foundationdb/fdbserver/workloads/Watches.actor.cpp

267 lines
8.8 KiB
C++

/*
* Watches.actor.cpp
*
* This source file is part of the FoundationDB open source project
*
* Copyright 2013-2018 Apple Inc. and the FoundationDB project authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "fdbrpc/ContinuousSample.h"
#include "fdbclient/NativeAPI.actor.h"
#include "fdbserver/TesterInterface.actor.h"
#include "flow/DeterministicRandom.h"
#include "fdbserver/workloads/workloads.actor.h"
#include "flow/actorcompiler.h" // This must be the last #include.
const int sampleSize = 10000;
struct WatchesWorkload : TestWorkload {
int nodes, keyBytes, extraPerNode;
double testDuration;
std::vector<Future<Void>> clients;
PerfIntCounter cycles;
ContinuousSample<double> cycleLatencies;
std::vector<int> nodeOrder;
WatchesWorkload(WorkloadContext const& wcx) : TestWorkload(wcx), cycles("Cycles"), cycleLatencies(sampleSize) {
testDuration = getOption(options, LiteralStringRef("testDuration"), 600.0);
nodes = getOption(options, LiteralStringRef("nodeCount"), 100);
extraPerNode = getOption(options, LiteralStringRef("extraPerNode"), 1000);
keyBytes = std::max(getOption(options, LiteralStringRef("keyBytes"), 16), 16);
for (int i = 0; i < nodes + 1; i++)
nodeOrder.push_back(i);
DeterministicRandom tempRand(1);
tempRand.randomShuffle(nodeOrder);
}
std::string description() const override { return "Watches"; }
Future<Void> setup(Database const& cx) override { return _setup(cx, this); }
Future<Void> start(Database const& cx) override {
if (clientId == 0)
return watchesWorker(cx, this);
return Void();
}
Future<bool> check(Database const& cx) override {
bool ok = true;
for (int i = 0; i < clients.size(); i++)
if (clients[i].isError())
ok = false;
clients.clear();
return ok;
}
void getMetrics(std::vector<PerfMetric>& m) override {
if (clientId == 0) {
m.push_back(cycles.getMetric());
m.emplace_back("Mean Latency (ms)", 1000 * cycleLatencies.mean() / nodes, Averaged::True);
}
}
Key keyForIndex(uint64_t index) {
Key result = makeString(keyBytes);
uint8_t* data = mutateString(result);
memset(data, '.', keyBytes);
double d = double(index) / nodes;
emplaceIndex(data, 0, *(int64_t*)&d);
return result;
}
ACTOR Future<Void> _setup(Database cx, WatchesWorkload* self) {
std::vector<Future<Void>> setupActors;
for (int i = 0; i < self->nodes; i++)
if (i % self->clientCount == self->clientId)
setupActors.push_back(self->watcherInit(cx,
self->keyForIndex(self->nodeOrder[i]),
self->keyForIndex(self->nodeOrder[i + 1]),
self->extraPerNode));
wait(waitForAll(setupActors));
for (int i = 0; i < self->nodes; i++)
if (i % self->clientCount == self->clientId)
self->clients.push_back(self->watcher(cx,
self->keyForIndex(self->nodeOrder[i]),
self->keyForIndex(self->nodeOrder[i + 1]),
self->extraPerNode));
return Void();
}
ACTOR static Future<Void> watcherInit(Database cx, Key watchKey, Key setKey, int extraNodes) {
state Transaction tr(cx);
state int extraLoc = 0;
while (extraLoc < extraNodes) {
try {
for (int i = 0; i < 1000 && extraLoc + i < extraNodes; i++) {
Key extraKey = KeyRef(watchKey.toString() + format("%d", extraLoc + i));
Value extraValue = ValueRef(std::string(100, '.'));
tr.set(extraKey, extraValue);
//TraceEvent("WatcherInitialSetupExtra").detail("Key", printable(extraKey)).detail("Value", printable(extraValue));
}
wait(tr.commit());
extraLoc += 1000;
//TraceEvent("WatcherInitialSetup").detail("Watch", printable(watchKey)).detail("Ver", tr.getCommittedVersion());
} catch (Error& e) {
//TraceEvent("WatcherInitialSetupError").error(e).detail("ExtraLoc", extraLoc);
wait(tr.onError(e));
}
}
return Void();
}
ACTOR static Future<Void> watcher(Database cx, Key watchKey, Key setKey, int extraNodes) {
state Optional<Optional<Value>> lastValue;
loop {
loop {
state std::unique_ptr<Transaction> tr = std::make_unique<Transaction>(cx);
try {
state Future<Optional<Value>> setValueFuture = tr->get(setKey);
state Optional<Value> watchValue = wait(tr->get(watchKey));
Optional<Value> setValue = wait(setValueFuture);
if (lastValue.present() && lastValue.get() == watchValue) {
TraceEvent(SevError, "WatcherTriggeredWithoutChanging")
.detail("WatchKey", printable(watchKey))
.detail("SetKey", printable(setKey))
.detail("WatchValue", printable(watchValue))
.detail("SetValue", printable(setValue))
.detail("ReadVersion", tr->getReadVersion().get());
}
lastValue = Optional<Optional<Value>>();
if (watchValue != setValue) {
if (watchValue.present())
tr->set(setKey, watchValue.get());
else
tr->clear(setKey);
//TraceEvent("WatcherSetStart").detail("Watch", printable(watchKey)).detail("Set", printable(setKey)).detail("Value", printable( watchValue ) );
wait(tr->commit());
//TraceEvent("WatcherSetFinish").detail("Watch", printable(watchKey)).detail("Set", printable(setKey)).detail("Value", printable( watchValue ) ).detail("Ver", tr->getCommittedVersion());
} else {
//TraceEvent("WatcherWatch").detail("Watch", printable(watchKey));
state Future<Void> watchFuture = tr->watch(makeReference<Watch>(watchKey, watchValue));
wait(tr->commit());
if (BUGGIFY) {
// Make watch future outlive transaction
tr.reset();
}
wait(watchFuture);
if (watchValue.present())
lastValue = watchValue;
}
break;
} catch (Error& e) {
if (tr != nullptr) {
wait(tr->onError(e));
}
}
}
}
}
ACTOR static Future<Void> watchesWorker(Database cx, WatchesWorkload* self) {
state Key startKey = self->keyForIndex(self->nodeOrder[0]);
state Key endKey = self->keyForIndex(self->nodeOrder[self->nodes]);
state Optional<Value> expectedValue;
state Optional<Value> startValue;
state double startTime = now();
state double chainStartTime;
loop {
state Transaction tr(cx);
state bool isValue = deterministicRandom()->random01() > 0.5;
state Value assignedValue = Value(deterministicRandom()->randomUniqueID().toString());
state bool firstAttempt = true;
loop {
try {
wait(success(tr.getReadVersion()));
Optional<Value> _startValue = wait(tr.get(startKey));
if (firstAttempt) {
startValue = _startValue;
firstAttempt = false;
}
expectedValue = Optional<Value>();
if (startValue.present()) {
if (isValue)
expectedValue = assignedValue;
} else
expectedValue = assignedValue;
if (expectedValue.present())
tr.set(startKey, expectedValue.get());
else
tr.clear(startKey);
wait(tr.commit());
break;
} catch (Error& e) {
wait(tr.onError(e));
}
}
chainStartTime = now();
firstAttempt = true;
loop {
state Transaction tr2(cx);
state bool finished = false;
loop {
try {
state Optional<Value> endValue = wait(tr2.get(endKey));
if (endValue == expectedValue) {
finished = true;
break;
}
if (!firstAttempt || endValue != startValue) {
TraceEvent(SevError, "WatcherError")
.detail("FirstAttempt", firstAttempt)
.detail("StartValue", printable(startValue))
.detail("EndValue", printable(endValue))
.detail("ExpectedValue", printable(expectedValue))
.detail("EndVersion", tr2.getReadVersion().get());
}
state Future<Void> watchFuture = tr2.watch(makeReference<Watch>(endKey, startValue));
wait(tr2.commit());
wait(watchFuture);
firstAttempt = false;
break;
} catch (Error& e) {
wait(tr2.onError(e));
}
}
if (finished)
break;
}
self->cycleLatencies.addSample(now() - chainStartTime);
++self->cycles;
if (g_network->isSimulated())
wait(delay(deterministicRandom()->random01() < 0.5 ? 0 : deterministicRandom()->random01() * 60));
if (now() - startTime > self->testDuration)
break;
}
return Void();
}
};
WorkloadFactory<WatchesWorkload> WatchesWorkloadFactory("Watches");