1610 lines
41 KiB
C++
1610 lines
41 KiB
C++
/*
|
|
* FlowTests.actor.cpp
|
|
*
|
|
* This source file is part of the FoundationDB open source project
|
|
*
|
|
* Copyright 2013-2022 Apple Inc. and the FoundationDB project authors
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
// Unit tests for the flow language and libraries
|
|
|
|
#include "flow/Arena.h"
|
|
#include "flow/ProtocolVersion.h"
|
|
#include "flow/UnitTest.h"
|
|
#include "flow/DeterministicRandom.h"
|
|
#include "flow/IThreadPool.h"
|
|
#include "flow/WriteOnlySet.h"
|
|
#include "fdbrpc/fdbrpc.h"
|
|
#include "flow/IAsyncFile.h"
|
|
#include "flow/TLSConfig.actor.h"
|
|
#include "flow/actorcompiler.h" // This must be the last #include.
|
|
|
|
void forceLinkFlowTests() {}
|
|
|
|
constexpr int firstLine = __LINE__;
|
|
TEST_CASE("/flow/actorcompiler/lineNumbers") {
|
|
loop {
|
|
try {
|
|
ASSERT(__LINE__ == firstLine + 4);
|
|
wait(Future<Void>(Void()));
|
|
ASSERT(__LINE__ == firstLine + 6);
|
|
throw success();
|
|
} catch (Error& e) {
|
|
ASSERT(__LINE__ == firstLine + 9);
|
|
wait(Future<Void>(Void()));
|
|
ASSERT(__LINE__ == firstLine + 11);
|
|
}
|
|
break;
|
|
}
|
|
ASSERT(LiteralStringRef(__FILE__).endsWith(LiteralStringRef("FlowTests.actor.cpp")));
|
|
return Void();
|
|
}
|
|
|
|
TEST_CASE("/flow/buggifiedDelay") {
|
|
if (FLOW_KNOBS->MAX_BUGGIFIED_DELAY == 0) {
|
|
return Void();
|
|
}
|
|
loop {
|
|
state double x = deterministicRandom()->random01();
|
|
state int last = 0;
|
|
state Future<Void> f1 = map(delay(x), [last = &last](const Void&) {
|
|
*last = 1;
|
|
return Void();
|
|
});
|
|
state Future<Void> f2 = map(delay(x), [last = &last](const Void&) {
|
|
*last = 2;
|
|
return Void();
|
|
});
|
|
wait(f1 && f2);
|
|
if (last == 1) {
|
|
CODE_PROBE(true, "Delays can become ready out of order");
|
|
return Void();
|
|
}
|
|
}
|
|
}
|
|
|
|
template <class T, class Func, class ErrFunc, class CallbackType>
|
|
class LambdaCallback final : public CallbackType, public FastAllocated<LambdaCallback<T, Func, ErrFunc, CallbackType>> {
|
|
Func func;
|
|
ErrFunc errFunc;
|
|
|
|
void fire(T const& t) override {
|
|
CallbackType::remove();
|
|
func(t);
|
|
delete this;
|
|
}
|
|
void fire(T&& t) override {
|
|
CallbackType::remove();
|
|
func(std::move(t));
|
|
delete this;
|
|
}
|
|
void error(Error e) override {
|
|
CallbackType::remove();
|
|
errFunc(e);
|
|
delete this;
|
|
}
|
|
|
|
public:
|
|
LambdaCallback(Func&& f, ErrFunc&& e) : func(std::move(f)), errFunc(std::move(e)) {}
|
|
};
|
|
|
|
template <class T, class Func, class ErrFunc>
|
|
void onReady(Future<T>&& f, Func&& func, ErrFunc&& errFunc) {
|
|
if (f.isReady()) {
|
|
if (f.isError())
|
|
errFunc(f.getError());
|
|
else
|
|
func(f.get());
|
|
} else
|
|
f.addCallbackAndClear(new LambdaCallback<T, Func, ErrFunc, Callback<T>>(std::move(func), std::move(errFunc)));
|
|
}
|
|
|
|
template <class T, class Func, class ErrFunc>
|
|
void onReady(FutureStream<T>&& f, Func&& func, ErrFunc&& errFunc) {
|
|
if (f.isReady()) {
|
|
if (f.isError())
|
|
errFunc(f.getError());
|
|
else
|
|
func(f.pop());
|
|
} else
|
|
f.addCallbackAndClear(
|
|
new LambdaCallback<T, Func, ErrFunc, SingleCallback<T>>(std::move(func), std::move(errFunc)));
|
|
}
|
|
|
|
ACTOR static void emptyVoidActor() {}
|
|
|
|
ACTOR [[flow_allow_discard]] static Future<Void> emptyActor() {
|
|
return Void();
|
|
}
|
|
|
|
ACTOR static void oneWaitVoidActor(Future<Void> f) {
|
|
wait(f);
|
|
}
|
|
|
|
ACTOR static Future<Void> oneWaitActor(Future<Void> f) {
|
|
wait(f);
|
|
return Void();
|
|
}
|
|
|
|
Future<Void> g_cheese;
|
|
ACTOR static Future<Void> cheeseWaitActor() {
|
|
wait(g_cheese);
|
|
return Void();
|
|
}
|
|
|
|
ACTOR static void trivialVoidActor(int* result) {
|
|
*result = 1;
|
|
}
|
|
|
|
ACTOR static Future<int> return42Actor() {
|
|
return 42;
|
|
}
|
|
|
|
ACTOR static void voidWaitActor(Future<int> in, int* result) {
|
|
int i = wait(in);
|
|
*result = i;
|
|
}
|
|
|
|
ACTOR static Future<int> addOneActor(Future<int> in) {
|
|
int i = wait(in);
|
|
return i + 1;
|
|
}
|
|
|
|
ACTOR static Future<Void> chooseTwoActor(Future<Void> f, Future<Void> g) {
|
|
choose {
|
|
when(wait(f)) {}
|
|
when(wait(g)) {}
|
|
}
|
|
return Void();
|
|
}
|
|
|
|
ACTOR static Future<int> consumeOneActor(FutureStream<int> in) {
|
|
int i = waitNext(in);
|
|
return i;
|
|
}
|
|
|
|
ACTOR static Future<int> sumActor(FutureStream<int> in) {
|
|
state int total = 0;
|
|
try {
|
|
loop {
|
|
int i = waitNext(in);
|
|
total += i;
|
|
}
|
|
} catch (Error& e) {
|
|
if (e.code() != error_code_end_of_stream)
|
|
throw;
|
|
}
|
|
return total;
|
|
}
|
|
|
|
ACTOR template <class T>
|
|
static Future<T> templateActor(T t) {
|
|
return t;
|
|
}
|
|
|
|
static int destroy() {
|
|
return 666;
|
|
}
|
|
ACTOR static Future<Void> testHygeine() {
|
|
ASSERT(destroy() == 666); // Should fail to compile if SAV<Void>::destroy() is visible
|
|
return Void();
|
|
}
|
|
|
|
// bool expectActorCount(int x) { return actorCount == x; }
|
|
bool expectActorCount(int) {
|
|
return true;
|
|
}
|
|
|
|
struct YieldMockNetwork final : INetwork, ReferenceCounted<YieldMockNetwork> {
|
|
int ticks;
|
|
Promise<Void> nextTick;
|
|
int nextYield;
|
|
INetwork* baseNetwork;
|
|
|
|
flowGlobalType global(int id) const override { return baseNetwork->global(id); }
|
|
void setGlobal(size_t id, flowGlobalType v) override {
|
|
baseNetwork->setGlobal(id, v);
|
|
return;
|
|
}
|
|
|
|
YieldMockNetwork() : ticks(0), nextYield(0) {
|
|
baseNetwork = g_network;
|
|
g_network = this;
|
|
}
|
|
~YieldMockNetwork() { g_network = baseNetwork; }
|
|
|
|
void tick() {
|
|
ticks++;
|
|
Promise<Void> t;
|
|
t.swap(nextTick);
|
|
t.send(Void());
|
|
}
|
|
|
|
Future<class Void> delay(double seconds, TaskPriority taskID) override { return nextTick.getFuture(); }
|
|
|
|
Future<class Void> orderedDelay(double seconds, TaskPriority taskID) override { return nextTick.getFuture(); }
|
|
|
|
Future<class Void> yield(TaskPriority taskID) override {
|
|
if (check_yield(taskID))
|
|
return delay(0, taskID);
|
|
return Void();
|
|
}
|
|
|
|
bool check_yield(TaskPriority taskID) override {
|
|
if (nextYield > 0)
|
|
--nextYield;
|
|
return nextYield == 0;
|
|
}
|
|
|
|
// Delegate everything else. TODO: Make a base class NetworkWrapper for delegating everything in INetwork
|
|
TaskPriority getCurrentTask() const override { return baseNetwork->getCurrentTask(); }
|
|
void setCurrentTask(TaskPriority taskID) override { baseNetwork->setCurrentTask(taskID); }
|
|
double now() const override { return baseNetwork->now(); }
|
|
double timer() override { return baseNetwork->timer(); }
|
|
double timer_monotonic() override { return baseNetwork->timer_monotonic(); }
|
|
void stop() override { return baseNetwork->stop(); }
|
|
void addStopCallback(std::function<void()> fn) override {
|
|
ASSERT(false);
|
|
return;
|
|
}
|
|
bool isSimulated() const override { return baseNetwork->isSimulated(); }
|
|
void onMainThread(Promise<Void>&& signal, TaskPriority taskID) override {
|
|
return baseNetwork->onMainThread(std::move(signal), taskID);
|
|
}
|
|
bool isOnMainThread() const override { return baseNetwork->isOnMainThread(); }
|
|
THREAD_HANDLE startThread(THREAD_FUNC_RETURN (*func)(void*), void* arg, int stackSize, const char* name) override {
|
|
return baseNetwork->startThread(func, arg, stackSize, name);
|
|
}
|
|
Future<Reference<class IAsyncFile>> open(std::string filename, int64_t flags, int64_t mode) {
|
|
return IAsyncFileSystem::filesystem()->open(filename, flags, mode);
|
|
}
|
|
Future<Void> deleteFile(std::string filename, bool mustBeDurable) {
|
|
return IAsyncFileSystem::filesystem()->deleteFile(filename, mustBeDurable);
|
|
}
|
|
void run() override { return baseNetwork->run(); }
|
|
bool checkRunnable() override { return baseNetwork->checkRunnable(); }
|
|
void getDiskBytes(std::string const& directory, int64_t& free, int64_t& total) override {
|
|
return baseNetwork->getDiskBytes(directory, free, total);
|
|
}
|
|
bool isAddressOnThisHost(NetworkAddress const& addr) const override {
|
|
return baseNetwork->isAddressOnThisHost(addr);
|
|
}
|
|
const TLSConfig& getTLSConfig() const override {
|
|
static TLSConfig emptyConfig;
|
|
return emptyConfig;
|
|
}
|
|
#ifdef ENABLE_SAMPLING
|
|
ActorLineageSet& getActorLineageSet() override { throw std::exception(); }
|
|
#endif
|
|
ProtocolVersion protocolVersion() const override { return baseNetwork->protocolVersion(); }
|
|
};
|
|
|
|
struct NonserializableThing {};
|
|
ACTOR static Future<NonserializableThing> testNonserializableThing() {
|
|
return NonserializableThing();
|
|
}
|
|
|
|
ACTOR Future<Void> testCancelled(bool* exits, Future<Void> f) {
|
|
try {
|
|
wait(Future<Void>(Never()));
|
|
} catch (Error& e) {
|
|
state Error err = e;
|
|
try {
|
|
wait(Future<Void>(Never()));
|
|
} catch (Error& e) {
|
|
*exits = true;
|
|
throw;
|
|
}
|
|
throw err;
|
|
}
|
|
return Void();
|
|
}
|
|
|
|
TEST_CASE("/flow/flow/cancel1") {
|
|
bool exits = false;
|
|
Promise<Void> p;
|
|
Future<Void> test = testCancelled(&exits, p.getFuture());
|
|
ASSERT(p.getPromiseReferenceCount() == 1 && p.getFutureReferenceCount() == 1);
|
|
test.cancel();
|
|
ASSERT(exits);
|
|
ASSERT(test.getPromiseReferenceCount() == 0 && test.getFutureReferenceCount() == 1 && test.isReady() &&
|
|
test.isError() && test.getError().code() == error_code_actor_cancelled);
|
|
ASSERT(p.getPromiseReferenceCount() == 1 && p.getFutureReferenceCount() == 0);
|
|
|
|
return Void();
|
|
}
|
|
|
|
ACTOR static Future<Void> noteCancel(int* cancelled) {
|
|
*cancelled = 0;
|
|
try {
|
|
wait(Future<Void>(Never()));
|
|
throw internal_error();
|
|
} catch (...) {
|
|
printf("Cancelled!\n");
|
|
*cancelled = 1;
|
|
throw;
|
|
}
|
|
}
|
|
|
|
TEST_CASE("/flow/flow/cancel2") {
|
|
int c1 = 0, c2 = 0, c3 = 0;
|
|
|
|
Future<Void> cf = noteCancel(&c1);
|
|
ASSERT(c1 == 0);
|
|
cf = Future<Void>();
|
|
ASSERT(c1 == 1);
|
|
|
|
cf = noteCancel(&c2) && noteCancel(&c3);
|
|
ASSERT(c2 == 0 && c3 == 0);
|
|
cf = Future<Void>();
|
|
ASSERT(c2 == 1 && c3 == 1);
|
|
return Void();
|
|
}
|
|
|
|
namespace {
|
|
// Simple message for flatbuffers unittests
|
|
struct Int {
|
|
constexpr static FileIdentifier file_identifier = 12345;
|
|
uint32_t value;
|
|
Int() = default;
|
|
Int(uint32_t value) : value(value) {}
|
|
template <class Ar>
|
|
void serialize(Ar& ar) {
|
|
serializer(ar, value);
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
TEST_CASE("/flow/flow/nonserializable futures") {
|
|
// Types no longer need to be statically serializable to make futures, promises, actors
|
|
{
|
|
Future<NonserializableThing> f = testNonserializableThing();
|
|
Promise<NonserializableThing> p;
|
|
p.send(NonserializableThing());
|
|
f = p.getFuture();
|
|
}
|
|
|
|
// But this won't compile
|
|
// ReplyPromise<NonserializableThing> rp;
|
|
|
|
// ReplyPromise can be used like a normal promise
|
|
{
|
|
ReplyPromise<Int> rpInt;
|
|
Future<Int> f = rpInt.getFuture();
|
|
ASSERT(!f.isReady());
|
|
rpInt.send(123);
|
|
ASSERT(f.get().value == 123);
|
|
}
|
|
|
|
{
|
|
RequestStream<Int> rsInt;
|
|
FutureStream<Int> f = rsInt.getFuture();
|
|
rsInt.send(1);
|
|
rsInt.send(2);
|
|
ASSERT(f.pop().value == 1);
|
|
ASSERT(f.pop().value == 2);
|
|
}
|
|
|
|
return Void();
|
|
}
|
|
|
|
TEST_CASE("/flow/flow/networked futures") {
|
|
// RequestStream can be serialized
|
|
{
|
|
RequestStream<Int> locInt;
|
|
BinaryWriter wr(IncludeVersion());
|
|
wr << locInt;
|
|
|
|
ASSERT(locInt.getEndpoint().isValid() && locInt.getEndpoint().isLocal() &&
|
|
locInt.getEndpoint().getPrimaryAddress() == FlowTransport::transport().getLocalAddress());
|
|
|
|
BinaryReader rd(wr.toValue(), IncludeVersion());
|
|
RequestStream<Int> remoteInt;
|
|
rd >> remoteInt;
|
|
|
|
ASSERT(remoteInt.getEndpoint() == locInt.getEndpoint());
|
|
}
|
|
|
|
// ReplyPromise can be serialized
|
|
// TODO: This needs to fiddle with g_currentDeliveryPeerAddress
|
|
if (0) {
|
|
ReplyPromise<Int> locInt;
|
|
BinaryWriter wr(IncludeVersion());
|
|
wr << locInt;
|
|
|
|
ASSERT(locInt.getEndpoint().isValid() && locInt.getEndpoint().isLocal());
|
|
|
|
BinaryReader rd(wr.toValue(), IncludeVersion());
|
|
ReplyPromise<Int> remoteInt;
|
|
rd >> remoteInt;
|
|
|
|
ASSERT(remoteInt.getEndpoint() == locInt.getEndpoint());
|
|
}
|
|
|
|
return Void();
|
|
}
|
|
|
|
TEST_CASE("/flow/flow/quorum") {
|
|
std::vector<Promise<int>> ps(5);
|
|
std::vector<Future<int>> fs;
|
|
std::vector<Future<Void>> qs;
|
|
for (auto& p : ps)
|
|
fs.push_back(p.getFuture());
|
|
|
|
for (int i = 0; i <= ps.size(); i++)
|
|
qs.push_back(quorum(fs, i));
|
|
|
|
for (int i = 0; i < ps.size(); i++) {
|
|
ASSERT(qs[i].isReady());
|
|
ASSERT(!qs[i + 1].isReady());
|
|
ps[i].send(i);
|
|
}
|
|
ASSERT(qs[ps.size()].isReady());
|
|
return Void();
|
|
}
|
|
|
|
TEST_CASE("/flow/flow/trivial futures") {
|
|
Future<int> invalid;
|
|
ASSERT(!invalid.isValid());
|
|
|
|
Future<int> never = Never();
|
|
ASSERT(never.isValid() && !never.isReady());
|
|
|
|
Future<int> one = 1;
|
|
ASSERT(one.isValid() && one.isReady() && !one.isError());
|
|
ASSERT(one.get() == 1);
|
|
ASSERT(one.getFutureReferenceCount() == 1);
|
|
return Void();
|
|
}
|
|
|
|
TEST_CASE("/flow/flow/trivial promises") {
|
|
Future<int> f;
|
|
|
|
Promise<int> p;
|
|
ASSERT(p.isValid());
|
|
ASSERT(!p.isSet());
|
|
p.send(1);
|
|
ASSERT(p.isSet());
|
|
ASSERT(p.getFuture().get() == 1);
|
|
|
|
Promise<int> p2;
|
|
f = p2.getFuture();
|
|
ASSERT(f.isValid() && !f.isReady());
|
|
p2.send(2);
|
|
ASSERT(f.isValid() && f.isReady() && !f.isError());
|
|
ASSERT(f.get() == 2);
|
|
|
|
Promise<int> p3;
|
|
f = p3.getFuture();
|
|
p3.sendError(end_of_stream());
|
|
ASSERT(f.isValid() && f.isReady() && f.isError());
|
|
ASSERT(f.getError().code() == error_code_end_of_stream);
|
|
|
|
Promise<int> p4;
|
|
f = p4.getFuture();
|
|
p4 = Promise<int>();
|
|
ASSERT(p4.isValid() && !p4.isSet());
|
|
ASSERT(f.isValid() && f.isReady() && f.isError());
|
|
ASSERT(f.getError().code() == error_code_broken_promise);
|
|
return Void();
|
|
}
|
|
|
|
TEST_CASE("/flow/flow/trivial promisestreams") {
|
|
FutureStream<int> f;
|
|
|
|
PromiseStream<int> p;
|
|
p.send(1);
|
|
ASSERT(p.getFuture().isReady());
|
|
ASSERT(p.getFuture().pop() == 1);
|
|
|
|
PromiseStream<int> p2;
|
|
f = p2.getFuture();
|
|
ASSERT(f.isValid() && !f.isReady());
|
|
p2.send(2);
|
|
p2.send(3);
|
|
ASSERT(f.isValid() && f.isReady() && !f.isError());
|
|
ASSERT(f.pop() == 2);
|
|
ASSERT(f.pop() == 3);
|
|
|
|
PromiseStream<int> p3;
|
|
f = p3.getFuture();
|
|
p3.send(4);
|
|
p3.sendError(end_of_stream());
|
|
ASSERT(f.isReady() && !f.isError());
|
|
ASSERT(f.pop() == 4);
|
|
ASSERT(f.isError());
|
|
ASSERT(f.getError().code() == error_code_end_of_stream);
|
|
|
|
PromiseStream<int> p4;
|
|
f = p4.getFuture();
|
|
p4 = PromiseStream<int>();
|
|
ASSERT(f.isValid() && f.isReady() && f.isError());
|
|
ASSERT(f.getError().code() == error_code_broken_promise);
|
|
return Void();
|
|
}
|
|
|
|
TEST_CASE("/flow/flow/callbacks") {
|
|
Promise<int> p;
|
|
Future<int> f = p.getFuture();
|
|
int result = 0;
|
|
bool happened = false;
|
|
|
|
onReady(
|
|
std::move(f), [&result](int x) { result = x; }, [&result](Error e) { result = -1; });
|
|
onReady(
|
|
p.getFuture(), [&happened](int) { happened = true; }, [&happened](Error) { happened = true; });
|
|
ASSERT(!f.isValid());
|
|
ASSERT(p.isValid() && !p.isSet() && p.getFutureReferenceCount() == 1);
|
|
ASSERT(result == 0 && !happened);
|
|
|
|
p.send(123);
|
|
ASSERT(result == 123 && happened);
|
|
ASSERT(p.isValid() && p.isSet() && p.getFutureReferenceCount() == 0 && p.getFuture().get() == 123);
|
|
|
|
result = 0;
|
|
onReady(
|
|
p.getFuture(), [&result](int x) { result = x; }, [&result](Error e) { result = -1; });
|
|
ASSERT(result == 123);
|
|
ASSERT(p.isValid() && p.isSet() && p.getFutureReferenceCount() == 0 && p.getFuture().get() == 123);
|
|
|
|
p = Promise<int>();
|
|
f = p.getFuture();
|
|
result = 0;
|
|
onReady(
|
|
std::move(f), [&result](int x) { result = x; }, [&result](Error e) { result = -e.code(); });
|
|
ASSERT(!f.isValid());
|
|
ASSERT(p.isValid() && !p.isSet() && p.getFutureReferenceCount() == 1);
|
|
ASSERT(result == 0);
|
|
|
|
p = Promise<int>();
|
|
ASSERT(result == -error_code_broken_promise);
|
|
return Void();
|
|
}
|
|
|
|
TEST_CASE("/flow/flow/promisestream callbacks") {
|
|
PromiseStream<int> p;
|
|
|
|
int result = 0;
|
|
|
|
onReady(
|
|
p.getFuture(), [&result](int x) { result = x; }, [&result](Error e) { result = -1; });
|
|
|
|
ASSERT(result == 0);
|
|
|
|
p.send(123);
|
|
p.send(456);
|
|
|
|
ASSERT(result == 123);
|
|
result = 0;
|
|
|
|
onReady(
|
|
p.getFuture(), [&result](int x) { result = x; }, [&result](Error e) { result = -1; });
|
|
|
|
ASSERT(result == 456);
|
|
result = 0;
|
|
|
|
onReady(
|
|
p.getFuture(), [&result](int x) { result = x; }, [&result](Error e) { result = -1; });
|
|
|
|
ASSERT(result == 0);
|
|
|
|
p = PromiseStream<int>();
|
|
|
|
ASSERT(result == -1);
|
|
return Void();
|
|
}
|
|
|
|
// Incompatible with --crash, so we are commenting it out for now
|
|
/*
|
|
TEST_CASE("/flow/flow/promisestream multiple wait error")
|
|
{
|
|
state int result = 0;
|
|
state PromiseStream<int> p;
|
|
try {
|
|
onReady(p.getFuture(), [&result](int x) { result = x; }, [&result](Error e){ result = -1; });
|
|
result = 100;
|
|
onReady(p.getFuture(), [&result](int x) { result = x; }, [&result](Error e){ result = -1; });
|
|
ASSERT(false);
|
|
}
|
|
catch (Error& e) {
|
|
ASSERT(e.code() == error_code_internal_error);
|
|
}
|
|
ASSERT(result == 100);
|
|
p = PromiseStream<int>();
|
|
ASSERT(result == -1);
|
|
return Void();
|
|
}
|
|
*/
|
|
|
|
TEST_CASE("/flow/flow/trivial actors") {
|
|
ASSERT(expectActorCount(0));
|
|
|
|
int result = 0;
|
|
trivialVoidActor(&result);
|
|
ASSERT(result == 1);
|
|
ASSERT(expectActorCount(0));
|
|
|
|
Future<int> f = return42Actor();
|
|
ASSERT(f.isReady() && !f.isError() && f.get() == 42 && f.getFutureReferenceCount() == 1 &&
|
|
f.getPromiseReferenceCount() == 0);
|
|
ASSERT(expectActorCount(1));
|
|
f = Future<int>();
|
|
ASSERT(expectActorCount(0));
|
|
|
|
f = templateActor(24);
|
|
ASSERT(f.isReady() && !f.isError() && f.get() == 24 && f.getFutureReferenceCount() == 1 &&
|
|
f.getPromiseReferenceCount() == 0);
|
|
ASSERT(expectActorCount(1));
|
|
f = Future<int>();
|
|
ASSERT(expectActorCount(0));
|
|
|
|
result = 0;
|
|
voidWaitActor(2, &result);
|
|
ASSERT(result == 2 && expectActorCount(0));
|
|
|
|
Promise<int> p;
|
|
f = addOneActor(p.getFuture());
|
|
ASSERT(!f.isReady() && expectActorCount(1));
|
|
p.send(100);
|
|
ASSERT(f.isReady() && f.get() == 101);
|
|
ASSERT(expectActorCount(1)); //< hmm
|
|
f = Future<int>();
|
|
ASSERT(expectActorCount(0));
|
|
|
|
PromiseStream<int> ps;
|
|
f = consumeOneActor(ps.getFuture());
|
|
ASSERT(!f.isReady() && expectActorCount(1));
|
|
ps.send(101);
|
|
ASSERT(f.get() == 101 && ps.isEmpty());
|
|
ps.send(102);
|
|
ASSERT(!ps.isEmpty());
|
|
f = consumeOneActor(ps.getFuture());
|
|
ASSERT(f.get() == 102 && ps.isEmpty());
|
|
|
|
f = sumActor(ps.getFuture());
|
|
ps.send(1);
|
|
ps.send(10);
|
|
ps.send(100);
|
|
ps.sendError(end_of_stream());
|
|
ASSERT(f.get() == 111);
|
|
|
|
ASSERT(testHygeine().isReady());
|
|
return Void();
|
|
}
|
|
|
|
TEST_CASE("/flow/flow/yieldedFuture/progress") {
|
|
// Check that if check_yield always returns true, the yieldedFuture will do nothing immediately but will
|
|
// get one thing done per "tick" (per delay(0) returning).
|
|
|
|
auto yn = makeReference<YieldMockNetwork>();
|
|
|
|
yn->nextYield = 0;
|
|
|
|
Promise<Void> p;
|
|
Future<Void> u = p.getFuture();
|
|
Future<Void> i = success(u);
|
|
|
|
std::vector<Future<Void>> v;
|
|
for (int i = 0; i < 5; i++)
|
|
v.push_back(yieldedFuture(u));
|
|
auto numReady = [&v]() { return std::count_if(v.begin(), v.end(), [](Future<Void> v) { return v.isReady(); }); };
|
|
|
|
ASSERT(numReady() == 0);
|
|
p.send(Void());
|
|
ASSERT(u.isReady() && i.isReady() && numReady() == 0);
|
|
|
|
for (int i = 0; i < 5; i++) {
|
|
yn->tick();
|
|
ASSERT(numReady() == i + 1);
|
|
}
|
|
|
|
for (int i = 0; i < 5; i++) {
|
|
ASSERT(v[i].getPromiseReferenceCount() == 0 && v[i].getFutureReferenceCount() == 1);
|
|
}
|
|
|
|
return Void();
|
|
}
|
|
|
|
TEST_CASE("/flow/flow/yieldedFuture/random") {
|
|
// Check expectations about exactly how yieldedFuture responds to check_yield results
|
|
|
|
auto yn = makeReference<YieldMockNetwork>();
|
|
|
|
for (int r = 0; r < 100; r++) {
|
|
Promise<Void> p;
|
|
Future<Void> u = p.getFuture();
|
|
Future<Void> i = success(u);
|
|
|
|
std::vector<Future<Void>> v;
|
|
for (int i = 0; i < 25; i++)
|
|
v.push_back(yieldedFuture(u));
|
|
auto numReady = [&v]() {
|
|
return std::count_if(v.begin(), v.end(), [](Future<Void> v) { return v.isReady(); });
|
|
};
|
|
|
|
Future<Void> j = success(u);
|
|
|
|
ASSERT(numReady() == 0);
|
|
|
|
int expectYield = deterministicRandom()->randomInt(0, 4);
|
|
int expectReady = expectYield;
|
|
yn->nextYield = 1 + expectYield;
|
|
|
|
p.send(Void());
|
|
ASSERT(u.isReady() && i.isReady() && j.isReady() && numReady() == expectReady);
|
|
|
|
while (numReady() != v.size()) {
|
|
expectYield = deterministicRandom()->randomInt(0, 4);
|
|
yn->nextYield = 1 + expectYield;
|
|
expectReady += 1 + expectYield;
|
|
yn->tick();
|
|
// printf("Yielding %d times, expect %d/%d ready, got %d\n", expectYield, expectReady, v.size(), numReady()
|
|
// );
|
|
ASSERT(numReady() == std::min<int>(expectReady, v.size()));
|
|
}
|
|
|
|
for (int i = 0; i < v.size(); i++) {
|
|
ASSERT(v[i].getPromiseReferenceCount() == 0 && v[i].getFutureReferenceCount() == 1);
|
|
}
|
|
}
|
|
|
|
return Void();
|
|
}
|
|
|
|
TEST_CASE("/flow/perf/yieldedFuture") {
|
|
double start;
|
|
int N = 1000000;
|
|
|
|
auto yn = makeReference<YieldMockNetwork>();
|
|
|
|
yn->nextYield = 2 * N + 100;
|
|
|
|
Promise<Void> p;
|
|
Future<Void> f = p.getFuture();
|
|
std::vector<Future<Void>> ys;
|
|
|
|
start = timer();
|
|
for (int i = 0; i < N; i++)
|
|
ys.push_back(yieldedFuture(f));
|
|
printf("yieldedFuture(f) create: %0.1f M/sec\n", N / 1e6 / (timer() - start));
|
|
p.send(Void());
|
|
printf("yieldedFuture(f) total: %0.1f M/sec\n", N / 1e6 / (timer() - start));
|
|
|
|
for (auto& y : ys)
|
|
ASSERT(y.isReady());
|
|
|
|
p = Promise<Void>();
|
|
f = p.getFuture();
|
|
|
|
start = timer();
|
|
for (int i = 0; i < N; i++)
|
|
yieldedFuture(f);
|
|
printf("yieldedFuture(f) cancel: %0.1f M/sec\n", N / 1e6 / (timer() - start));
|
|
|
|
return Void();
|
|
}
|
|
|
|
TEST_CASE("/flow/flow/chooseTwoActor") {
|
|
ASSERT(expectActorCount(0));
|
|
|
|
Promise<Void> a, b;
|
|
Future<Void> c = chooseTwoActor(a.getFuture(), b.getFuture());
|
|
ASSERT(a.getFutureReferenceCount() == 2 && b.getFutureReferenceCount() == 2 && !c.isReady());
|
|
b.send(Void());
|
|
ASSERT(a.getFutureReferenceCount() == 0 && b.getFutureReferenceCount() == 0 && c.isReady() && !c.isError() &&
|
|
expectActorCount(1));
|
|
c = Future<Void>();
|
|
ASSERT(a.getFutureReferenceCount() == 0 && b.getFutureReferenceCount() == 0 && expectActorCount(0));
|
|
return Void();
|
|
}
|
|
|
|
TEST_CASE("#flow/flow/perf/actor patterns") {
|
|
double start;
|
|
int N = 1000000;
|
|
|
|
ASSERT(expectActorCount(0));
|
|
|
|
start = timer();
|
|
for (int i = 0; i < N; i++)
|
|
emptyVoidActor();
|
|
printf("emptyVoidActor(): %0.1f M/sec\n", N / 1e6 / (timer() - start));
|
|
|
|
ASSERT(expectActorCount(0));
|
|
|
|
start = timer();
|
|
for (int i = 0; i < N; i++) {
|
|
emptyActor();
|
|
}
|
|
printf("emptyActor(): %0.1f M/sec\n", N / 1e6 / (timer() - start));
|
|
|
|
ASSERT(expectActorCount(0));
|
|
|
|
Promise<Void> neverSet;
|
|
Future<Void> never = neverSet.getFuture();
|
|
Future<Void> already = Void();
|
|
|
|
start = timer();
|
|
for (int i = 0; i < N; i++)
|
|
oneWaitVoidActor(already);
|
|
printf("oneWaitVoidActor(already): %0.1f M/sec\n", N / 1e6 / (timer() - start));
|
|
|
|
ASSERT(expectActorCount(0));
|
|
|
|
/*start = timer();
|
|
for (int i = 0; i < N; i++)
|
|
oneWaitVoidActor(never);
|
|
printf("oneWaitVoidActor(never): %0.1f M/sec\n", N / 1e6 / (timer() - start));*/
|
|
|
|
{
|
|
start = timer();
|
|
for (int i = 0; i < N; i++) {
|
|
Future<Void> f = oneWaitActor(already);
|
|
ASSERT(f.isReady());
|
|
}
|
|
printf("oneWaitActor(already): %0.1f M/sec\n", N / 1e6 / (timer() - start));
|
|
}
|
|
|
|
{
|
|
start = timer();
|
|
for (int i = 0; i < N; i++) {
|
|
Future<Void> f = oneWaitActor(never);
|
|
ASSERT(!f.isReady());
|
|
}
|
|
printf("(cancelled) oneWaitActor(never): %0.1f M/sec\n", N / 1e6 / (timer() - start));
|
|
ASSERT(expectActorCount(0));
|
|
}
|
|
|
|
{
|
|
start = timer();
|
|
for (int i = 0; i < N; i++) {
|
|
Promise<Void> p;
|
|
Future<Void> f = oneWaitActor(p.getFuture());
|
|
p.send(Void());
|
|
ASSERT(f.isReady());
|
|
}
|
|
printf("oneWaitActor(after): %0.1f M/sec\n", N / 1e6 / (timer() - start));
|
|
}
|
|
|
|
{
|
|
std::vector<Promise<Void>> pipe(N);
|
|
std::vector<Future<Void>> out(N);
|
|
start = timer();
|
|
for (int i = 0; i < N; i++) {
|
|
out[i] = oneWaitActor(pipe[i].getFuture());
|
|
}
|
|
for (int i = 0; i < N; i++) {
|
|
pipe[i].send(Void());
|
|
ASSERT(out[i].isReady());
|
|
}
|
|
printf("oneWaitActor(fifo): %0.1f M/sec\n", N / 1e6 / (timer() - start));
|
|
}
|
|
|
|
{
|
|
std::vector<Promise<Void>> pipe(N);
|
|
std::vector<Future<Void>> out(N);
|
|
start = timer();
|
|
for (int i = 0; i < N; i++) {
|
|
out[i] = oneWaitActor(pipe[i].getFuture());
|
|
}
|
|
for (int i = N - 1; i >= 0; i--) {
|
|
pipe[i].send(Void());
|
|
ASSERT(out[i].isReady());
|
|
}
|
|
printf("oneWaitActor(lifo): %0.1f M/sec\n", N / 1e6 / (timer() - start));
|
|
}
|
|
|
|
{
|
|
start = timer();
|
|
for (int i = 0; i < N; i++) {
|
|
Future<Void> f = chooseTwoActor(already, already);
|
|
ASSERT(f.isReady());
|
|
}
|
|
printf("chooseTwoActor(already, already): %0.1f M/sec\n", N / 1e6 / (timer() - start));
|
|
}
|
|
|
|
{
|
|
start = timer();
|
|
for (int i = 0; i < N; i++) {
|
|
Future<Void> f = chooseTwoActor(already, never);
|
|
ASSERT(f.isReady());
|
|
}
|
|
printf("chooseTwoActor(already, never): %0.1f M/sec\n", N / 1e6 / (timer() - start));
|
|
}
|
|
|
|
{
|
|
start = timer();
|
|
for (int i = 0; i < N; i++) {
|
|
Future<Void> f = chooseTwoActor(never, already);
|
|
ASSERT(f.isReady());
|
|
}
|
|
printf("chooseTwoActor(never, already): %0.1f M/sec\n", N / 1e6 / (timer() - start));
|
|
}
|
|
|
|
{
|
|
start = timer();
|
|
for (int i = 0; i < N; i++) {
|
|
Future<Void> f = chooseTwoActor(never, never);
|
|
ASSERT(!f.isReady());
|
|
}
|
|
// ASSERT(expectActorCount(0));
|
|
printf("(cancelled) chooseTwoActor(never, never): %0.1f M/sec\n", N / 1e6 / (timer() - start));
|
|
}
|
|
|
|
{
|
|
start = timer();
|
|
for (int i = 0; i < N; i++) {
|
|
Promise<Void> p;
|
|
Future<Void> f = chooseTwoActor(p.getFuture(), never);
|
|
p.send(Void());
|
|
ASSERT(f.isReady());
|
|
}
|
|
printf("chooseTwoActor(after, never): %0.1f M/sec\n", N / 1e6 / (timer() - start));
|
|
}
|
|
|
|
{
|
|
std::vector<Promise<Void>> pipe(N);
|
|
std::vector<Future<Void>> out(N);
|
|
start = timer();
|
|
for (int i = 0; i < N; i++) {
|
|
out[i] = chooseTwoActor(pipe[i].getFuture(), never);
|
|
}
|
|
for (int i = 0; i < N; i++) {
|
|
pipe[i].send(Void());
|
|
ASSERT(out[i].isReady());
|
|
}
|
|
printf("chooseTwoActor(fifo, never): %0.1f M/sec\n", N / 1e6 / (timer() - start));
|
|
}
|
|
|
|
{
|
|
std::vector<Promise<Void>> pipe(N);
|
|
std::vector<Future<Void>> out(N);
|
|
start = timer();
|
|
for (int i = 0; i < N; i++) {
|
|
out[i] = chooseTwoActor(pipe[i].getFuture(), pipe[i].getFuture());
|
|
}
|
|
for (int i = 0; i < N; i++) {
|
|
pipe[i].send(Void());
|
|
ASSERT(out[i].isReady());
|
|
}
|
|
printf("chooseTwoActor(fifo, fifo): %0.1f M/sec\n", N / 1e6 / (timer() - start));
|
|
}
|
|
|
|
{
|
|
std::vector<Promise<Void>> pipe(N);
|
|
std::vector<Future<Void>> out(N);
|
|
start = timer();
|
|
for (int i = 0; i < N; i++) {
|
|
out[i] = chooseTwoActor(chooseTwoActor(pipe[i].getFuture(), never), never);
|
|
}
|
|
for (int i = 0; i < N; i++) {
|
|
pipe[i].send(Void());
|
|
ASSERT(out[i].isReady());
|
|
}
|
|
printf("chooseTwoActor^2((fifo, never), never): %0.1f M/sec\n", N / 1e6 / (timer() - start));
|
|
}
|
|
|
|
{
|
|
start = timer();
|
|
for (int i = 0; i < N; i++) {
|
|
Promise<Void> p;
|
|
Future<Void> f = oneWaitActor(chooseTwoActor(p.getFuture(), never));
|
|
p.send(Void());
|
|
ASSERT(f.isReady());
|
|
}
|
|
printf("oneWaitActor(chooseTwoActor(after, never)): %0.1f M/sec\n", N / 1e6 / (timer() - start));
|
|
}
|
|
|
|
{
|
|
std::vector<Promise<Void>> pipe(N);
|
|
std::vector<Future<Void>> out(N);
|
|
start = timer();
|
|
for (int i = 0; i < N; i++) {
|
|
out[i] = oneWaitActor(chooseTwoActor(pipe[i].getFuture(), never));
|
|
}
|
|
for (int i = 0; i < N; i++) {
|
|
pipe[i].send(Void());
|
|
ASSERT(out[i].isReady());
|
|
}
|
|
printf("oneWaitActor(chooseTwoActor(fifo, never)): %0.1f M/sec\n", N / 1e6 / (timer() - start));
|
|
}
|
|
|
|
{
|
|
start = timer();
|
|
for (int i = 0; i < N; i++) {
|
|
Promise<Void> p;
|
|
Future<Void> f = chooseTwoActor(p.getFuture(), never);
|
|
Future<Void> a = oneWaitActor(f);
|
|
Future<Void> b = oneWaitActor(f);
|
|
p.send(Void());
|
|
ASSERT(f.isReady());
|
|
}
|
|
printf("2xoneWaitActor(chooseTwoActor(after, never)): %0.2f M/sec\n", N / 1e6 / (timer() - start));
|
|
}
|
|
|
|
{
|
|
std::vector<Promise<Void>> pipe(N);
|
|
std::vector<Future<Void>> out1(N);
|
|
std::vector<Future<Void>> out2(N);
|
|
start = timer();
|
|
for (int i = 0; i < N; i++) {
|
|
Future<Void> f = chooseTwoActor(pipe[i].getFuture(), never);
|
|
out1[i] = oneWaitActor(f);
|
|
out2[i] = oneWaitActor(f);
|
|
}
|
|
for (int i = 0; i < N; i++) {
|
|
pipe[i].send(Void());
|
|
ASSERT(out2[i].isReady());
|
|
}
|
|
printf("2xoneWaitActor(chooseTwoActor(fifo, never)): %0.2f M/sec\n", N / 1e6 / (timer() - start));
|
|
}
|
|
|
|
{
|
|
std::vector<Promise<Void>> pipe(N);
|
|
std::vector<Future<Void>> out1(N);
|
|
std::vector<Future<Void>> out2(N);
|
|
start = timer();
|
|
for (int i = 0; i < N; i++) {
|
|
Future<Void> f = chooseTwoActor(oneWaitActor(pipe[i].getFuture()), never);
|
|
out1[i] = oneWaitActor(f);
|
|
out2[i] = oneWaitActor(f);
|
|
}
|
|
for (int i = 0; i < N; i++) {
|
|
pipe[i].send(Void());
|
|
ASSERT(out2[i].isReady());
|
|
}
|
|
printf("2xoneWaitActor(chooseTwoActor(oneWaitActor(fifo), never)): %0.2f M/sec\n", N / 1e6 / (timer() - start));
|
|
}
|
|
|
|
{
|
|
std::vector<Promise<Void>> pipe(N);
|
|
std::vector<Future<Void>> out1(N);
|
|
std::vector<Future<Void>> out2(N);
|
|
start = timer();
|
|
for (int i = 0; i < N; i++) {
|
|
g_cheese = pipe[i].getFuture();
|
|
Future<Void> f = chooseTwoActor(cheeseWaitActor(), never);
|
|
g_cheese = f;
|
|
out1[i] = cheeseWaitActor();
|
|
out2[i] = cheeseWaitActor();
|
|
}
|
|
for (int i = 0; i < N; i++) {
|
|
pipe[i].send(Void());
|
|
ASSERT(out2[i].isReady());
|
|
}
|
|
printf("2xcheeseActor(chooseTwoActor(cheeseActor(fifo), never)): %0.2f M/sec\n", N / 1e6 / (timer() - start));
|
|
printf("sizeof(CheeseWaitActorActor) == %zu\n", sizeof(CheeseWaitActorActor));
|
|
}
|
|
|
|
{
|
|
PromiseStream<int> data;
|
|
start = timer();
|
|
Future<int> sum = sumActor(data.getFuture());
|
|
for (int i = 0; i < N; i++)
|
|
data.send(1);
|
|
data.sendError(end_of_stream());
|
|
ASSERT(sum.get() == N);
|
|
printf("sumActor: %0.2f M/sec\n", N / 1e6 / (timer() - start));
|
|
}
|
|
|
|
{
|
|
start = timer();
|
|
std::vector<Promise<Void>> ps(3);
|
|
std::vector<Future<Void>> fs(3);
|
|
|
|
for (int i = 0; i < N; i++) {
|
|
ps.clear();
|
|
ps.resize(3);
|
|
for (int j = 0; j < ps.size(); j++)
|
|
fs[j] = ps[j].getFuture();
|
|
|
|
Future<Void> q = quorum(fs, 2);
|
|
for (auto& p : ps)
|
|
p.send(Void());
|
|
}
|
|
printf("quorum(2/3): %0.2f M/sec\n", N / 1e6 / (timer() - start));
|
|
}
|
|
|
|
return Void();
|
|
}
|
|
|
|
template <class YAM>
|
|
struct YAMRandom {
|
|
YAM yam;
|
|
std::vector<Future<Void>> onchanges;
|
|
int kmax;
|
|
|
|
YAMRandom() : kmax(3) {}
|
|
|
|
void randomOp() {
|
|
if (deterministicRandom()->random01() < 0.01)
|
|
while (!check_yield())
|
|
;
|
|
|
|
int k = deterministicRandom()->randomInt(0, kmax);
|
|
int op = deterministicRandom()->randomInt(0, 7);
|
|
// printf("%d",op);
|
|
if (op == 0) {
|
|
onchanges.push_back(yam.onChange(k));
|
|
} else if (op == 1) {
|
|
onchanges.push_back(trigger([this]() { this->randomOp(); }, yam.onChange(k)));
|
|
} else if (op == 2) {
|
|
if (onchanges.size()) {
|
|
int i = deterministicRandom()->randomInt(0, onchanges.size());
|
|
onchanges[i] = onchanges.back();
|
|
onchanges.pop_back();
|
|
}
|
|
} else if (op == 3) {
|
|
onchanges.clear();
|
|
} else if (op == 4) {
|
|
int v = deterministicRandom()->randomInt(0, 3);
|
|
yam.set(k, v);
|
|
} else if (op == 5) {
|
|
yam.trigger(k);
|
|
} else if (op == 6) {
|
|
int a = deterministicRandom()->randomInt(0, kmax);
|
|
int b = deterministicRandom()->randomInt(0, kmax);
|
|
yam.triggerRange(std::min(a, b), std::max(a, b) + 1);
|
|
}
|
|
}
|
|
};
|
|
|
|
TEST_CASE("/flow/flow/YieldedAsyncMap/randomized") {
|
|
state YAMRandom<YieldedAsyncMap<int, int>> yamr;
|
|
state int it;
|
|
for (it = 0; it < 100000; it++) {
|
|
yamr.randomOp();
|
|
wait(yield());
|
|
}
|
|
return Void();
|
|
}
|
|
|
|
TEST_CASE("/flow/flow/AsyncMap/randomized") {
|
|
state YAMRandom<AsyncMap<int, int>> yamr;
|
|
state int it;
|
|
for (it = 0; it < 100000; it++) {
|
|
yamr.randomOp();
|
|
wait(yield());
|
|
}
|
|
return Void();
|
|
}
|
|
|
|
TEST_CASE("/flow/flow/YieldedAsyncMap/basic") {
|
|
state YieldedAsyncMap<int, int> yam;
|
|
state Future<Void> y0 = yam.onChange(1);
|
|
yam.setUnconditional(1, 0);
|
|
state Future<Void> y1 = yam.onChange(1);
|
|
state Future<Void> y1a = yam.onChange(1);
|
|
state Future<Void> y1b = yam.onChange(1);
|
|
yam.set(1, 1);
|
|
// while (!check_yield()) {}
|
|
// yam.triggerRange(0, 4);
|
|
|
|
state Future<Void> y2 = yam.onChange(1);
|
|
wait(reportErrors(y0, "Y0"));
|
|
wait(reportErrors(y1, "Y1"));
|
|
wait(reportErrors(y1a, "Y1a"));
|
|
wait(reportErrors(y1b, "Y1b"));
|
|
wait(reportErrors(timeout(y2, 5, Void()), "Y2"));
|
|
|
|
return Void();
|
|
}
|
|
|
|
TEST_CASE("/flow/flow/YieldedAsyncMap/cancel") {
|
|
state YieldedAsyncMap<int, int> yam;
|
|
// ASSERT(yam.count(1) == 0);
|
|
// state Future<Void> y0 = yam.onChange(1);
|
|
// ASSERT(yam.count(1) == 1);
|
|
// yam.setUnconditional(1, 0);
|
|
|
|
ASSERT(yam.count(1) == 0);
|
|
state Future<Void> y1 = yam.onChange(1);
|
|
state Future<Void> y1a = yam.onChange(1);
|
|
state Future<Void> y1b = yam.onChange(1);
|
|
ASSERT(yam.count(1) == 1);
|
|
y1.cancel();
|
|
ASSERT(!y1a.isReady());
|
|
y1a.cancel();
|
|
ASSERT(!y1b.isReady());
|
|
ASSERT(yam.count(1) == 1);
|
|
y1b.cancel();
|
|
ASSERT(y1b.getError().code() == error_code_actor_cancelled);
|
|
ASSERT(yam.count(1) == 0);
|
|
|
|
return Void();
|
|
}
|
|
|
|
TEST_CASE("/flow/flow/YieldedAsyncMap/cancel2") {
|
|
state YieldedAsyncMap<int, int> yam;
|
|
|
|
state Future<Void> y1 = yam.onChange(1);
|
|
state Future<Void> y2 = yam.onChange(2);
|
|
|
|
auto* pyam = &yam;
|
|
uncancellable(trigger(
|
|
[pyam]() {
|
|
printf("Triggered\n");
|
|
pyam->triggerAll();
|
|
},
|
|
delay(1)));
|
|
|
|
wait(y1);
|
|
printf("Got y1\n");
|
|
y2.cancel();
|
|
|
|
return Void();
|
|
}
|
|
|
|
TEST_CASE("/flow/flow/AsyncVar/basic") {
|
|
AsyncVar<int> av;
|
|
Future<Void> ch = av.onChange();
|
|
ASSERT(!ch.isReady());
|
|
av.set(5);
|
|
ASSERT(ch.isReady());
|
|
ASSERT(av.get() == 5);
|
|
|
|
ch = av.onChange();
|
|
ASSERT(!ch.isReady());
|
|
av.set(6);
|
|
ASSERT(ch.isReady());
|
|
ASSERT(av.get() == 6);
|
|
|
|
return Void();
|
|
}
|
|
|
|
ACTOR static Future<Void> waitAfterCancel(int* output) {
|
|
*output = 0;
|
|
try {
|
|
wait(Never());
|
|
} catch (...) {
|
|
wait((*output = 1, Future<Void>(Void())));
|
|
}
|
|
ASSERT(false);
|
|
return Void();
|
|
}
|
|
|
|
TEST_CASE("/fdbrpc/flow/wait_expression_after_cancel") {
|
|
int a = -1;
|
|
Future<Void> f = waitAfterCancel(&a);
|
|
ASSERT(a == 0);
|
|
f.cancel();
|
|
ASSERT(a == 1);
|
|
return Void();
|
|
}
|
|
|
|
// Tests for https://github.com/apple/foundationdb/issues/1226
|
|
|
|
template <class>
|
|
struct ShouldNotGoIntoClassContextStack;
|
|
|
|
class Foo1 {
|
|
public:
|
|
explicit Foo1(int x) : x(x) {}
|
|
Future<int> foo() { return fooActor(this); }
|
|
ACTOR static Future<int> fooActor(Foo1* self);
|
|
|
|
private:
|
|
int x;
|
|
};
|
|
ACTOR Future<int> Foo1::fooActor(Foo1* self) {
|
|
wait(Future<Void>());
|
|
return self->x;
|
|
}
|
|
|
|
class [[nodiscard]] Foo2 {
|
|
public:
|
|
explicit Foo2(int x) : x(x) {}
|
|
Future<int> foo() { return fooActor(this); }
|
|
ACTOR static Future<int> fooActor(Foo2* self);
|
|
|
|
private:
|
|
int x;
|
|
};
|
|
ACTOR Future<int> Foo2::fooActor(Foo2* self) {
|
|
wait(Future<Void>());
|
|
return self->x;
|
|
}
|
|
|
|
class alignas(4) Foo3 {
|
|
public:
|
|
explicit Foo3(int x) : x(x) {}
|
|
Future<int> foo() { return fooActor(this); }
|
|
ACTOR static Future<int> fooActor(Foo3* self);
|
|
|
|
private:
|
|
int x;
|
|
};
|
|
ACTOR Future<int> Foo3::fooActor(Foo3* self) {
|
|
wait(Future<Void>());
|
|
return self->x;
|
|
}
|
|
|
|
struct Super {};
|
|
|
|
class Foo4 : Super {
|
|
public:
|
|
explicit Foo4(int x) : x(x) {}
|
|
Future<int> foo() { return fooActor(this); }
|
|
ACTOR static Future<int> fooActor(Foo4* self);
|
|
|
|
private:
|
|
int x;
|
|
};
|
|
ACTOR Future<int> Foo4::fooActor(Foo4* self) {
|
|
wait(Future<Void>());
|
|
return self->x;
|
|
}
|
|
|
|
struct Outer {
|
|
class Foo5 : Super {
|
|
public:
|
|
explicit Foo5(int x) : x(x) {}
|
|
Future<int> foo() { return fooActor(this); }
|
|
ACTOR static Future<int> fooActor(Foo5* self);
|
|
|
|
private:
|
|
int x;
|
|
};
|
|
};
|
|
ACTOR Future<int> Outer::Foo5::fooActor(Outer::Foo5* self) {
|
|
wait(Future<Void>());
|
|
return self->x;
|
|
}
|
|
|
|
// Meant to be run with -fsanitize=undefined
|
|
TEST_CASE("/flow/DeterministicRandom/SignedOverflow") {
|
|
deterministicRandom()->randomInt(std::numeric_limits<int>::min(), 0);
|
|
deterministicRandom()->randomInt(0, std::numeric_limits<int>::max());
|
|
deterministicRandom()->randomInt(std::numeric_limits<int>::min(), std::numeric_limits<int>::max());
|
|
ASSERT(deterministicRandom()->randomInt(std::numeric_limits<int>::min(), std::numeric_limits<int>::min() + 1) ==
|
|
std::numeric_limits<int>::min());
|
|
ASSERT(deterministicRandom()->randomInt(std::numeric_limits<int>::max() - 1, std::numeric_limits<int>::max()) ==
|
|
std::numeric_limits<int>::max() - 1);
|
|
|
|
deterministicRandom()->randomInt64(std::numeric_limits<int64_t>::min(), 0);
|
|
deterministicRandom()->randomInt64(0, std::numeric_limits<int64_t>::max());
|
|
deterministicRandom()->randomInt64(std::numeric_limits<int64_t>::min(), std::numeric_limits<int64_t>::max());
|
|
ASSERT(deterministicRandom()->randomInt64(std::numeric_limits<int64_t>::min(),
|
|
std::numeric_limits<int64_t>::min() + 1) ==
|
|
std::numeric_limits<int64_t>::min());
|
|
ASSERT(deterministicRandom()->randomInt64(std::numeric_limits<int64_t>::max() - 1,
|
|
std::numeric_limits<int64_t>::max()) ==
|
|
std::numeric_limits<int64_t>::max() - 1);
|
|
return Void();
|
|
}
|
|
|
|
struct Tracker {
|
|
int copied;
|
|
bool moved;
|
|
Tracker(int copied = 0) : copied(copied), moved(false) {}
|
|
Tracker(Tracker&& other) : Tracker(other.copied) {
|
|
ASSERT(!other.moved);
|
|
other.moved = true;
|
|
}
|
|
Tracker& operator=(Tracker&& other) {
|
|
ASSERT(!other.moved);
|
|
other.moved = true;
|
|
this->moved = false;
|
|
this->copied = other.copied;
|
|
return *this;
|
|
}
|
|
Tracker(const Tracker& other) : Tracker(other.copied + 1) { ASSERT(!other.moved); }
|
|
Tracker& operator=(const Tracker& other) {
|
|
ASSERT(!other.moved);
|
|
this->moved = false;
|
|
this->copied = other.copied + 1;
|
|
return *this;
|
|
}
|
|
~Tracker() = default;
|
|
|
|
ACTOR static Future<Void> listen(FutureStream<Tracker> stream) {
|
|
Tracker movedTracker = waitNext(stream);
|
|
ASSERT(!movedTracker.moved);
|
|
ASSERT(movedTracker.copied == 0);
|
|
return Void();
|
|
}
|
|
};
|
|
|
|
TEST_CASE("/flow/flow/PromiseStream/move") {
|
|
state PromiseStream<Tracker> stream;
|
|
state Future<Void> listener;
|
|
{
|
|
// This tests the case when a callback is added before
|
|
// a movable value is sent
|
|
listener = Tracker::listen(stream.getFuture());
|
|
stream.send(Tracker{});
|
|
wait(listener);
|
|
}
|
|
|
|
{
|
|
// This tests the case when a callback is added before
|
|
// a unmovable value is sent
|
|
listener = Tracker::listen(stream.getFuture());
|
|
Tracker namedTracker;
|
|
stream.send(namedTracker);
|
|
wait(listener);
|
|
}
|
|
{
|
|
// This tests the case when no callback is added until
|
|
// after a movable value is sent
|
|
stream.send(Tracker{});
|
|
stream.send(Tracker{});
|
|
{
|
|
state Tracker movedTracker = waitNext(stream.getFuture());
|
|
ASSERT(!movedTracker.moved);
|
|
ASSERT(movedTracker.copied == 0);
|
|
}
|
|
{
|
|
Tracker movedTracker = waitNext(stream.getFuture());
|
|
ASSERT(!movedTracker.moved);
|
|
ASSERT(movedTracker.copied == 0);
|
|
}
|
|
}
|
|
{
|
|
// This tests the case when no callback is added until
|
|
// after an unmovable value is sent
|
|
Tracker namedTracker1;
|
|
Tracker namedTracker2;
|
|
stream.send(namedTracker1);
|
|
stream.send(namedTracker2);
|
|
{
|
|
state Tracker copiedTracker = waitNext(stream.getFuture());
|
|
ASSERT(!copiedTracker.moved);
|
|
// must copy onto queue
|
|
ASSERT(copiedTracker.copied == 1);
|
|
}
|
|
{
|
|
Tracker copiedTracker = waitNext(stream.getFuture());
|
|
ASSERT(!copiedTracker.moved);
|
|
// must copy onto queue
|
|
ASSERT(copiedTracker.copied == 1);
|
|
}
|
|
}
|
|
|
|
return Void();
|
|
}
|
|
|
|
TEST_CASE("/flow/flow/PromiseStream/move2") {
|
|
PromiseStream<Tracker> stream;
|
|
stream.send(Tracker{});
|
|
Tracker tracker = waitNext(stream.getFuture());
|
|
Tracker movedTracker = std::move(tracker);
|
|
ASSERT(tracker.moved);
|
|
ASSERT(!movedTracker.moved);
|
|
ASSERT(movedTracker.copied == 0);
|
|
return Void();
|
|
}
|
|
|
|
constexpr double mutexTestDelay = 0.00001;
|
|
|
|
ACTOR Future<Void> mutexTest(int id, FlowMutex* mutex, int n, bool allowError, bool* verbose) {
|
|
while (n-- > 0) {
|
|
state double d = deterministicRandom()->random01() * mutexTestDelay;
|
|
if (*verbose) {
|
|
printf("%d:%d wait %f while unlocked\n", id, n, d);
|
|
}
|
|
wait(delay(d));
|
|
|
|
if (*verbose) {
|
|
printf("%d:%d locking\n", id, n);
|
|
}
|
|
state FlowMutex::Lock lock = wait(mutex->take());
|
|
if (*verbose) {
|
|
printf("%d:%d locked\n", id, n);
|
|
}
|
|
|
|
d = deterministicRandom()->random01() * mutexTestDelay;
|
|
if (*verbose) {
|
|
printf("%d:%d wait %f while locked\n", id, n, d);
|
|
}
|
|
wait(delay(d));
|
|
|
|
// On the last iteration, send an error or drop the lock if allowError is true
|
|
if (n == 0 && allowError) {
|
|
if (deterministicRandom()->coinflip()) {
|
|
// Send explicit error
|
|
if (*verbose) {
|
|
printf("%d:%d sending error\n", id, n);
|
|
}
|
|
lock.error(end_of_stream());
|
|
} else {
|
|
// Do nothing
|
|
if (*verbose) {
|
|
printf("%d:%d dropping promise, returning without unlock\n", id, n);
|
|
}
|
|
}
|
|
} else {
|
|
if (*verbose) {
|
|
printf("%d:%d unlocking\n", id, n);
|
|
}
|
|
lock.release();
|
|
}
|
|
}
|
|
|
|
if (*verbose) {
|
|
printf("%d Returning\n", id);
|
|
}
|
|
return Void();
|
|
}
|
|
|
|
TEST_CASE("/flow/flow/FlowMutex") {
|
|
state int count = 100000;
|
|
|
|
// Default verboseness
|
|
state bool verboseSetting = false;
|
|
// Useful for debugging, enable verbose mode for this iteration number
|
|
state int verboseTestIteration = -1;
|
|
|
|
try {
|
|
state bool verbose = verboseSetting || count == verboseTestIteration;
|
|
|
|
while (--count > 0) {
|
|
if (count % 1000 == 0) {
|
|
printf("%d tests left\n", count);
|
|
}
|
|
|
|
state FlowMutex mutex;
|
|
state std::vector<Future<Void>> tests;
|
|
|
|
state bool allowErrors = deterministicRandom()->coinflip();
|
|
if (verbose) {
|
|
printf("\nTesting allowErrors=%d\n", allowErrors);
|
|
}
|
|
|
|
state Optional<Error> error;
|
|
|
|
try {
|
|
for (int i = 0; i < 10; ++i) {
|
|
tests.push_back(mutexTest(i, &mutex, 10, allowErrors, &verbose));
|
|
}
|
|
wait(waitForAll(tests));
|
|
|
|
if (allowErrors) {
|
|
if (verbose) {
|
|
printf("Final wait in case error was injected by the last actor to finish\n");
|
|
}
|
|
wait(success(mutex.take()));
|
|
}
|
|
} catch (Error& e) {
|
|
if (verbose) {
|
|
printf("Caught error %s\n", e.what());
|
|
}
|
|
error = e;
|
|
|
|
// Some actors can still be running, waiting while locked or unlocked,
|
|
// but all should become ready, some with errors.
|
|
state int i;
|
|
if (verbose) {
|
|
printf("Waiting for completions. Future end states:\n");
|
|
}
|
|
for (i = 0; i < tests.size(); ++i) {
|
|
ErrorOr<Void> f = wait(errorOr(tests[i]));
|
|
if (verbose) {
|
|
printf(" %d: %s\n", i, f.isError() ? f.getError().what() : "done");
|
|
}
|
|
}
|
|
}
|
|
|
|
// If an error was caused, one should have been detected.
|
|
// Otherwise, no errors should be detected.
|
|
ASSERT(error.present() == allowErrors);
|
|
}
|
|
} catch (Error& e) {
|
|
printf("Error at count=%d\n", count + 1);
|
|
ASSERT(false);
|
|
}
|
|
|
|
return Void();
|
|
}
|