foundationdb/fdbserver/QuietDatabase.actor.cpp

803 lines
34 KiB
C++

/*
* QuietDatabase.actor.cpp
*
* This source file is part of the FoundationDB open source project
*
* Copyright 2013-2018 Apple Inc. and the FoundationDB project authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cinttypes>
#include <vector>
#include "fdbclient/SystemData.h"
#include "flow/ActorCollection.h"
#include "fdbrpc/simulator.h"
#include "flow/Trace.h"
#include "fdbclient/DatabaseContext.h"
#include "fdbclient/NativeAPI.actor.h"
#include "fdbclient/ReadYourWrites.h"
#include "fdbclient/RunTransaction.actor.h"
#include "fdbserver/Knobs.h"
#include "fdbserver/TesterInterface.actor.h"
#include "fdbserver/WorkerInterface.actor.h"
#include "fdbserver/ServerDBInfo.h"
#include "fdbserver/Status.h"
#include "fdbclient/ManagementAPI.actor.h"
#include <boost/lexical_cast.hpp>
#include "flow/actorcompiler.h" // This must be the last #include.
ACTOR Future<std::vector<WorkerDetails>> getWorkers(Reference<AsyncVar<ServerDBInfo> const> dbInfo, int flags = 0) {
loop {
choose {
when(std::vector<WorkerDetails> w = wait(brokenPromiseToNever(
dbInfo->get().clusterInterface.getWorkers.getReply(GetWorkersRequest(flags))))) {
return w;
}
when(wait(dbInfo->onChange())) {}
}
}
}
// Gets the WorkerInterface representing the Master server.
ACTOR Future<WorkerInterface> getMasterWorker(Database cx, Reference<AsyncVar<ServerDBInfo> const> dbInfo) {
TraceEvent("GetMasterWorker").detail("Stage", "GettingWorkers");
loop {
state std::vector<WorkerDetails> workers = wait(getWorkers(dbInfo));
for (int i = 0; i < workers.size(); i++) {
if (workers[i].interf.address() == dbInfo->get().master.address()) {
TraceEvent("GetMasterWorker")
.detail("Stage", "GotWorkers")
.detail("MasterId", dbInfo->get().master.id())
.detail("WorkerId", workers[i].interf.id());
return workers[i].interf;
}
}
TraceEvent(SevWarn, "GetMasterWorkerError")
.detail("Error", "MasterWorkerNotFound")
.detail("Master", dbInfo->get().master.id())
.detail("MasterAddress", dbInfo->get().master.address())
.detail("WorkerCount", workers.size());
wait(delay(1.0));
}
}
// Gets the WorkerInterface representing the data distributor.
ACTOR Future<WorkerInterface> getDataDistributorWorker(Database cx, Reference<AsyncVar<ServerDBInfo> const> dbInfo) {
TraceEvent("GetDataDistributorWorker").detail("Stage", "GettingWorkers");
loop {
state std::vector<WorkerDetails> workers = wait(getWorkers(dbInfo));
if (!dbInfo->get().distributor.present())
continue;
for (int i = 0; i < workers.size(); i++) {
if (workers[i].interf.address() == dbInfo->get().distributor.get().address()) {
TraceEvent("GetDataDistributorWorker")
.detail("Stage", "GotWorkers")
.detail("DataDistributorId", dbInfo->get().distributor.get().id())
.detail("WorkerId", workers[i].interf.id());
return workers[i].interf;
}
}
TraceEvent(SevWarn, "GetDataDistributorWorker")
.detail("Error", "DataDistributorWorkerNotFound")
.detail("DataDistributorId", dbInfo->get().distributor.get().id())
.detail("DataDistributorAddress", dbInfo->get().distributor.get().address())
.detail("WorkerCount", workers.size());
}
}
// Gets the number of bytes in flight from the data distributor.
ACTOR Future<int64_t> getDataInFlight(Database cx, WorkerInterface distributorWorker) {
try {
TraceEvent("DataInFlight").detail("Stage", "ContactingDataDistributor");
TraceEventFields md = wait(timeoutError(
distributorWorker.eventLogRequest.getReply(EventLogRequest(LiteralStringRef("TotalDataInFlight"))), 1.0));
int64_t dataInFlight = boost::lexical_cast<int64_t>(md.getValue("TotalBytes"));
return dataInFlight;
} catch (Error& e) {
TraceEvent("QuietDatabaseFailure", distributorWorker.id())
.error(e)
.detail("Reason", "Failed to extract DataInFlight");
throw;
}
}
// Gets the number of bytes in flight from the data distributor.
ACTOR Future<int64_t> getDataInFlight(Database cx, Reference<AsyncVar<ServerDBInfo> const> dbInfo) {
WorkerInterface distributorInterf = wait(getDataDistributorWorker(cx, dbInfo));
int64_t dataInFlight = wait(getDataInFlight(cx, distributorInterf));
return dataInFlight;
}
// Computes the queue size for storage servers and tlogs using the bytesInput and bytesDurable attributes
int64_t getQueueSize(const TraceEventFields& md) {
double inputRate, durableRate;
double inputRoughness, durableRoughness;
int64_t inputBytes, durableBytes;
sscanf(md.getValue("BytesInput").c_str(), "%lf %lf %" SCNd64, &inputRate, &inputRoughness, &inputBytes);
sscanf(md.getValue("BytesDurable").c_str(), "%lf %lf %" SCNd64, &durableRate, &durableRoughness, &durableBytes);
return inputBytes - durableBytes;
}
// Computes the popped version lag for tlogs
int64_t getPoppedVersionLag(const TraceEventFields& md) {
int64_t persistentDataDurableVersion = boost::lexical_cast<int64_t>(md.getValue("PersistentDataDurableVersion"));
int64_t queuePoppedVersion = boost::lexical_cast<int64_t>(md.getValue("QueuePoppedVersion"));
return persistentDataDurableVersion - queuePoppedVersion;
}
ACTOR Future<std::vector<WorkerInterface>> getCoordWorkers(Database cx,
Reference<AsyncVar<ServerDBInfo> const> dbInfo) {
state std::vector<WorkerDetails> workers = wait(getWorkers(dbInfo));
Optional<Value> coordinators =
wait(runRYWTransaction(cx, [=](Reference<ReadYourWritesTransaction> tr) -> Future<Optional<Value>> {
tr->setOption(FDBTransactionOptions::ACCESS_SYSTEM_KEYS);
tr->setOption(FDBTransactionOptions::LOCK_AWARE);
return tr->get(coordinatorsKey);
}));
if (!coordinators.present()) {
throw operation_failed();
}
std::vector<NetworkAddress> coordinatorsAddr =
ClusterConnectionString(coordinators.get().toString()).coordinators();
std::set<NetworkAddress> coordinatorsAddrSet;
for (const auto& addr : coordinatorsAddr) {
TraceEvent(SevDebug, "CoordinatorAddress").detail("Addr", addr);
coordinatorsAddrSet.insert(addr);
}
std::vector<WorkerInterface> result;
for (const auto& worker : workers) {
NetworkAddress primary = worker.interf.address();
Optional<NetworkAddress> secondary = worker.interf.tLog.getEndpoint().addresses.secondaryAddress;
if (coordinatorsAddrSet.find(primary) != coordinatorsAddrSet.end() ||
(secondary.present() && (coordinatorsAddrSet.find(secondary.get()) != coordinatorsAddrSet.end()))) {
result.push_back(worker.interf);
}
}
return result;
}
// This is not robust in the face of a TLog failure
ACTOR Future<std::pair<int64_t, int64_t>> getTLogQueueInfo(Database cx,
Reference<AsyncVar<ServerDBInfo> const> dbInfo) {
TraceEvent("MaxTLogQueueSize").detail("Stage", "ContactingLogs");
state std::vector<WorkerDetails> workers = wait(getWorkers(dbInfo));
std::map<NetworkAddress, WorkerInterface> workersMap;
for (auto worker : workers) {
workersMap[worker.interf.address()] = worker.interf;
}
state std::vector<Future<TraceEventFields>> messages;
state std::vector<TLogInterface> tlogs = dbInfo->get().logSystemConfig.allPresentLogs();
for (int i = 0; i < tlogs.size(); i++) {
auto itr = workersMap.find(tlogs[i].address());
if (itr == workersMap.end()) {
TraceEvent("QuietDatabaseFailure")
.detail("Reason", "Could not find worker for log server")
.detail("Tlog", tlogs[i].id());
throw attribute_not_found();
}
messages.push_back(timeoutError(
itr->second.eventLogRequest.getReply(EventLogRequest(StringRef(tlogs[i].id().toString() + "/TLogMetrics"))),
1.0));
}
wait(waitForAll(messages));
TraceEvent("MaxTLogQueueSize").detail("Stage", "ComputingMax").detail("MessageCount", messages.size());
state int64_t maxQueueSize = 0;
state int64_t maxPoppedVersionLag = 0;
state int i = 0;
for (; i < messages.size(); i++) {
try {
maxQueueSize = std::max(maxQueueSize, getQueueSize(messages[i].get()));
maxPoppedVersionLag = std::max(maxPoppedVersionLag, getPoppedVersionLag(messages[i].get()));
} catch (Error& e) {
TraceEvent("QuietDatabaseFailure")
.detail("Reason", "Failed to extract MaxTLogQueue")
.detail("Tlog", tlogs[i].id());
throw;
}
}
return std::make_pair(maxQueueSize, maxPoppedVersionLag);
}
// Returns a vector of blob worker interfaces which have been persisted under the system key space
ACTOR Future<std::vector<BlobWorkerInterface>> getBlobWorkers(Database cx, bool use_system_priority = false) {
state Transaction tr(cx);
loop {
if (use_system_priority) {
tr.setOption(FDBTransactionOptions::PRIORITY_SYSTEM_IMMEDIATE);
}
tr.setOption(FDBTransactionOptions::LOCK_AWARE);
try {
RangeResult blobWorkersList = wait(tr.getRange(blobWorkerListKeys, CLIENT_KNOBS->TOO_MANY));
ASSERT(!blobWorkersList.more && blobWorkersList.size() < CLIENT_KNOBS->TOO_MANY);
std::vector<BlobWorkerInterface> blobWorkers;
blobWorkers.reserve(blobWorkersList.size());
for (int i = 0; i < blobWorkersList.size(); i++) {
blobWorkers.push_back(decodeBlobWorkerListValue(blobWorkersList[i].value));
}
return blobWorkers;
} catch (Error& e) {
wait(tr.onError(e));
}
}
}
ACTOR Future<std::vector<StorageServerInterface>> getStorageServers(Database cx, bool use_system_priority = false) {
state Transaction tr(cx);
loop {
if (use_system_priority) {
tr.setOption(FDBTransactionOptions::PRIORITY_SYSTEM_IMMEDIATE);
}
tr.setOption(FDBTransactionOptions::LOCK_AWARE);
try {
RangeResult serverList = wait(tr.getRange(serverListKeys, CLIENT_KNOBS->TOO_MANY));
ASSERT(!serverList.more && serverList.size() < CLIENT_KNOBS->TOO_MANY);
std::vector<StorageServerInterface> servers;
servers.reserve(serverList.size());
for (int i = 0; i < serverList.size(); i++)
servers.push_back(decodeServerListValue(serverList[i].value));
return servers;
} catch (Error& e) {
wait(tr.onError(e));
}
}
}
ACTOR Future<std::vector<WorkerInterface>> getStorageWorkers(Database cx,
Reference<AsyncVar<ServerDBInfo> const> dbInfo,
bool localOnly) {
state std::vector<StorageServerInterface> servers = wait(getStorageServers(cx));
state std::map<NetworkAddress, WorkerInterface> workersMap;
std::vector<WorkerDetails> workers = wait(getWorkers(dbInfo));
for (const auto& worker : workers) {
workersMap[worker.interf.address()] = worker.interf;
}
Optional<Value> regionsValue =
wait(runRYWTransaction(cx, [=](Reference<ReadYourWritesTransaction> tr) -> Future<Optional<Value>> {
tr->setOption(FDBTransactionOptions::ACCESS_SYSTEM_KEYS);
tr->setOption(FDBTransactionOptions::LOCK_AWARE);
return tr->get(LiteralStringRef("usable_regions").withPrefix(configKeysPrefix));
}));
int usableRegions = 1;
if (regionsValue.present()) {
usableRegions = atoi(regionsValue.get().toString().c_str());
}
auto masterDcId = dbInfo->get().master.locality.dcId();
std::vector<WorkerInterface> result;
for (const auto& server : servers) {
TraceEvent(SevDebug, "DcIdInfo")
.detail("ServerLocalityID", server.locality.dcId())
.detail("MasterDcID", masterDcId);
if (!localOnly || (usableRegions == 1 || server.locality.dcId() == masterDcId)) {
auto itr = workersMap.find(server.address());
if (itr == workersMap.end()) {
TraceEvent(SevWarn, "GetStorageWorkers")
.detail("Reason", "Could not find worker for storage server")
.detail("SS", server.id());
throw operation_failed();
}
result.push_back(itr->second);
}
}
return result;
}
// Helper function to extract he maximum SQ size of all provided messages. All futures in the
// messages vector have to be ready.
int64_t extractMaxQueueSize(const std::vector<Future<TraceEventFields>>& messages,
const std::vector<StorageServerInterface>& servers) {
int64_t maxQueueSize = 0;
UID maxQueueServer;
for (int i = 0; i < messages.size(); i++) {
try {
auto queueSize = getQueueSize(messages[i].get());
if (queueSize > maxQueueSize) {
maxQueueSize = queueSize;
maxQueueServer = servers[i].id();
}
} catch (Error& e) {
TraceEvent("QuietDatabaseFailure")
.detail("Reason", "Failed to extract MaxStorageServerQueue")
.detail("SS", servers[i].id());
for (auto& m : messages) {
TraceEvent("Messages").detail("Info", m.get().toString());
}
throw;
}
}
TraceEvent("QuietDatabaseGotMaxStorageServerQueueSize")
.detail("Stage", "MaxComputed")
.detail("Max", maxQueueSize)
.detail("MaxQueueServer", format("%016" PRIx64, maxQueueServer.first()));
return maxQueueSize;
}
// Timeout wrapper when getting the storage metrics. This will do some additional tracing
ACTOR Future<TraceEventFields> getStorageMetricsTimeout(UID storage, WorkerInterface wi) {
state Future<TraceEventFields> result =
wi.eventLogRequest.getReply(EventLogRequest(StringRef(storage.toString() + "/StorageMetrics")));
state Future<Void> timeout = delay(1.0);
choose {
when(TraceEventFields res = wait(result)) { return res; }
when(wait(timeout)) {
TraceEvent("QuietDatabaseFailure")
.detail("Reason", "Could not fetch StorageMetrics")
.detail("Storage", format("%016" PRIx64, storage.first()));
throw timed_out();
}
}
};
// Gets the maximum size of all the storage server queues
ACTOR Future<int64_t> getMaxStorageServerQueueSize(Database cx, Reference<AsyncVar<ServerDBInfo> const> dbInfo) {
TraceEvent("MaxStorageServerQueueSize").detail("Stage", "ContactingStorageServers");
Future<std::vector<StorageServerInterface>> serversFuture = getStorageServers(cx);
state Future<std::vector<WorkerDetails>> workersFuture = getWorkers(dbInfo);
state std::vector<StorageServerInterface> servers = wait(serversFuture);
state std::vector<WorkerDetails> workers = wait(workersFuture);
std::map<NetworkAddress, WorkerInterface> workersMap;
for (auto worker : workers) {
workersMap[worker.interf.address()] = worker.interf;
}
state std::vector<Future<TraceEventFields>> messages;
for (int i = 0; i < servers.size(); i++) {
auto itr = workersMap.find(servers[i].address());
if (itr == workersMap.end()) {
TraceEvent("QuietDatabaseFailure")
.detail("Reason", "Could not find worker for storage server")
.detail("SS", servers[i].id());
throw attribute_not_found();
}
messages.push_back(getStorageMetricsTimeout(servers[i].id(), itr->second));
}
wait(waitForAll(messages));
TraceEvent("MaxStorageServerQueueSize").detail("Stage", "ComputingMax").detail("MessageCount", messages.size());
return extractMaxQueueSize(messages, servers);
}
// Gets the size of the data distribution queue. If reportInFlight is true, then data in flight is considered part of
// the queue
ACTOR Future<int64_t> getDataDistributionQueueSize(Database cx,
WorkerInterface distributorWorker,
bool reportInFlight) {
try {
TraceEvent("DataDistributionQueueSize").detail("Stage", "ContactingDataDistributor");
TraceEventFields movingDataMessage = wait(timeoutError(
distributorWorker.eventLogRequest.getReply(EventLogRequest(LiteralStringRef("MovingData"))), 1.0));
TraceEvent("DataDistributionQueueSize").detail("Stage", "GotString");
int64_t inQueue = boost::lexical_cast<int64_t>(movingDataMessage.getValue("InQueue"));
if (reportInFlight) {
int64_t inFlight = boost::lexical_cast<int64_t>(movingDataMessage.getValue("InFlight"));
inQueue += inFlight;
}
return inQueue;
} catch (Error& e) {
TraceEvent("QuietDatabaseFailure", distributorWorker.id())
.detail("Reason", "Failed to extract DataDistributionQueueSize");
throw;
}
}
// Gets the size of the data distribution queue. If reportInFlight is true, then data in flight is considered part of
// the queue Convenience method that first finds the master worker from a zookeeper interface
ACTOR Future<int64_t> getDataDistributionQueueSize(Database cx,
Reference<AsyncVar<ServerDBInfo> const> dbInfo,
bool reportInFlight) {
WorkerInterface distributorInterf = wait(getDataDistributorWorker(cx, dbInfo));
int64_t inQueue = wait(getDataDistributionQueueSize(cx, distributorInterf, reportInFlight));
return inQueue;
}
// Gets if the number of process and machine teams does not exceed the maximum allowed number of teams
ACTOR Future<bool> getTeamCollectionValid(Database cx, WorkerInterface dataDistributorWorker) {
state int attempts = 0;
state bool ret = false;
loop {
try {
if (!g_network->isSimulated()) {
return true;
}
TraceEvent("GetTeamCollectionValid").detail("Stage", "ContactingMaster");
TraceEventFields teamCollectionInfoMessage = wait(timeoutError(
dataDistributorWorker.eventLogRequest.getReply(EventLogRequest(LiteralStringRef("TeamCollectionInfo"))),
1.0));
TraceEvent("GetTeamCollectionValid").detail("Stage", "GotString");
state int64_t currentTeams =
boost::lexical_cast<int64_t>(teamCollectionInfoMessage.getValue("CurrentServerTeams"));
state int64_t desiredTeams =
boost::lexical_cast<int64_t>(teamCollectionInfoMessage.getValue("DesiredTeams"));
state int64_t maxTeams = boost::lexical_cast<int64_t>(teamCollectionInfoMessage.getValue("MaxTeams"));
state int64_t currentMachineTeams =
boost::lexical_cast<int64_t>(teamCollectionInfoMessage.getValue("CurrentMachineTeams"));
state int64_t healthyMachineTeams =
boost::lexical_cast<int64_t>(teamCollectionInfoMessage.getValue("CurrentHealthyMachineTeams"));
state int64_t desiredMachineTeams =
boost::lexical_cast<int64_t>(teamCollectionInfoMessage.getValue("DesiredMachineTeams"));
state int64_t maxMachineTeams =
boost::lexical_cast<int64_t>(teamCollectionInfoMessage.getValue("MaxMachineTeams"));
state int64_t minServerTeamsOnServer =
boost::lexical_cast<int64_t>(teamCollectionInfoMessage.getValue("MinTeamsOnServer"));
state int64_t maxServerTeamsOnServer =
boost::lexical_cast<int64_t>(teamCollectionInfoMessage.getValue("MaxTeamsOnServer"));
state int64_t minMachineTeamsOnMachine =
boost::lexical_cast<int64_t>(teamCollectionInfoMessage.getValue("MinMachineTeamsOnMachine"));
state int64_t maxMachineTeamsOnMachine =
boost::lexical_cast<int64_t>(teamCollectionInfoMessage.getValue("MaxMachineTeamsOnMachine"));
// The if condition should be consistent with the condition in serverTeamRemover() and
// machineTeamRemover() that decides if redundant teams exist.
// Team number is always valid when we disable teamRemover, which avoids false positive in simulation test.
// The minimun team number per server (and per machine) should be no less than 0 so that newly added machine
// can host data on it.
//
// If the machineTeamRemover does not remove the machine team with the most machine teams,
// we may oscillate between building more server teams by teamBuilder() and removing those teams by
// teamRemover To avoid false positive in simulation, we skip the consistency check in this case.
// This is a corner case. This is a work-around if case the team number requirements cannot be satisfied.
//
// The checking for too many teams is disabled because teamRemover may not remove a team if it leads to 0
// team on a server
//(!SERVER_KNOBS->TR_FLAG_DISABLE_MACHINE_TEAM_REMOVER &&
// healthyMachineTeams > desiredMachineTeams) ||
// (!SERVER_KNOBS->TR_FLAG_DISABLE_SERVER_TEAM_REMOVER && currentTeams > desiredTeams) ||
if ((minMachineTeamsOnMachine <= 0 || minServerTeamsOnServer <= 0) &&
SERVER_KNOBS->TR_FLAG_REMOVE_MT_WITH_MOST_TEAMS) {
ret = false;
if (attempts++ < 10) {
wait(delay(60));
continue; // We may not receive the most recent TeamCollectionInfo
}
// When DESIRED_TEAMS_PER_SERVER == 1, we see minMachineTeamOnMachine can be 0 in one out of 30k test
// cases. Only check DESIRED_TEAMS_PER_SERVER == 3 for now since it is mostly used configuration.
// TODO: Remove the constraint SERVER_KNOBS->DESIRED_TEAMS_PER_SERVER == 3 to ensure that
// the minimun team number per server (and per machine) is always > 0 for any number of replicas
TraceEvent("GetTeamCollectionValid")
.detail("CurrentServerTeams", currentTeams)
.detail("DesiredTeams", desiredTeams)
.detail("MaxTeams", maxTeams)
.detail("CurrentHealthyMachineTeams", healthyMachineTeams)
.detail("DesiredMachineTeams", desiredMachineTeams)
.detail("CurrentMachineTeams", currentMachineTeams)
.detail("MaxMachineTeams", maxMachineTeams)
.detail("MinTeamsOnServer", minServerTeamsOnServer)
.detail("MaxTeamsOnServer", maxServerTeamsOnServer)
.detail("MinMachineTeamsOnMachine", minMachineTeamsOnMachine)
.detail("MaxMachineTeamsOnMachine", maxMachineTeamsOnMachine)
.detail("DesiredTeamsPerServer", SERVER_KNOBS->DESIRED_TEAMS_PER_SERVER)
.detail("MaxTeamsPerServer", SERVER_KNOBS->MAX_TEAMS_PER_SERVER)
.detail("RemoveMTWithMostTeams", SERVER_KNOBS->TR_FLAG_REMOVE_MT_WITH_MOST_TEAMS);
return ret;
} else {
return true;
}
} catch (Error& e) {
if (e.code() == error_code_actor_cancelled) {
throw;
}
TraceEvent("QuietDatabaseFailure", dataDistributorWorker.id())
.detail("Reason", "Failed to extract GetTeamCollectionValid information");
attempts++;
if (attempts > 10) {
TraceEvent("QuietDatabaseNoTeamCollectionInfo", dataDistributorWorker.id())
.detail("Reason", "Had never called build team to build any team");
return true;
}
// throw;
wait(delay(10.0));
}
};
}
// Gets if the number of process and machine teams does not exceed the maximum allowed number of teams
// Convenience method that first finds the master worker from a zookeeper interface
ACTOR Future<bool> getTeamCollectionValid(Database cx, Reference<AsyncVar<ServerDBInfo> const> dbInfo) {
WorkerInterface dataDistributorWorker = wait(getDataDistributorWorker(cx, dbInfo));
bool valid = wait(getTeamCollectionValid(cx, dataDistributorWorker));
return valid;
}
// Checks that data distribution is active
ACTOR Future<bool> getDataDistributionActive(Database cx, WorkerInterface distributorWorker) {
try {
TraceEvent("DataDistributionActive").detail("Stage", "ContactingDataDistributor");
TraceEventFields activeMessage = wait(timeoutError(
distributorWorker.eventLogRequest.getReply(EventLogRequest(LiteralStringRef("DDTrackerStarting"))), 1.0));
return activeMessage.getValue("State") == "Active";
} catch (Error& e) {
TraceEvent("QuietDatabaseFailure", distributorWorker.id())
.detail("Reason", "Failed to extract DataDistributionActive");
throw;
}
}
// Checks to see if any storage servers are being recruited
ACTOR Future<bool> getStorageServersRecruiting(Database cx, WorkerInterface distributorWorker, UID distributorUID) {
try {
TraceEvent("StorageServersRecruiting").detail("Stage", "ContactingDataDistributor");
TraceEventFields recruitingMessage =
wait(timeoutError(distributorWorker.eventLogRequest.getReply(
EventLogRequest(StringRef("StorageServerRecruitment_" + distributorUID.toString()))),
1.0));
TraceEvent("StorageServersRecruiting").detail("Message", recruitingMessage.toString());
if (recruitingMessage.getValue("State") == "Recruiting") {
std::string tssValue;
// if we're tss recruiting, that's fine because that can block indefinitely if only 1 free storage process
if (!recruitingMessage.tryGetValue("IsTSS", tssValue) || tssValue == "False") {
return true;
}
}
return false;
} catch (Error& e) {
TraceEvent("QuietDatabaseFailure", distributorWorker.id())
.detail("Reason", "Failed to extract StorageServersRecruiting")
.detail("DataDistributorID", distributorUID);
throw;
}
}
ACTOR Future<Void> repairDeadDatacenter(Database cx,
Reference<AsyncVar<ServerDBInfo> const> dbInfo,
std::string context) {
if (g_network->isSimulated() && g_simulator.usableRegions > 1) {
bool primaryDead = g_simulator.datacenterDead(g_simulator.primaryDcId);
bool remoteDead = g_simulator.datacenterDead(g_simulator.remoteDcId);
// FIXME: the primary and remote can both be considered dead because excludes are not handled properly by the
// datacenterDead function
if (primaryDead && remoteDead) {
TraceEvent(SevWarnAlways, "CannotDisableFearlessConfiguration").log();
return Void();
}
if (primaryDead || remoteDead) {
TraceEvent(SevWarnAlways, "DisablingFearlessConfiguration")
.detail("Location", context)
.detail("Stage", "Repopulate")
.detail("RemoteDead", remoteDead)
.detail("PrimaryDead", primaryDead);
g_simulator.usableRegions = 1;
wait(success(ManagementAPI::changeConfig(
cx.getReference(),
(primaryDead ? g_simulator.disablePrimary : g_simulator.disableRemote) + " repopulate_anti_quorum=1",
true)));
while (dbInfo->get().recoveryState < RecoveryState::STORAGE_RECOVERED) {
wait(dbInfo->onChange());
}
TraceEvent(SevWarnAlways, "DisablingFearlessConfiguration")
.detail("Location", context)
.detail("Stage", "Usable_Regions");
wait(success(ManagementAPI::changeConfig(cx.getReference(), "usable_regions=1", true)));
}
}
return Void();
}
ACTOR Future<Void> reconfigureAfter(Database cx,
double time,
Reference<AsyncVar<ServerDBInfo> const> dbInfo,
std::string context) {
wait(delay(time));
wait(repairDeadDatacenter(cx, dbInfo, context));
return Void();
}
// Waits until a database quiets down (no data in flight, small tlog queue, low SQ, no active data distribution). This
// requires the database to be available and healthy in order to succeed.
ACTOR Future<Void> waitForQuietDatabase(Database cx,
Reference<AsyncVar<ServerDBInfo> const> dbInfo,
std::string phase,
int64_t dataInFlightGate = 2e6,
int64_t maxTLogQueueGate = 5e6,
int64_t maxStorageServerQueueGate = 5e6,
int64_t maxDataDistributionQueueSize = 0,
int64_t maxPoppedVersionLag = 30e6) {
state Future<Void> reconfig =
reconfigureAfter(cx, 100 + (deterministicRandom()->random01() * 100), dbInfo, "QuietDatabase");
state Future<int64_t> dataInFlight;
state Future<std::pair<int64_t, int64_t>> tLogQueueInfo;
state Future<int64_t> dataDistributionQueueSize;
state Future<bool> teamCollectionValid;
state Future<int64_t> storageQueueSize;
state Future<bool> dataDistributionActive;
state Future<bool> storageServersRecruiting;
auto traceMessage = "QuietDatabase" + phase + "Begin";
TraceEvent(traceMessage.c_str()).log();
// In a simulated environment, wait 5 seconds so that workers can move to their optimal locations
if (g_network->isSimulated())
wait(delay(5.0));
TraceEvent("QuietDatabaseWaitingOnFullRecovery").log();
while (dbInfo->get().recoveryState != RecoveryState::FULLY_RECOVERED) {
wait(dbInfo->onChange());
}
// The quiet database check (which runs at the end of every test) will always time out due to active data movement.
// To get around this, quiet Database will disable the perpetual wiggle in the setup phase.
printf("Set perpetual_storage_wiggle=0 ...\n");
wait(setPerpetualStorageWiggle(cx, false, LockAware::True));
printf("Set perpetual_storage_wiggle=0 Done.\n");
// Require 3 consecutive successful quiet database checks spaced 2 second apart
state int numSuccesses = 0;
loop {
try {
TraceEvent("QuietDatabaseWaitingOnDataDistributor").log();
WorkerInterface distributorWorker = wait(getDataDistributorWorker(cx, dbInfo));
UID distributorUID = dbInfo->get().distributor.get().id();
TraceEvent("QuietDatabaseGotDataDistributor", distributorUID)
.detail("Locality", distributorWorker.locality.toString());
dataInFlight = getDataInFlight(cx, distributorWorker);
tLogQueueInfo = getTLogQueueInfo(cx, dbInfo);
dataDistributionQueueSize = getDataDistributionQueueSize(cx, distributorWorker, dataInFlightGate == 0);
teamCollectionValid = getTeamCollectionValid(cx, distributorWorker);
storageQueueSize = getMaxStorageServerQueueSize(cx, dbInfo);
dataDistributionActive = getDataDistributionActive(cx, distributorWorker);
storageServersRecruiting = getStorageServersRecruiting(cx, distributorWorker, distributorUID);
wait(success(dataInFlight) && success(tLogQueueInfo) && success(dataDistributionQueueSize) &&
success(teamCollectionValid) && success(storageQueueSize) && success(dataDistributionActive) &&
success(storageServersRecruiting));
TraceEvent(("QuietDatabase" + phase).c_str())
.detail("DataInFlight", dataInFlight.get())
.detail("DataInFlightGate", dataInFlightGate)
.detail("MaxTLogQueueSize", tLogQueueInfo.get().first)
.detail("MaxTLogQueueGate", maxTLogQueueGate)
.detail("MaxTLogPoppedVersionLag", tLogQueueInfo.get().second)
.detail("MaxTLogPoppedVersionLagGate", maxPoppedVersionLag)
.detail("DataDistributionQueueSize", dataDistributionQueueSize.get())
.detail("DataDistributionQueueSizeGate", maxDataDistributionQueueSize)
.detail("TeamCollectionValid", teamCollectionValid.get())
.detail("MaxStorageQueueSize", storageQueueSize.get())
.detail("MaxStorageServerQueueGate", maxStorageServerQueueGate)
.detail("DataDistributionActive", dataDistributionActive.get())
.detail("StorageServersRecruiting", storageServersRecruiting.get())
.detail("NumSuccesses", numSuccesses);
if (dataInFlight.get() > dataInFlightGate || tLogQueueInfo.get().first > maxTLogQueueGate ||
tLogQueueInfo.get().second > maxPoppedVersionLag ||
dataDistributionQueueSize.get() > maxDataDistributionQueueSize ||
storageQueueSize.get() > maxStorageServerQueueGate || !dataDistributionActive.get() ||
storageServersRecruiting.get() || !teamCollectionValid.get()) {
wait(delay(1.0));
numSuccesses = 0;
} else {
if (++numSuccesses == 3) {
auto msg = "QuietDatabase" + phase + "Done";
TraceEvent(msg.c_str()).log();
break;
} else {
wait(delay(g_network->isSimulated() ? 2.0 : 30.0));
}
}
} catch (Error& e) {
TraceEvent(("QuietDatabase" + phase + "Error").c_str()).error(e, true);
if (e.code() != error_code_actor_cancelled && e.code() != error_code_attribute_not_found &&
e.code() != error_code_timed_out)
TraceEvent(("QuietDatabase" + phase + "Error").c_str()).error(e);
// Client invalid operation occurs if we don't get back a message from one of the servers, often corrected
// by retrying
if (e.code() != error_code_attribute_not_found && e.code() != error_code_timed_out)
throw;
auto evtType = "QuietDatabase" + phase + "Retry";
TraceEvent evt(evtType.c_str());
evt.error(e);
int notReadyCount = 0;
if (dataInFlight.isReady() && dataInFlight.isError()) {
auto key = "NotReady" + std::to_string(notReadyCount++);
evt.detail(key.c_str(), "dataInFlight");
}
if (tLogQueueInfo.isReady() && tLogQueueInfo.isError()) {
auto key = "NotReady" + std::to_string(notReadyCount++);
evt.detail(key.c_str(), "tLogQueueInfo");
}
if (dataDistributionQueueSize.isReady() && dataDistributionQueueSize.isError()) {
auto key = "NotReady" + std::to_string(notReadyCount++);
evt.detail(key.c_str(), "dataDistributionQueueSize");
}
if (teamCollectionValid.isReady() && teamCollectionValid.isError()) {
auto key = "NotReady" + std::to_string(notReadyCount++);
evt.detail(key.c_str(), "teamCollectionValid");
}
if (storageQueueSize.isReady() && storageQueueSize.isError()) {
auto key = "NotReady" + std::to_string(notReadyCount++);
evt.detail(key.c_str(), "storageQueueSize");
}
if (dataDistributionActive.isReady() && dataDistributionActive.isError()) {
auto key = "NotReady" + std::to_string(notReadyCount++);
evt.detail(key.c_str(), "dataDistributionActive");
}
if (storageServersRecruiting.isReady() && storageServersRecruiting.isError()) {
auto key = "NotReady" + std::to_string(notReadyCount++);
evt.detail(key.c_str(), "storageServersRecruiting");
}
wait(delay(1.0));
numSuccesses = 0;
}
}
return Void();
}
Future<Void> quietDatabase(Database const& cx,
Reference<AsyncVar<ServerDBInfo> const> const& dbInfo,
std::string phase,
int64_t dataInFlightGate,
int64_t maxTLogQueueGate,
int64_t maxStorageServerQueueGate,
int64_t maxDataDistributionQueueSize,
int64_t maxPoppedVersionLag) {
return waitForQuietDatabase(cx,
dbInfo,
phase,
dataInFlightGate,
maxTLogQueueGate,
maxStorageServerQueueGate,
maxDataDistributionQueueSize,
maxPoppedVersionLag);
}