foundationdb/fdbserver/workloads/DiskFailureInjection.actor.cpp

283 lines
11 KiB
C++

/*
* DiskFailureInjection.actor.cpp
*
* This source file is part of the FoundationDB open source project
*
* Copyright 2013-2022 Apple Inc. and the FoundationDB project authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "fdbclient/NativeAPI.actor.h"
#include "fdbserver/TesterInterface.actor.h"
#include "fdbserver/workloads/workloads.actor.h"
#include "fdbrpc/simulator.h"
#include "fdbserver/WorkerInterface.actor.h"
#include "fdbserver/ServerDBInfo.h"
#include "fdbserver/QuietDatabase.h"
#include "fdbserver/Status.actor.h"
#include "flow/actorcompiler.h" // This must be the last #include.
struct DiskFailureInjectionWorkload : FailureInjectionWorkload {
bool enabled;
double testDuration = 60.0;
double startDelay = 0.0;
bool throttleDisk = false;
int workersToThrottle = 3;
double stallInterval = 0.0;
double stallPeriod = 60.0;
double throttlePeriod = 60.0;
bool corruptFile = false;
int workersToCorrupt = 1;
double percentBitFlips = 10;
double periodicBroadcastInterval = 5.0;
std::vector<NetworkAddress> chosenWorkers;
std::vector<Future<Void>> clients;
// Verification Mode: We run the workload indefinitely in this mode.
// The idea is to keep going until we get a non-zero chaosMetric to ensure
// that we haven't lost the chaos event. testDuration is ignored in this mode
bool verificationMode = false;
DiskFailureInjectionWorkload(WorkloadContext const& wcx, NoOptions) : FailureInjectionWorkload(wcx) {}
DiskFailureInjectionWorkload(WorkloadContext const& wcx) : FailureInjectionWorkload(wcx) {
enabled = !clientId; // only do this on the "first" client
startDelay = getOption(options, "startDelay"_sr, startDelay);
testDuration = getOption(options, "testDuration"_sr, testDuration);
verificationMode = getOption(options, "verificationMode"_sr, verificationMode);
throttleDisk = getOption(options, "throttleDisk"_sr, throttleDisk);
workersToThrottle = getOption(options, "workersToThrottle"_sr, workersToThrottle);
stallInterval = getOption(options, "stallInterval"_sr, stallInterval);
stallPeriod = getOption(options, "stallPeriod"_sr, stallPeriod);
throttlePeriod = getOption(options, "throttlePeriod"_sr, throttlePeriod);
corruptFile = getOption(options, "corruptFile"_sr, corruptFile);
workersToCorrupt = getOption(options, "workersToCorrupt"_sr, workersToCorrupt);
percentBitFlips = getOption(options, "percentBitFlips"_sr, percentBitFlips);
periodicBroadcastInterval = getOption(options, "periodicBroadcastInterval"_sr, periodicBroadcastInterval);
}
void initFailureInjectionMode(DeterministicRandom& random) override { enabled = clientId == 0; }
std::string description() const override {
if (g_simulator == g_network)
return "DiskFailureInjection";
else
return "NoSimDiskFailureInjection";
}
Future<Void> setup(Database const& cx) override { return Void(); }
// Starts the workload by -
// 1. Starting the actor to periodically check chaosMetrics and re-broadcast chaos events, and
// 2. Starting the actor that injects failures on chosen storage servers
Future<Void> start(Database const& cx) override {
if (enabled) {
clients.push_back(timeout(diskFailureInjectionClient<WorkerInterface>(cx, this), testDuration, Void()));
// In verification mode, we want to wait until periodicEventBroadcast actor returns which indicates that
// a non-zero chaosMetric was found.
if (verificationMode) {
clients.push_back(periodicEventBroadcast(this));
} else
// Else we honor the testDuration
clients.push_back(timeout(periodicEventBroadcast(this), testDuration, Void()));
return waitForAll(clients);
} else
return Void();
}
Future<bool> check(Database const& cx) override {
clients.clear();
return true;
}
void getMetrics(std::vector<PerfMetric>& m) override {}
static void checkDiskFailureInjectionResult(Future<Void> res, WorkerInterface worker) {
if (res.isError()) {
auto err = res.getError();
if (err.code() == error_code_client_invalid_operation) {
TraceEvent(SevError, "ChaosDisabled")
.detail("OnEndpoint", worker.waitFailure.getEndpoint().addresses.address.toString());
} else {
TraceEvent(SevError, "DiskFailureInjectionFailed")
.error(err)
.detail("OnEndpoint", worker.waitFailure.getEndpoint().addresses.address.toString());
}
}
}
// Sets the disk delay request
ACTOR void injectDiskDelays(WorkerInterface worker,
double stallInterval,
double stallPeriod,
double throttlePeriod) {
state Future<Void> res;
SetFailureInjection::DiskFailureCommand diskFailure;
diskFailure.stallInterval = stallInterval;
diskFailure.stallPeriod = stallPeriod;
diskFailure.throttlePeriod = throttlePeriod;
SetFailureInjection req;
req.diskFailure = diskFailure;
res = worker.clientInterface.setFailureInjection.getReply(req);
wait(ready(res));
checkDiskFailureInjectionResult(res, worker);
}
// Sets the disk corruption request
ACTOR void injectBitFlips(WorkerInterface worker, double percentage) {
state Future<Void> res;
SetFailureInjection::FlipBitsCommand flipBits;
flipBits.percentBitFlips = percentage;
SetFailureInjection req;
req.flipBits = flipBits;
res = worker.clientInterface.setFailureInjection.getReply(req);
wait(ready(res));
checkDiskFailureInjectionResult(res, worker);
}
// Choose random storage servers to inject disk failures.
// We currently only inject disk failure on storage servers. Can be expanded to include
// other worker types in future
ACTOR template <class W>
Future<Void> diskFailureInjectionClient(Database cx, DiskFailureInjectionWorkload* self) {
wait(::delay(self->startDelay));
state double lastTime = now();
state std::vector<W> machines;
state int throttledWorkers = 0;
state int corruptedWorkers = 0;
loop {
wait(poisson(&lastTime, 1));
try {
std::pair<std::vector<W>, int> m = wait(getStorageWorkers(cx, self->dbInfo, false));
if (m.second > 0) {
throw operation_failed();
}
machines = std::move(m.first);
} catch (Error& e) {
// If we failed to get a complete list of storage servers, we can't inject failure events
// But don't throw the error in that case
continue;
}
auto machine = deterministicRandom()->randomChoice(machines);
// If we have already chosen this worker, then just continue
if (find(self->chosenWorkers.begin(), self->chosenWorkers.end(), machine.address()) !=
self->chosenWorkers.end()) {
continue;
}
// Keep track of chosen workers for verification purpose
self->chosenWorkers.emplace_back(machine.address());
if (self->throttleDisk && (throttledWorkers++ < self->workersToThrottle))
self->injectDiskDelays(machine, self->stallInterval, self->stallPeriod, self->throttlePeriod);
if (self->corruptFile && (corruptedWorkers++ < self->workersToCorrupt)) {
if (g_simulator == g_network)
g_simulator->corruptWorkerMap[machine.address()] = true;
self->injectBitFlips(machine, self->percentBitFlips);
}
}
}
// Resend the chaos event to previosuly chosen workers, in case some workers got restarted and lost their chaos
// config
ACTOR static Future<Void> reSendChaos(DiskFailureInjectionWorkload* self) {
state int throttledWorkers = 0;
state int corruptedWorkers = 0;
state std::map<NetworkAddress, WorkerInterface> workersMap;
state std::vector<WorkerDetails> workers = wait(getWorkers(self->dbInfo));
for (auto worker : workers) {
workersMap[worker.interf.address()] = worker.interf;
}
for (auto& workerAddress : self->chosenWorkers) {
auto itr = workersMap.find(workerAddress);
if (itr != workersMap.end()) {
if (self->throttleDisk && (throttledWorkers++ < self->workersToThrottle))
self->injectDiskDelays(itr->second, self->stallInterval, self->stallPeriod, self->throttlePeriod);
if (self->corruptFile && (corruptedWorkers++ < self->workersToCorrupt)) {
if (g_simulator == g_network)
g_simulator->corruptWorkerMap[workerAddress] = true;
self->injectBitFlips(itr->second, self->percentBitFlips);
}
}
}
return Void();
}
// Fetches chaosMetrics and verifies that chaos events are happening for enabled workers
ACTOR static Future<int> chaosGetStatus(DiskFailureInjectionWorkload* self) {
state int foundChaosMetrics = 0;
state std::vector<WorkerDetails> workers = wait(getWorkers(self->dbInfo));
Future<Optional<std::pair<WorkerEvents, std::set<std::string>>>> latestEventsFuture;
latestEventsFuture = latestEventOnWorkers(workers, "ChaosMetrics");
state Optional<std::pair<WorkerEvents, std::set<std::string>>> workerEvents = wait(latestEventsFuture);
state WorkerEvents cMetrics = workerEvents.present() ? workerEvents.get().first : WorkerEvents();
// Check if any of the chosen workers for chaos events have non-zero chaosMetrics
try {
for (auto& workerAddress : self->chosenWorkers) {
auto chaosMetrics = cMetrics.find(workerAddress);
if (chaosMetrics != cMetrics.end()) {
// we expect diskDelays to be non-zero for chosenWorkers for throttleDisk event
if (self->throttleDisk) {
int diskDelays = chaosMetrics->second.getInt("DiskDelays");
if (diskDelays > 0) {
foundChaosMetrics += diskDelays;
}
}
// we expect bitFlips to be non-zero for chosenWorkers for corruptFile event
if (self->corruptFile) {
int bitFlips = chaosMetrics->second.getInt("BitFlips");
if (bitFlips > 0) {
foundChaosMetrics += bitFlips;
}
}
}
}
} catch (Error& e) {
// it's possible to get an empty event, it's okay to ignore
if (e.code() != error_code_attribute_not_found) {
TraceEvent(SevError, "ChaosGetStatus").error(e);
throw e;
}
}
return foundChaosMetrics;
}
// Periodically re-send the chaos event in case of a process restart
ACTOR static Future<Void> periodicEventBroadcast(DiskFailureInjectionWorkload* self) {
wait(::delay(self->startDelay));
state double start = now();
state double elapsed = 0.0;
loop {
wait(delayUntil(start + elapsed));
wait(reSendChaos(self));
elapsed += self->periodicBroadcastInterval;
wait(delayUntil(start + elapsed));
int foundChaosMetrics = wait(chaosGetStatus(self));
if (foundChaosMetrics > 0) {
TraceEvent("FoundChaos")
.detail("ChaosMetricCount", foundChaosMetrics)
.detail("ClientID", self->clientId);
return Void();
}
}
}
};
WorkloadFactory<DiskFailureInjectionWorkload> DiskFailureInjectionWorkloadFactory("DiskFailureInjection");
FailureInjectorFactory<DiskFailureInjectionWorkload> DiskFailureInjectionWorkloadFailureInjectionFactory;