foundationdb/fdbserver/workloads/WriteBandwidth.actor.cpp

143 lines
5.8 KiB
C++

/*
* WriteBandwidth.actor.cpp
*
* This source file is part of the FoundationDB open source project
*
* Copyright 2013-2018 Apple Inc. and the FoundationDB project authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <boost/lexical_cast.hpp>
#include "fdbrpc/ContinuousSample.h"
#include "fdbclient/NativeAPI.actor.h"
#include "fdbserver/TesterInterface.actor.h"
#include "fdbserver/WorkerInterface.actor.h"
#include "fdbserver/workloads/workloads.actor.h"
#include "fdbserver/workloads/BulkSetup.actor.h"
#include "flow/actorcompiler.h" // This must be the last #include.
struct WriteBandwidthWorkload : KVWorkload {
int keysPerTransaction;
double testDuration, warmingDelay, loadTime, maxInsertRate;
std::string valueString;
std::vector<Future<Void>> clients;
PerfIntCounter transactions, retries;
ContinuousSample<double> commitLatencies, GRVLatencies;
WriteBandwidthWorkload(WorkloadContext const& wcx)
: KVWorkload(wcx), loadTime(0.0), transactions("Transactions"), retries("Retries"), commitLatencies(2000),
GRVLatencies(2000) {
testDuration = getOption(options, LiteralStringRef("testDuration"), 10.0);
keysPerTransaction = getOption(options, LiteralStringRef("keysPerTransaction"), 100);
valueString = std::string(maxValueBytes, '.');
warmingDelay = getOption(options, LiteralStringRef("warmingDelay"), 0.0);
maxInsertRate = getOption(options, LiteralStringRef("maxInsertRate"), 1e12);
}
std::string description() const override { return "WriteBandwidth"; }
Future<Void> setup(Database const& cx) override { return _setup(cx, this); }
Future<Void> start(Database const& cx) override { return _start(cx, this); }
Future<bool> check(Database const& cx) override { return true; }
void getMetrics(std::vector<PerfMetric>& m) override {
double duration = testDuration;
int writes = transactions.getValue() * keysPerTransaction;
m.emplace_back("Measured Duration", duration, Averaged::True);
m.emplace_back("Transactions/sec", transactions.getValue() / duration, Averaged::False);
m.emplace_back("Operations/sec", writes / duration, Averaged::False);
m.push_back(transactions.getMetric());
m.push_back(retries.getMetric());
m.emplace_back("Mean load time (seconds)", loadTime, Averaged::True);
m.emplace_back("Write rows", writes, Averaged::False);
m.emplace_back("Mean GRV Latency (ms)", 1000 * GRVLatencies.mean(), Averaged::True);
m.emplace_back("Median GRV Latency (ms, averaged)", 1000 * GRVLatencies.median(), Averaged::True);
m.emplace_back("90% GRV Latency (ms, averaged)", 1000 * GRVLatencies.percentile(0.90), Averaged::True);
m.emplace_back("98% GRV Latency (ms, averaged)", 1000 * GRVLatencies.percentile(0.98), Averaged::True);
m.emplace_back("Mean Commit Latency (ms)", 1000 * commitLatencies.mean(), Averaged::True);
m.emplace_back("Median Commit Latency (ms, averaged)", 1000 * commitLatencies.median(), Averaged::True);
m.emplace_back("90% Commit Latency (ms, averaged)", 1000 * commitLatencies.percentile(0.90), Averaged::True);
m.emplace_back("98% Commit Latency (ms, averaged)", 1000 * commitLatencies.percentile(0.98), Averaged::True);
m.emplace_back("Write rows/sec", writes / duration, Averaged::False);
m.emplace_back("Bytes written/sec",
(writes * (keyBytes + (minValueBytes + maxValueBytes) * 0.5)) / duration,
Averaged::False);
}
Value randomValue() {
return StringRef((uint8_t*)valueString.c_str(),
deterministicRandom()->randomInt(minValueBytes, maxValueBytes + 1));
}
Standalone<KeyValueRef> operator()(uint64_t n) { return KeyValueRef(keyForIndex(n, false), randomValue()); }
ACTOR Future<Void> _setup(Database cx, WriteBandwidthWorkload* self) {
state Promise<double> loadTime;
state Promise<std::vector<std::pair<uint64_t, double>>> ratesAtKeyCounts;
wait(bulkSetup(cx, self, self->nodeCount, loadTime, true, self->warmingDelay, self->maxInsertRate));
self->loadTime = loadTime.getFuture().get();
return Void();
}
ACTOR Future<Void> _start(Database cx, WriteBandwidthWorkload* self) {
for (int i = 0; i < self->actorCount; i++) {
self->clients.push_back(self->writeClient(cx, self));
}
wait(timeout(waitForAll(self->clients), self->testDuration, Void()));
self->clients.clear();
return Void();
}
ACTOR Future<Void> writeClient(Database cx, WriteBandwidthWorkload* self) {
loop {
state Transaction tr(cx);
state uint64_t startIdx = deterministicRandom()->random01() * (self->nodeCount - self->keysPerTransaction);
loop {
try {
state double start = now();
wait(success(tr.getReadVersion()));
self->GRVLatencies.addSample(now() - start);
// Predefine a single large write conflict range over the whole key space
tr.addWriteConflictRange(
KeyRangeRef(self->keyForIndex(startIdx, false),
keyAfter(self->keyForIndex(startIdx + self->keysPerTransaction - 1, false))));
for (int i = 0; i < self->keysPerTransaction; i++)
tr.set(self->keyForIndex(startIdx + i, false), self->randomValue(), AddConflictRange::False);
start = now();
wait(tr.commit());
self->commitLatencies.addSample(now() - start);
break;
} catch (Error& e) {
wait(tr.onError(e));
++self->retries;
}
}
++self->transactions;
}
}
};
WorkloadFactory<WriteBandwidthWorkload> WriteBandwidthWorkloadFactory("WriteBandwidth");