);
StreamCipherKey::cleanup();
StreamCipher::cleanup();
BlobCipherKeyCache::cleanup();
fflush(stdout);
{
TraceEvent te(error ? SevError : SevInfo, error ? "Crash" : "ProcessTerminated");
te.detail("Signal", sig).detail("Name", strsignal(sig)).detail("Trace", backtrace);
if (error) {
te.setErrorKind(ErrorKind::BugDetected);
}
}
flushTraceFileVoid();
fprintf(stderr, "SIGNAL: %s (%d)\n", strsignal(sig), sig);
fprintf(stderr, "Trace: %s\n", backtrace.c_str());
struct sigaction sa;
sa.sa_handler = SIG_DFL;
if (sigemptyset(&sa.sa_mask)) {
int err = errno;
fprintf(stderr, "sigemptyset failed: %s\n", strerror(err));
_exit(sig + 128);
}
sa.sa_flags = 0;
if (sigaction(sig, &sa, nullptr)) {
int err = errno;
fprintf(stderr, "sigaction failed: %s\n", strerror(err));
_exit(sig + 128);
}
if (kill(getpid(), sig)) {
int err = errno;
fprintf(stderr, "kill failed: %s\n", strerror(err));
_exit(sig + 128);
}
// Rely on kill to end the process
#else
// No crash handler for other platforms!
#endif
}
void registerCrashHandler() {
#ifdef __linux__
// For these otherwise fatal errors, attempt to log a trace of
// what was happening and then exit
struct sigaction action;
action.sa_handler = crashHandler;
sigfillset(&action.sa_mask);
action.sa_flags = 0;
sigaction(SIGILL, &action, nullptr);
sigaction(SIGFPE, &action, nullptr);
sigaction(SIGSEGV, &action, nullptr);
sigaction(SIGBUS, &action, nullptr);
sigaction(SIGUSR2, &action, nullptr);
#else
// No crash handler for other platforms!
#endif
}
#ifdef __linux__
extern volatile void** net2backtraces;
extern volatile size_t net2backtraces_offset;
extern volatile size_t net2backtraces_max;
extern volatile bool net2backtraces_overflow;
extern volatile int net2backtraces_count;
extern std::atomic<int64_t> net2RunLoopIterations;
extern std::atomic<int64_t> net2RunLoopSleeps;
extern void initProfiling();
std::atomic<double> checkThreadTime;
#endif
volatile thread_local bool profileThread = false;
volatile thread_local int profilingEnabled = 1;
volatile thread_local int64_t numProfilesDeferred = 0;
volatile thread_local int64_t numProfilesOverflowed = 0;
volatile thread_local int64_t numProfilesCaptured = 0;
volatile thread_local bool profileRequested = false;
int64_t getNumProfilesDeferred() {
return numProfilesDeferred;
}
int64_t getNumProfilesOverflowed() {
return numProfilesOverflowed;
}
int64_t getNumProfilesCaptured() {
return numProfilesCaptured;
}
void profileHandler(int sig) {
#ifdef __linux__
if (!profileThread) {
return;
}
if (!profilingEnabled) {
profileRequested = true;
++numProfilesDeferred;
return;
}
++net2backtraces_count;
if (!net2backtraces || net2backtraces_max - net2backtraces_offset < 50) {
++numProfilesOverflowed;
net2backtraces_overflow = true;
return;
}
++numProfilesCaptured;
// We are casting away the volatile-ness of the backtrace array, but we believe that should be reasonably safe in
// the signal handler
ProfilingSample* ps =
const_cast<ProfilingSample*>((volatile ProfilingSample*)(net2backtraces + net2backtraces_offset));
// We can only read the check thread time in a signal handler if the atomic is lock free.
// We can't get the time from a timer() call because it's not signal safe.
ps->timestamp = checkThreadTime.is_lock_free() ? checkThreadTime.load() : 0;
// SOMEDAY: should we limit the maximum number of frames from backtrace beyond just available space?
size_t size = platform::raw_backtrace(ps->frames, net2backtraces_max - net2backtraces_offset - 2);
ps->length = size;
net2backtraces_offset += size + 2;
#else
// No slow task profiling for other platforms!
#endif
}
void setProfilingEnabled(int enabled) {
#ifdef __linux__
if (profileThread && enabled && !profilingEnabled && profileRequested) {
profilingEnabled = true;
profileRequested = false;
pthread_kill(pthread_self(), SIGPROF);
} else {
profilingEnabled = enabled;
}
#else
// No profiling for other platforms!
#endif
}
void* checkThread(void* arg) {
#ifdef __linux__
pthread_t mainThread = *(pthread_t*)arg;
free(arg);
int64_t lastRunLoopIterations = net2RunLoopIterations.load();
int64_t lastRunLoopSleeps = net2RunLoopSleeps.load();
double slowTaskStart = 0;
double lastSlowTaskSignal = 0;
double lastSaturatedSignal = 0;
double lastSlowTaskBlockedLog = 0;
const double minSlowTaskLogInterval =
std::max(FLOW_KNOBS->SLOWTASK_PROFILING_LOG_INTERVAL, FLOW_KNOBS->RUN_LOOP_PROFILING_INTERVAL);
const double minSaturationLogInterval =
std::max(FLOW_KNOBS->SATURATION_PROFILING_LOG_INTERVAL, FLOW_KNOBS->RUN_LOOP_PROFILING_INTERVAL);
double slowTaskLogInterval = minSlowTaskLogInterval;
double saturatedLogInterval = minSaturationLogInterval;
while (true) {
threadSleep(FLOW_KNOBS->RUN_LOOP_PROFILING_INTERVAL);
int64_t currentRunLoopIterations = net2RunLoopIterations.load();
int64_t currentRunLoopSleeps = net2RunLoopSleeps.load();
bool slowTask = lastRunLoopIterations == currentRunLoopIterations;
bool saturated = lastRunLoopSleeps == currentRunLoopSleeps;
if (slowTask) {
double t = timer();
bool newSlowTask = lastSlowTaskSignal == 0;
if (newSlowTask) {
slowTaskStart = t;
} else if (t - std::max(slowTaskStart, lastSlowTaskBlockedLog) > FLOW_KNOBS->SLOWTASK_BLOCKED_INTERVAL) {
lastSlowTaskBlockedLog = t;
// When this gets logged, it will be with a current timestamp (using timer()). If the network thread
// unblocks, it will log any slow task related events at an earlier timestamp. That means the order of
// events during this sequence will not match their timestamp order.
TraceEvent(SevWarnAlways, "RunLoopBlocked").detail("Duration", t - slowTaskStart);
}
if (newSlowTask || t - lastSlowTaskSignal >= slowTaskLogInterval) {
if (lastSlowTaskSignal > 0) {
slowTaskLogInterval = std::min(FLOW_KNOBS->SLOWTASK_PROFILING_MAX_LOG_INTERVAL,
FLOW_KNOBS->SLOWTASK_PROFILING_LOG_BACKOFF * slowTaskLogInterval);
}
lastSlowTaskSignal = t;
checkThreadTime.store(lastSlowTaskSignal);
pthread_kill(mainThread, SIGPROF);
}
} else {
slowTaskStart = 0;
lastSlowTaskSignal = 0;
lastRunLoopIterations = currentRunLoopIterations;
slowTaskLogInterval = minSlowTaskLogInterval;
}
if (saturated) {
double t = timer();
if (lastSaturatedSignal == 0 || t - lastSaturatedSignal >= saturatedLogInterval) {
if (lastSaturatedSignal > 0) {
saturatedLogInterval =
std::min(FLOW_KNOBS->SATURATION_PROFILING_MAX_LOG_INTERVAL,
FLOW_KNOBS->SATURATION_PROFILING_LOG_BACKOFF * saturatedLogInterval);
}
lastSaturatedSignal = t;
if (!slowTask) {
checkThreadTime.store(lastSaturatedSignal);
pthread_kill(mainThread, SIGPROF);
}
}
} else {
lastSaturatedSignal = 0;
lastRunLoopSleeps = currentRunLoopSleeps;
saturatedLogInterval = minSaturationLogInterval;
}
}
return nullptr;
#else
// No slow task profiling for other platforms!
return nullptr;
#endif
}
#if defined(DTRACE_PROBES)
void fdb_probe_actor_create(const char* name, unsigned long id) {
FDB_TRACE_PROBE(actor_create, name, id);
}
void fdb_probe_actor_destroy(const char* name, unsigned long id) {
FDB_TRACE_PROBE(actor_destroy, name, id);
}
void fdb_probe_actor_enter(const char* name, unsigned long id, int index) {
FDB_TRACE_PROBE(actor_enter, name, id, index);
}
void fdb_probe_actor_exit(const char* name, unsigned long id, int index) {
FDB_TRACE_PROBE(actor_exit, name, id, index);
}
#endif
void throwExecPathError(Error e, char path[]) {
Severity sev = e.code() == error_code_io_error ? SevError : SevWarnAlways;
TraceEvent(sev, "GetPathError").error(e).detail("Path", path);
throw e;
}
std::string getExecPath() {
char path[1024];
uint32_t size = sizeof(path);
#if defined(__APPLE__)
if (_NSGetExecutablePath(path, &size) == 0) {
return std::string(path);
} else {
throwExecPathError(platform_error(), path);
}
#elif defined(__linux__)
ssize_t len = ::readlink("/proc/self/exe", path, size);
if (len != -1) {
path[len] = '\0';
return std::string(path);
} else {
throwExecPathError(platform_error(), path);
}
#elif defined(_WIN32)
auto len = GetModuleFileName(nullptr, path, size);
if (len != 0) {
return std::string(path);
} else {
throwExecPathError(platform_error(), path);
}
#endif
return "unsupported OS";
}
void setupRunLoopProfiler() {
#ifdef __linux__
if (!profileThread && FLOW_KNOBS->RUN_LOOP_PROFILING_INTERVAL > 0) {
TraceEvent("StartingRunLoopProfilingThread").detail("Interval", FLOW_KNOBS->RUN_LOOP_PROFILING_INTERVAL);
initProfiling();
profileThread = true;
struct sigaction action;
action.sa_handler = profileHandler;
sigfillset(&action.sa_mask);
action.sa_flags = 0;
sigaction(SIGPROF, &action, nullptr);
// Start a thread which will use signals to log stacks on long events
pthread_t* mainThread = (pthread_t*)malloc(sizeof(pthread_t));
*mainThread = pthread_self();
startThread(&checkThread, (void*)mainThread, 0, "fdb-loopprofile");
}
#else
// No slow task profiling for other platforms!
#endif
}
// UnitTest for getMemoryInfo
#ifdef __linux__
TEST_CASE("/flow/Platform/getMemoryInfo") {
printf("UnitTest flow/Platform/getMemoryInfo 1\n");
std::string memString = "MemTotal: 24733228 kB\n"
"MemFree: 2077580 kB\n"
"Buffers: 266940 kB\n"
"Cached: 16798292 kB\n"
"SwapCached: 210240 kB\n"
"Active: 12447724 kB\n"
"Inactive: 9175508 kB\n"
"Active(anon): 3458596 kB\n"
"Inactive(anon): 1102948 kB\n"
"Active(file): 8989128 kB\n"
"Inactive(file): 8072560 kB\n"
"Unevictable: 0 kB\n"
"Mlocked: 0 kB\n"
"SwapTotal: 25165820 kB\n"
"SwapFree: 23680228 kB\n"
"Dirty: 200 kB\n"
"Writeback: 0 kB\n"
"AnonPages: 4415148 kB\n"
"Mapped: 62804 kB\n"
"Shmem: 3544 kB\n"
"Slab: 620144 kB\n"
"SReclaimable: 556640 kB\n"
"SUnreclaim: 63504 kB\n"
"KernelStack: 5240 kB\n"
"PageTables: 47292 kB\n"
"NFS_Unstable: 0 kB\n"
"Bounce: 0 kB\n"
"WritebackTmp: 0 kB\n"
"CommitLimit: 37532432 kB\n"
"Committed_AS: 8603484 kB\n"
"VmallocTotal: 34359738367 kB\n"
"VmallocUsed: 410576 kB\n";
std::map<StringRef, int64_t> request = {
{ LiteralStringRef("MemTotal:"), 0 }, { LiteralStringRef("MemFree:"), 0 },
{ LiteralStringRef("MemAvailable:"), 0 }, { LiteralStringRef("Buffers:"), 0 },
{ LiteralStringRef("Cached:"), 0 }, { LiteralStringRef("SwapTotal:"), 0 },
{ LiteralStringRef("SwapFree:"), 0 },
};
std::stringstream memInfoStream(memString);
getMemoryInfo(request, memInfoStream);
ASSERT(request[LiteralStringRef("MemTotal:")] == 24733228);
ASSERT(request[LiteralStringRef("MemFree:")] == 2077580);
ASSERT(request[LiteralStringRef("MemAvailable:")] == 0);
ASSERT(request[LiteralStringRef("Buffers:")] == 266940);
ASSERT(request[LiteralStringRef("Cached:")] == 16798292);
ASSERT(request[LiteralStringRef("SwapTotal:")] == 25165820);
ASSERT(request[LiteralStringRef("SwapFree:")] == 23680228);
for (auto& item : request) {
fmt::print("{}:{}\n", item.first.toString().c_str(), item.second);
}
printf("UnitTest flow/Platform/getMemoryInfo 2\n");
std::string memString1 = "Slab: 192816 kB\n"
"SReclaimable: 158404 kB\n"
"SUnreclaim: 34412 kB\n"
"KernelStack: 7152 kB\n"
"PageTables: 45284 kB\n"
"NFS_Unstable: 0 kB\n"
"Bounce: 0 kB\n"
"WritebackTmp: 0 kB\n"
"MemTotal: 31856496 kB\n"
"MemFree: 25492716 kB\n"
"MemAvailable: 28470756 kB\n"
"Buffers: 313644 kB\n"
"Cached: 2956444 kB\n"
"SwapCached: 0 kB\n"
"Active: 3708432 kB\n"
"Inactive: 2163752 kB\n"
"Active(anon): 2604524 kB\n"
"Inactive(anon): 199896 kB\n"
"Active(file): 1103908 kB\n"
"Inactive(file): 1963856 kB\n"
"Unevictable: 0 kB\n"
"Mlocked: 0 kB\n"
"SwapTotal: 0 kB\n"
"SwapFree: 0 kB\n"
"Dirty: 0 kB\n"
"Writeback: 0 kB\n"
"AnonPages: 2602108 kB\n"
"Mapped: 361088 kB\n"
"Shmem: 202332 kB\n"
"CommitLimit: 15928248 kB\n"
"Committed_AS: 5556756 kB\n"
"VmallocTotal: 34359738367 kB\n"
"VmallocUsed: 427528 kB\n"
"VmallocChunk: 34359283752 kB\n"
"HardwareCorrupted: 0 kB\n"
"AnonHugePages: 1275904 kB\n";
std::stringstream memInfoStream1(memString1);
getMemoryInfo(request, memInfoStream1);
ASSERT(request[LiteralStringRef("MemTotal:")] == 31856496);
ASSERT(request[LiteralStringRef("MemFree:")] == 25492716);
ASSERT(request[LiteralStringRef("MemAvailable:")] == 28470756);
ASSERT(request[LiteralStringRef("Buffers:")] == 313644);
ASSERT(request[LiteralStringRef("Cached:")] == 2956444);
ASSERT(request[LiteralStringRef("SwapTotal:")] == 0);
ASSERT(request[LiteralStringRef("SwapFree:")] == 0);
for (auto& item : request) {
fmt::print("{}:{}\n", item.first.toString().c_str(), item.second);
}
return Void();
}
#endif
int testPathFunction(const char* name,
std::function<std::string(std::string)> fun,
std::string a,
ErrorOr<std::string> b) {
ErrorOr<std::string> result;
try {
result = fun(a);
} catch (Error& e) {
result = e;
}
bool r = result.isError() == b.isError() && (b.isError() || b.get() == result.get()) &&
(!b.isError() || b.getError().code() == result.getError().code());
printf("%s: %s('%s') -> %s",
r ? "PASS" : "FAIL",
name,
a.c_str(),
result.isError() ? result.getError().what() : format("'%s'", result.get().c_str()).c_str());
if (!r) {
printf(" *ERROR* expected %s", b.isError() ? b.getError().what() : format("'%s'", b.get().c_str()).c_str());
}
printf("\n");
return r ? 0 : 1;
}
int testPathFunction2(const char* name,
std::function<std::string(std::string, bool, bool)> fun,
std::string a,
bool resolveLinks,
bool mustExist,
ErrorOr<std::string> b) {
// Skip tests with resolveLinks set to false as the implementation is not complete
if (resolveLinks == false) {
printf("SKIPPED: %s('%s', %d, %d)\n", name, a.c_str(), resolveLinks, mustExist);
return 0;
}
ErrorOr<std::string> result;
try {
result = fun(a, resolveLinks, mustExist);
} catch (Error& e) {
result = e;
}
bool r = result.isError() == b.isError() && (b.isError() || b.get() == result.get()) &&
(!b.isError() || b.getError().code() == result.getError().code());
printf("%s: %s('%s', %d, %d) -> %s",
r ? "PASS" : "FAIL",
name,
a.c_str(),
resolveLinks,
mustExist,
result.isError() ? result.getError().what() : format("'%s'", result.get().c_str()).c_str());
if (!r) {
printf(" *ERROR* expected %s", b.isError() ? b.getError().what() : format("'%s'", b.get().c_str()).c_str());
}
printf("\n");
return r ? 0 : 1;
}
#ifndef _WIN32
void platformSpecificDirectoryOpsTests(const std::string& cwd, int& errors) {
// Create some symlinks and test resolution (or non-resolution) of them
ASSERT(symlink("one/two", "simfdb/backups/four") == 0);
ASSERT(symlink("../backups/four", "simfdb/backups/five") == 0);
errors += testPathFunction2(
"abspath", abspath, "simfdb/backups/four/../two", true, true, joinPath(cwd, "simfdb/backups/one/two"));
errors += testPathFunction2(
"abspath", abspath, "simfdb/backups/five/../two", true, true, joinPath(cwd, "simfdb/backups/one/two"));
errors += testPathFunction2(
"abspath", abspath, "simfdb/backups/five/../two", true, false, joinPath(cwd, "simfdb/backups/one/two"));
errors += testPathFunction2("abspath", abspath, "simfdb/backups/five/../three", true, true, platform_error());
errors += testPathFunction2(
"abspath", abspath, "simfdb/backups/five/../three", true, false, joinPath(cwd, "simfdb/backups/one/three"));
errors += testPathFunction2("abspath",
abspath,
"simfdb/backups/five/../three/../four",
true,
false,
joinPath(cwd, "simfdb/backups/one/four"));
errors += testPathFunction2("parentDirectory",
parentDirectory,
"simfdb/backups/four/../two",
true,
true,
joinPath(cwd, "simfdb/backups/one/"));
errors += testPathFunction2("parentDirectory",
parentDirectory,
"simfdb/backups/five/../two",
true,
true,
joinPath(cwd, "simfdb/backups/one/"));
errors += testPathFunction2("parentDirectory",
parentDirectory,
"simfdb/backups/five/../two",
true,
false,
joinPath(cwd, "simfdb/backups/one/"));
errors += testPathFunction2(
"parentDirectory", parentDirectory, "simfdb/backups/five/../three", true, true, platform_error());
errors += testPathFunction2("parentDirectory",
parentDirectory,
"simfdb/backups/five/../three",
true,
false,
joinPath(cwd, "simfdb/backups/one/"));
errors += testPathFunction2("parentDirectory",
parentDirectory,
"simfdb/backups/five/../three/../four",
true,
false,
joinPath(cwd, "simfdb/backups/one/"));
}
#else
void platformSpecificDirectoryOpsTests(const std::string& cwd, int& errors) {}
#endif
TEST_CASE("/flow/Platform/directoryOps") {
int errors = 0;
errors += testPathFunction("popPath", popPath, "a", "");
errors += testPathFunction("popPath", popPath, "a/", "");
errors += testPathFunction("popPath", popPath, "a///", "");
errors += testPathFunction("popPath", popPath, "a///..", "a/");
errors += testPathFunction("popPath", popPath, "a///../", "a/");
errors += testPathFunction("popPath", popPath, "a///..//", "a/");
errors += testPathFunction("popPath", popPath, "/", "/");
errors += testPathFunction("popPath", popPath, "/a", "/");
errors += testPathFunction("popPath", popPath, "/a/b", "/a/");
errors += testPathFunction("popPath", popPath, "/a/b/", "/a/");
errors += testPathFunction("popPath", popPath, "/a/b/..", "/a/b/");
errors += testPathFunction("popPath", popPath, "/a/b///..//", "/a/b/");
errors += testPathFunction("cleanPath", cleanPath, "/", "/");
errors += testPathFunction("cleanPath", cleanPath, "///.///", "/");
errors += testPathFunction("cleanPath", cleanPath, "/a/b/.././../c/./././////./d/..//", "/c");
errors += testPathFunction("cleanPath", cleanPath, "a/b/.././../c/./././////./d/..//", "c");
errors += testPathFunction("cleanPath", cleanPath, "..", "..");
errors += testPathFunction("cleanPath", cleanPath, "../.././", "../..");
errors += testPathFunction("cleanPath", cleanPath, "../a/b/..//", "../a");
errors += testPathFunction("cleanPath", cleanPath, "a/b/.././../c/./././////./d/..//..", ".");
errors += testPathFunction("cleanPath", cleanPath, "/..", "/");
errors += testPathFunction("cleanPath", cleanPath, "/../foo/bar///", "/foo/bar");
errors += testPathFunction("cleanPath", cleanPath, "/a/b/../.././../", "/");
errors += testPathFunction("cleanPath", cleanPath, ".", ".");
// Creating this directory in backups avoids some sanity checks
platform::createDirectory("simfdb/backups/one/two/three");
std::string cwd = platform::getWorkingDirectory();
platformSpecificDirectoryOpsTests(cwd, errors);
errors += testPathFunction2("abspath", abspath, "/", false, false, "/");
errors += testPathFunction2("abspath", abspath, "/foo//bar//baz/.././", false, false, "/foo/bar");
errors += testPathFunction2("abspath", abspath, "/", true, false, "/");
errors += testPathFunction2("abspath", abspath, "", true, false, platform_error());
errors += testPathFunction2("abspath", abspath, ".", true, false, cwd);
errors += testPathFunction2("abspath", abspath, "/a", true, false, "/a");
errors += testPathFunction2("abspath", abspath, "one/two/three/four", false, true, platform_error());
errors +=
testPathFunction2("abspath", abspath, "one/two/three/four", false, false, joinPath(cwd, "one/two/three/four"));
errors += testPathFunction2(
"abspath", abspath, "one/two/three/./four", false, false, joinPath(cwd, "one/two/three/four"));
errors += testPathFunction2(
"abspath", abspath, "one/two/three/./four", false, false, joinPath(cwd, "one/two/three/four"));
errors +=
testPathFunction2("abspath", abspath, "one/two/three/./four/..", false, false, joinPath(cwd, "one/two/three"));
errors += testPathFunction2(
"abspath", abspath, "one/./two/../three/./four", false, false, joinPath(cwd, "one/three/four"));
errors += testPathFunction2("abspath", abspath, "one/./two/../three/./four", false, true, platform_error());
errors += testPathFunction2("abspath", abspath, "one/two/three/./four", false, true, platform_error());
errors += testPathFunction2(
"abspath", abspath, "simfdb/backups/one/two/three", false, true, joinPath(cwd, "simfdb/backups/one/two/three"));
errors += testPathFunction2("abspath", abspath, "simfdb/backups/one/two/threefoo", false, true, platform_error());
errors += testPathFunction2(
"abspath", abspath, "simfdb/backups/four/../two", false, false, joinPath(cwd, "simfdb/backups/two"));
errors += testPathFunction2("abspath", abspath, "simfdb/backups/four/../two", false, true, platform_error());
errors += testPathFunction2("abspath", abspath, "simfdb/backups/five/../two", false, true, platform_error());
errors += testPathFunction2(
"abspath", abspath, "simfdb/backups/five/../two", false, false, joinPath(cwd, "simfdb/backups/two"));
errors += testPathFunction2("abspath", abspath, "foo/./../foo2/./bar//", false, false, joinPath(cwd, "foo2/bar"));
errors += testPathFunction2("abspath", abspath, "foo/./../foo2/./bar//", false, true, platform_error());
errors += testPathFunction2("abspath", abspath, "foo/./../foo2/./bar//", true, false, joinPath(cwd, "foo2/bar"));
errors += testPathFunction2("abspath", abspath, "foo/./../foo2/./bar//", true, true, platform_error());
errors += testPathFunction2("parentDirectory", parentDirectory, "", true, false, platform_error());
errors += testPathFunction2("parentDirectory", parentDirectory, "/", true, false, "/");
errors += testPathFunction2("parentDirectory", parentDirectory, "/a", true, false, "/");
errors +=
testPathFunction2("parentDirectory", parentDirectory, ".", false, false, cleanPath(joinPath(cwd, "..")) + "/");
errors += testPathFunction2("parentDirectory", parentDirectory, "./foo", false, false, cleanPath(cwd) + "/");
errors +=
testPathFunction2("parentDirectory", parentDirectory, "one/two/three/four", false, true, platform_error());
errors += testPathFunction2(
"parentDirectory", parentDirectory, "one/two/three/four", false, false, joinPath(cwd, "one/two/three/"));
errors += testPathFunction2(
"parentDirectory", parentDirectory, "one/two/three/./four", false, false, joinPath(cwd, "one/two/three/"));
errors += testPathFunction2(
"parentDirectory", parentDirectory, "one/two/three/./four/..", false, false, joinPath(cwd, "one/two/"));
errors += testPathFunction2(
"parentDirectory", parentDirectory, "one/./two/../three/./four", false, false, joinPath(cwd, "one/three/"));
errors += testPathFunction2(
"parentDirectory", parentDirectory, "one/./two/../three/./four", false, true, platform_error());
errors +=
testPathFunction2("parentDirectory", parentDirectory, "one/two/three/./four", false, true, platform_error());
errors += testPathFunction2("parentDirectory",
parentDirectory,
"simfdb/backups/one/two/three",
false,
true,
joinPath(cwd, "simfdb/backups/one/two/"));
errors += testPathFunction2(
"parentDirectory", parentDirectory, "simfdb/backups/one/two/threefoo", false, true, platform_error());
errors += testPathFunction2("parentDirectory",
parentDirectory,
"simfdb/backups/four/../two",
false,
false,
joinPath(cwd, "simfdb/backups/"));
errors += testPathFunction2(
"parentDirectory", parentDirectory, "simfdb/backups/four/../two", false, true, platform_error());
errors += testPathFunction2(
"parentDirectory", parentDirectory, "simfdb/backups/five/../two", false, true, platform_error());
errors += testPathFunction2("parentDirectory",
parentDirectory,
"simfdb/backups/five/../two",
false,
false,
joinPath(cwd, "simfdb/backups/"));
errors += testPathFunction2(
"parentDirectory", parentDirectory, "foo/./../foo2/./bar//", false, false, joinPath(cwd, "foo2/"));
errors +=
testPathFunction2("parentDirectory", parentDirectory, "foo/./../foo2/./bar//", false, true, platform_error());
errors += testPathFunction2(
"parentDirectory", parentDirectory, "foo/./../foo2/./bar//", true, false, joinPath(cwd, "foo2/"));
errors +=
testPathFunction2("parentDirectory", parentDirectory, "foo/./../foo2/./bar//", true, true, platform_error());
printf("%d errors.\n", errors);
ASSERT(errors == 0);
return Void();
}