foundationdb/fdbrpc/AsyncFileCached.actor.h

669 lines
22 KiB
C++

/*
* AsyncFileCached.actor.h
*
* This source file is part of the FoundationDB open source project
*
* Copyright 2013-2022 Apple Inc. and the FoundationDB project authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
// When actually compiled (NO_INTELLISENSE), include the generated version of this file. In intellisense use the source
// version.
#if defined(NO_INTELLISENSE) && !defined(FLOW_ASYNCFILECACHED_ACTOR_G_H)
#define FLOW_ASYNCFILECACHED_ACTOR_G_H
#include "fdbrpc/AsyncFileCached.actor.g.h"
#elif !defined(FLOW_ASYNCFILECACHED_ACTOR_H)
#define FLOW_ASYNCFILECACHED_ACTOR_H
#include <boost/intrusive/list.hpp>
#include <type_traits>
#include "flow/flow.h"
#include "fdbrpc/IAsyncFile.h"
#include "flow/Knobs.h"
#include "flow/TDMetric.actor.h"
#include "flow/network.h"
#include "flow/actorcompiler.h" // This must be the last #include.
namespace bi = boost::intrusive;
struct EvictablePage {
void* data;
int index;
class Reference<struct EvictablePageCache> pageCache;
bi::list_member_hook<> member_hook;
virtual bool evict() = 0; // true if page was evicted, false if it isn't immediately evictable (but will be evicted
// regardless if possible)
EvictablePage(Reference<EvictablePageCache> pageCache) : data(0), index(-1), pageCache(pageCache) {}
virtual ~EvictablePage();
};
struct EvictablePageCache : ReferenceCounted<EvictablePageCache> {
using List =
bi::list<EvictablePage, bi::member_hook<EvictablePage, bi::list_member_hook<>, &EvictablePage::member_hook>>;
enum CacheEvictionType { RANDOM = 0, LRU = 1 };
static CacheEvictionType evictionPolicyStringToEnum(const std::string& policy) {
std::string cep = policy;
std::transform(cep.begin(), cep.end(), cep.begin(), ::tolower);
if (cep != "random" && cep != "lru")
throw invalid_cache_eviction_policy();
if (cep == "random")
return RANDOM;
return LRU;
}
EvictablePageCache() : pageSize(0), maxPages(0), cacheEvictionType(RANDOM) {}
explicit EvictablePageCache(int pageSize, int64_t maxSize)
: pageSize(pageSize), maxPages(maxSize / pageSize),
cacheEvictionType(evictionPolicyStringToEnum(FLOW_KNOBS->CACHE_EVICTION_POLICY)) {
cacheEvictions.init(LiteralStringRef("EvictablePageCache.CacheEvictions"));
}
void allocate(EvictablePage* page) {
try_evict();
try_evict();
page->data = allocateFast4kAligned(pageSize);
if (RANDOM == cacheEvictionType) {
page->index = pages.size();
pages.push_back(page);
} else {
lruPages.push_back(*page); // new page is considered the most recently used (placed at LRU tail)
}
}
void updateHit(EvictablePage* page) {
if (RANDOM != cacheEvictionType) {
// on a hit, update page's location in the LRU so that it's most recent (tail)
lruPages.erase(List::s_iterator_to(*page));
lruPages.push_back(*page);
}
}
void try_evict() {
if (RANDOM == cacheEvictionType) {
if (pages.size() >= (uint64_t)maxPages && !pages.empty()) {
for (int i = 0; i < FLOW_KNOBS->MAX_EVICT_ATTEMPTS;
i++) { // If we don't manage to evict anything, just go ahead and exceed the cache limit
int toEvict = deterministicRandom()->randomInt(0, pages.size());
if (pages[toEvict]->evict()) {
++cacheEvictions;
break;
}
}
}
} else {
// For now, LRU is the only other CACHE_EVICTION option
if (lruPages.size() >= (uint64_t)maxPages) {
int i = 0;
// try the least recently used pages first (starting at head of the LRU list)
for (List::iterator it = lruPages.begin(); it != lruPages.end() && i < FLOW_KNOBS->MAX_EVICT_ATTEMPTS;
++it, ++i) { // If we don't manage to evict anything, just go ahead and exceed the cache limit
if (it->evict()) {
++cacheEvictions;
break;
}
}
}
}
}
std::vector<EvictablePage*> pages;
List lruPages;
int pageSize;
int64_t maxPages;
Int64MetricHandle cacheEvictions;
const CacheEvictionType cacheEvictionType;
};
struct AFCPage;
class AsyncFileCached final : public IAsyncFile, public ReferenceCounted<AsyncFileCached> {
friend struct AFCPage;
public:
// Opens a file that uses the FDB in-memory page cache
static Future<Reference<IAsyncFile>> open(std::string filename, int flags, int mode) {
//TraceEvent("AsyncFileCachedOpen").detail("Filename", filename);
auto itr = openFiles.find(filename);
if (itr == openFiles.end()) {
auto f = open_impl(filename, flags, mode);
if (f.isReady() && f.isError())
return f;
auto result = openFiles.try_emplace(filename, f);
// This should be inserting a new entry
ASSERT(result.second);
itr = result.first;
// We return here instead of falling through to the outer scope so that we don't delete all references to
// the underlying file before returning
return itr->second.get();
}
return itr->second.get();
}
Future<int> read(void* data, int length, int64_t offset) override {
++countFileCacheReads;
++countCacheReads;
if (offset + length > this->length) {
length = int(this->length - offset);
ASSERT(length >= 0);
}
auto f = read_write_impl<false>(this, static_cast<uint8_t*>(data), length, offset);
if (f.isReady() && !f.isError())
return length;
++countFileCacheReadsBlocked;
++countCacheReadsBlocked;
return tag(f, length);
}
ACTOR static Future<Void> write_impl(AsyncFileCached* self, void const* data, int length, int64_t offset) {
// If there is a truncate in progress before the the write position then we must
// wait for it to complete.
if (length + offset > self->currentTruncateSize)
wait(self->currentTruncate);
++self->countFileCacheWrites;
++self->countCacheWrites;
Future<Void> f = read_write_impl<true>(self, static_cast<const uint8_t*>(data), length, offset);
if (!f.isReady()) {
++self->countFileCacheWritesBlocked;
++self->countCacheWritesBlocked;
}
wait(f);
return Void();
}
Future<Void> write(void const* data, int length, int64_t offset) override {
return write_impl(this, data, length, offset);
}
Future<Void> readZeroCopy(void** data, int* length, int64_t offset) override;
void releaseZeroCopy(void* data, int length, int64_t offset) override;
// This waits for previously started truncates to finish and then truncates
Future<Void> truncate(int64_t size) override { return truncate_impl(this, size); }
// This is the 'real' truncate that does the actual removal of cache blocks and then shortens the file
Future<Void> changeFileSize(int64_t size);
// This wrapper for the actual truncation operation enforces ordering of truncates.
// It maintains currentTruncate and currentTruncateSize so writers can wait behind truncates that would affect them.
ACTOR static Future<Void> truncate_impl(AsyncFileCached* self, int64_t size) {
wait(self->currentTruncate);
self->currentTruncateSize = size;
self->currentTruncate = self->changeFileSize(size);
wait(self->currentTruncate);
return Void();
}
Future<Void> sync() override { return waitAndSync(this, flush()); }
Future<int64_t> size() const override { return length; }
int64_t debugFD() const override { return uncached->debugFD(); }
std::string getFilename() const override { return filename; }
void setRateControl(Reference<IRateControl> const& rc) override { rateControl = rc; }
Reference<IRateControl> const& getRateControl() override { return rateControl; }
void addref() override {
ReferenceCounted<AsyncFileCached>::addref();
//TraceEvent("AsyncFileCachedAddRef").detail("Filename", filename).detail("Refcount", debugGetReferenceCount()).backtrace();
}
void delref() override {
if (delref_no_destroy()) {
// If this is ever ThreadSafeReferenceCounted...
// setrefCountUnsafe(0);
if (rateControl) {
TraceEvent(SevDebug, "AsyncFileCachedKillWaiters").detail("Filename", filename);
rateControl->killWaiters(io_error());
}
auto f = quiesce();
TraceEvent("AsyncFileCachedDel")
.detail("Filename", filename)
.detail("Refcount", debugGetReferenceCount())
.detail("CanDie", f.isReady());
// .backtrace();
if (f.isReady())
delete this;
else
uncancellable(holdWhile(Reference<AsyncFileCached>::addRef(this), f));
}
}
~AsyncFileCached() override;
private:
// A map of filename to the file handle for all opened cached files
static std::map<std::string, UnsafeWeakFutureReference<IAsyncFile>> openFiles;
std::string filename;
Reference<IAsyncFile> uncached;
int64_t length;
int64_t prevLength;
std::unordered_map<int64_t, AFCPage*> pages;
std::vector<AFCPage*> flushable;
Reference<EvictablePageCache> pageCache;
Future<Void> currentTruncate;
int64_t currentTruncateSize;
Reference<IRateControl> rateControl;
// Map of pointers which hold page buffers for pages which have been overwritten
// but at the time of write there were still readZeroCopy holders.
std::unordered_map<void*, int> orphanedPages;
Int64MetricHandle countFileCacheFinds;
Int64MetricHandle countFileCacheReads;
Int64MetricHandle countFileCacheWrites;
Int64MetricHandle countFileCacheReadsBlocked;
Int64MetricHandle countFileCacheWritesBlocked;
Int64MetricHandle countFileCachePageReadsHit;
Int64MetricHandle countFileCachePageReadsMissed;
Int64MetricHandle countFileCachePageReadsMerged;
Int64MetricHandle countFileCacheReadBytes;
Int64MetricHandle countCacheFinds;
Int64MetricHandle countCacheReads;
Int64MetricHandle countCacheWrites;
Int64MetricHandle countCacheReadsBlocked;
Int64MetricHandle countCacheWritesBlocked;
Int64MetricHandle countCachePageReadsHit;
Int64MetricHandle countCachePageReadsMissed;
Int64MetricHandle countCachePageReadsMerged;
Int64MetricHandle countCacheReadBytes;
AsyncFileCached(Reference<IAsyncFile> uncached,
const std::string& filename,
int64_t length,
Reference<EvictablePageCache> pageCache)
: filename(filename), uncached(uncached), length(length), prevLength(length), pageCache(pageCache),
currentTruncate(Void()), currentTruncateSize(0), rateControl(nullptr) {
if (!g_network->isSimulated()) {
countFileCacheWrites.init(LiteralStringRef("AsyncFile.CountFileCacheWrites"), filename);
countFileCacheReads.init(LiteralStringRef("AsyncFile.CountFileCacheReads"), filename);
countFileCacheWritesBlocked.init(LiteralStringRef("AsyncFile.CountFileCacheWritesBlocked"), filename);
countFileCacheReadsBlocked.init(LiteralStringRef("AsyncFile.CountFileCacheReadsBlocked"), filename);
countFileCachePageReadsHit.init(LiteralStringRef("AsyncFile.CountFileCachePageReadsHit"), filename);
countFileCachePageReadsMissed.init(LiteralStringRef("AsyncFile.CountFileCachePageReadsMissed"), filename);
countFileCachePageReadsMerged.init(LiteralStringRef("AsyncFile.CountFileCachePageReadsMerged"), filename);
countFileCacheFinds.init(LiteralStringRef("AsyncFile.CountFileCacheFinds"), filename);
countFileCacheReadBytes.init(LiteralStringRef("AsyncFile.CountFileCacheReadBytes"), filename);
countCacheWrites.init(LiteralStringRef("AsyncFile.CountCacheWrites"));
countCacheReads.init(LiteralStringRef("AsyncFile.CountCacheReads"));
countCacheWritesBlocked.init(LiteralStringRef("AsyncFile.CountCacheWritesBlocked"));
countCacheReadsBlocked.init(LiteralStringRef("AsyncFile.CountCacheReadsBlocked"));
countCachePageReadsHit.init(LiteralStringRef("AsyncFile.CountCachePageReadsHit"));
countCachePageReadsMissed.init(LiteralStringRef("AsyncFile.CountCachePageReadsMissed"));
countCachePageReadsMerged.init(LiteralStringRef("AsyncFile.CountCachePageReadsMerged"));
countCacheFinds.init(LiteralStringRef("AsyncFile.CountCacheFinds"));
countCacheReadBytes.init(LiteralStringRef("AsyncFile.CountCacheReadBytes"));
}
}
static Future<Reference<IAsyncFile>> open_impl(std::string filename, int flags, int mode);
// Opens a file that uses the FDB in-memory page cache
ACTOR static Future<Reference<IAsyncFile>> open_impl(std::string filename,
int flags,
int mode,
Reference<EvictablePageCache> pageCache) {
try {
TraceEvent("AFCUnderlyingOpenBegin").detail("Filename", filename);
if (flags & IAsyncFile::OPEN_CACHED_READ_ONLY)
flags = (flags & ~IAsyncFile::OPEN_READWRITE) | IAsyncFile::OPEN_READONLY;
else
flags = (flags & ~IAsyncFile::OPEN_READONLY) | IAsyncFile::OPEN_READWRITE;
state Reference<IAsyncFile> f = wait(IAsyncFileSystem::filesystem()->open(
filename, flags | IAsyncFile::OPEN_UNCACHED | IAsyncFile::OPEN_UNBUFFERED, mode));
TraceEvent("AFCUnderlyingOpenEnd").detail("Filename", filename);
int64_t l = wait(f->size());
TraceEvent("AFCUnderlyingSize").detail("Filename", filename).detail("Size", l);
return new AsyncFileCached(f, filename, l, pageCache);
} catch (Error& e) {
if (e.code() != error_code_actor_cancelled)
openFiles.erase(filename);
throw e;
}
}
Future<Void> flush() override;
Future<Void> quiesce();
ACTOR static Future<Void> waitAndSync(AsyncFileCached* self, Future<Void> flush) {
wait(flush);
wait(self->uncached->sync());
return Void();
}
template <bool writing>
static Future<Void> read_write_impl(AsyncFileCached* self,
typename std::conditional_t<writing, const uint8_t*, uint8_t*> data,
int length,
int64_t offset);
void remove_page(AFCPage* page);
};
struct AFCPage : public EvictablePage, public FastAllocated<AFCPage> {
bool evict() override {
if (notReading.isReady() && notFlushing.isReady() && !dirty && !zeroCopyRefCount && !truncated) {
owner->remove_page(this);
delete this;
return true;
}
if (dirty)
flush();
return false;
}
// Move this page's data into the orphanedPages set of the owner
void orphan() {
owner->orphanedPages[data] = zeroCopyRefCount;
zeroCopyRefCount = 0;
notReading = Void();
data = allocateFast4kAligned(pageCache->pageSize);
}
Future<Void> write(void const* data, int length, int offset) {
// If zero-copy reads are in progress, allow whole page writes to a new page buffer so the effects
// are not seen by the prior readers who still hold zeroCopyRead pointers
bool fullPage = offset == 0 && length == pageCache->pageSize;
ASSERT(zeroCopyRefCount == 0 || fullPage);
if (zeroCopyRefCount != 0) {
ASSERT(fullPage);
orphan();
}
setDirty();
// If there are no active readers then if data is valid or we're replacing all of it we can write directly
if (valid || fullPage) {
if (!fullPage) {
++owner->countFileCachePageReadsHit;
++owner->countCachePageReadsHit;
}
valid = true;
memcpy(static_cast<uint8_t*>(this->data) + offset, data, length);
return yield();
}
++owner->countFileCachePageReadsMissed;
++owner->countCachePageReadsMissed;
// If data is not valid but no read is in progress, start reading
if (notReading.isReady()) {
notReading = readThrough(this);
}
notReading = waitAndWrite(this, data, length, offset);
return notReading;
}
ACTOR static Future<Void> waitAndWrite(AFCPage* self, void const* data, int length, int offset) {
wait(self->notReading);
memcpy(static_cast<uint8_t*>(self->data) + offset, data, length);
return Void();
}
Future<Void> readZeroCopy() {
++zeroCopyRefCount;
if (valid) {
++owner->countFileCachePageReadsHit;
++owner->countCachePageReadsHit;
return yield();
}
++owner->countFileCachePageReadsMissed;
++owner->countCachePageReadsMissed;
if (notReading.isReady()) {
notReading = readThrough(this);
} else {
++owner->countFileCachePageReadsMerged;
++owner->countCachePageReadsMerged;
}
return notReading;
}
void releaseZeroCopy() {
--zeroCopyRefCount;
ASSERT(zeroCopyRefCount >= 0);
}
Future<Void> read(void* data, int length, int offset) {
if (valid) {
++owner->countFileCachePageReadsHit;
++owner->countCachePageReadsHit;
owner->countFileCacheReadBytes += length;
owner->countCacheReadBytes += length;
memcpy(data, static_cast<uint8_t const*>(this->data) + offset, length);
return yield();
}
++owner->countFileCachePageReadsMissed;
++owner->countCachePageReadsMissed;
if (notReading.isReady()) {
notReading = readThrough(this);
} else {
++owner->countFileCachePageReadsMerged;
++owner->countCachePageReadsMerged;
}
notReading = waitAndRead(this, data, length, offset);
return notReading;
}
ACTOR static Future<Void> waitAndRead(AFCPage* self, void* data, int length, int offset) {
wait(self->notReading);
memcpy(data, static_cast<uint8_t const*>(self->data) + offset, length);
return Void();
}
ACTOR static Future<Void> readThrough(AFCPage* self) {
ASSERT(!self->valid);
state void* dst = self->data;
if (self->pageOffset < self->owner->prevLength) {
try {
int _ = wait(self->owner->uncached->read(dst, self->pageCache->pageSize, self->pageOffset));
if (_ != self->pageCache->pageSize)
TraceEvent("ReadThroughShortRead")
.detail("ReadAmount", _)
.detail("PageSize", self->pageCache->pageSize)
.detail("PageOffset", self->pageOffset);
} catch (Error& e) {
self->zeroCopyRefCount = 0;
TraceEvent("ReadThroughFailed").error(e);
throw;
}
}
// If the memory we read into wasn't orphaned while we were waiting on the read then set valid to true
if (dst == self->data)
self->valid = true;
return Void();
}
ACTOR static Future<Void> writeThrough(AFCPage* self, Promise<Void> writing) {
// writeThrough can be called on a page that is not dirty, just to wait for a previous writeThrough to finish.
// In that case we don't want to do any disk I/O
try {
state bool dirty = self->dirty;
++self->writeThroughCount;
self->updateFlushableIndex();
wait(self->notReading && self->notFlushing);
if (dirty) {
// Wait for rate control if it is set
if (self->owner->getRateControl()) {
int allowance = 1;
// If I/O size is defined, wait for the calculated I/O quota
if (FLOW_KNOBS->FLOW_CACHEDFILE_WRITE_IO_SIZE > 0) {
allowance = (self->pageCache->pageSize + FLOW_KNOBS->FLOW_CACHEDFILE_WRITE_IO_SIZE - 1) /
FLOW_KNOBS->FLOW_CACHEDFILE_WRITE_IO_SIZE; // round up
ASSERT(allowance > 0);
}
wait(self->owner->getRateControl()->getAllowance(allowance));
}
if (self->pageOffset + self->pageCache->pageSize > self->owner->length) {
ASSERT(self->pageOffset < self->owner->length);
memset(static_cast<uint8_t*>(self->data) + self->owner->length - self->pageOffset,
0,
self->pageCache->pageSize - (self->owner->length - self->pageOffset));
}
auto f = self->owner->uncached->write(self->data, self->pageCache->pageSize, self->pageOffset);
wait(f);
}
} catch (Error& e) {
--self->writeThroughCount;
self->setDirty();
writing.sendError(e);
throw;
}
--self->writeThroughCount;
self->updateFlushableIndex();
writing.send(Void()); // FIXME: This could happen before the wait if AsyncFileKAIO dealt properly with
// overlapping write and sync operations
self->pageCache->try_evict();
return Void();
}
Future<Void> flush() {
if (!dirty && notFlushing.isReady())
return Void();
ASSERT(valid || !notReading.isReady() || notReading.isError());
Promise<Void> writing;
notFlushing = writeThrough(this, writing);
clearDirty(); // Do this last so that if writeThrough immediately calls try_evict, we can't be evicted before
// assigning notFlushing
return writing.getFuture();
}
Future<Void> quiesce() {
if (dirty)
flush();
// If we are flushing, we will be quiescent when all flushes are finished
// Returning flush() isn't right, because flush can return before notFlushing.isReady()
if (!notFlushing.isReady()) {
return notFlushing;
}
// else if we are reading, we will be quiescent when the read is finished
if (!notReading.isReady())
return notReading;
return Void();
}
Future<Void> truncate() {
// Allow truncatation during zero copy reads but orphan the previous buffer
if (zeroCopyRefCount != 0)
orphan();
truncated = true;
return truncate_impl(this);
}
ACTOR static Future<Void> truncate_impl(AFCPage* self) {
wait(self->notReading && self->notFlushing && yield());
delete self;
return Void();
}
AFCPage(AsyncFileCached* owner, int64_t offset)
: EvictablePage(owner->pageCache), owner(owner), pageOffset(offset), notReading(Void()), notFlushing(Void()),
dirty(false), valid(false), truncated(false), writeThroughCount(0), flushableIndex(-1), zeroCopyRefCount(0) {
pageCache->allocate(this);
}
~AFCPage() override {
clearDirty();
ASSERT_ABORT(flushableIndex == -1);
}
void setDirty() {
dirty = true;
updateFlushableIndex();
}
void clearDirty() {
dirty = false;
updateFlushableIndex();
}
void updateFlushableIndex() {
bool flushable = dirty || writeThroughCount;
if (flushable == (flushableIndex != -1))
return;
if (flushable) {
flushableIndex = owner->flushable.size();
owner->flushable.push_back(this);
} else {
ASSERT(owner->flushable[flushableIndex] == this);
owner->flushable[flushableIndex] = owner->flushable.back();
owner->flushable[flushableIndex]->flushableIndex = flushableIndex;
owner->flushable.pop_back();
flushableIndex = -1;
}
}
AsyncFileCached* owner;
int64_t pageOffset;
Future<Void> notReading; // .isReady when a readThrough (or waitAndWrite) is not in progress
Future<Void> notFlushing; // .isReady when a writeThrough is not in progress
bool dirty; // write has been called more recently than flush
bool valid; // data contains the file contents
bool truncated; // true if this page has been truncated
int writeThroughCount; // number of writeThrough actors that are in progress (potentially writing or waiting to
// write)
int flushableIndex; // index in owner->flushable[]
int zeroCopyRefCount; // references held by "zero-copy" reads
};
#include "flow/unactorcompiler.h"
#endif