foundationdb/fdbserver/workloads/MemoryLifetime.actor.cpp

174 lines
7.0 KiB
C++

/*
* MemoryLifetime.actor.cpp
*
* This source file is part of the FoundationDB open source project
*
* Copyright 2013-2018 Apple Inc. and the FoundationDB project authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "fdbrpc/ContinuousSample.h"
#include "fdbclient/NativeAPI.actor.h"
#include "fdbserver/TesterInterface.actor.h"
#include "flow/DeterministicRandom.h"
#include "fdbserver/workloads/workloads.actor.h"
#include "fdbserver/workloads/BulkSetup.actor.h"
#include "fdbclient/ReadYourWrites.h"
#include "flow/actorcompiler.h" // This must be the last #include.
struct MemoryLifetime : KVWorkload {
double testDuration;
std::vector<Future<Void>> clients;
std::string valueString;
MemoryLifetime(WorkloadContext const& wcx) : KVWorkload(wcx) {
testDuration = getOption(options, LiteralStringRef("testDuration"), 60.0);
valueString = std::string(maxValueBytes, '.');
}
std::string description() const override { return "MemoryLifetime"; }
Value randomValue() const {
return StringRef((uint8_t*)valueString.c_str(),
deterministicRandom()->randomInt(minValueBytes, maxValueBytes + 1));
}
KeySelector getRandomKeySelector() const {
return KeySelectorRef(getRandomKey(),
deterministicRandom()->random01() < 0.5,
deterministicRandom()->randomInt(-nodeCount, nodeCount));
}
Standalone<KeyValueRef> operator()(uint64_t n) { return KeyValueRef(keyForIndex(n, false), randomValue()); }
Future<Void> setup(Database const& cx) override { return _setup(cx, this); }
Future<Void> start(Database const& cx) override { return _start(cx, this); }
Future<bool> check(Database const& cx) override { return true; }
void getMetrics(std::vector<PerfMetric>& m) override {}
ACTOR Future<Void> _setup(Database cx, MemoryLifetime* self) {
state Promise<double> loadTime;
wait(bulkSetup(cx, self, self->nodeCount, loadTime));
return Void();
}
ACTOR Future<Void> _start(Database cx, MemoryLifetime* self) {
state double startTime = now();
state ReadYourWritesTransaction tr(cx);
state Reverse reverse = Reverse::False;
state Snapshot snapshot = Snapshot::False;
loop {
try {
int op = deterministicRandom()->randomInt(0, 4);
if (op == 0) {
reverse.set(deterministicRandom()->coinflip());
state Key getRange_startKey = self->getRandomKey();
state KeyRange getRange_queryRange =
reverse ? KeyRangeRef(normalKeys.begin, keyAfter(getRange_startKey))
: KeyRangeRef(getRange_startKey, normalKeys.end);
state bool getRange_randomStart = deterministicRandom()->random01();
state Value getRange_newValue = self->randomValue();
snapshot.set(deterministicRandom()->coinflip());
//TraceEvent("MemoryLifetimeCheck").detail("IsReverse", reverse).detail("StartKey", printable(getRange_startKey)).detail("RandomStart", getRange_randomStart).detail("NewValue", getRange_newValue.size()).detail("IsSnapshot", snapshot);
if (getRange_randomStart)
tr.set(getRange_startKey, getRange_newValue);
state RangeResult getRange_res1 =
wait(tr.getRange(getRange_queryRange, GetRangeLimits(4000), snapshot, reverse));
tr = ReadYourWritesTransaction(cx);
wait(delay(0.01));
if (getRange_randomStart)
tr.set(getRange_startKey, getRange_newValue);
RangeResult getRange_res2 =
wait(tr.getRange(getRange_queryRange, GetRangeLimits(4000), snapshot, reverse));
ASSERT(getRange_res1.size() == getRange_res2.size());
for (int i = 0; i < getRange_res1.size(); i++) {
if (getRange_res1[i].key != getRange_res2[i].key) {
TraceEvent(SevError, "MemoryLifetimeCheckKeyError")
.detail("Key1", printable(getRange_res1[i].key))
.detail("Key2", printable(getRange_res2[i].key))
.detail("Value1", getRange_res1[i].value.size())
.detail("Value2", getRange_res2[i].value.size())
.detail("I", i)
.detail("Size", getRange_res2.size());
ASSERT(false);
}
if (getRange_res1[i].value != getRange_res2[i].value) {
TraceEvent(SevError, "MemoryLifetimeCheckValueError")
.detail("Key1", printable(getRange_res1[i].key))
.detail("Key2", printable(getRange_res2[i].key))
.detail("Value1", getRange_res1[i].value.size())
.detail("Value2", getRange_res2[i].value.size())
.detail("I", i)
.detail("Size", getRange_res2.size());
ASSERT(false);
}
}
} else if (op == 1) {
state Key get_startKey = self->getRandomKey();
state bool get_randomStart = deterministicRandom()->random01();
state Value get_newValue = self->randomValue();
snapshot.set(deterministicRandom()->coinflip());
if (get_randomStart)
tr.set(get_startKey, get_newValue);
state Optional<Value> get_res1 = wait(tr.get(get_startKey, snapshot));
tr = ReadYourWritesTransaction(cx);
wait(delay(0.01));
if (get_randomStart)
tr.set(get_startKey, get_newValue);
Optional<Value> get_res2 = wait(tr.get(get_startKey, snapshot));
ASSERT(get_res1 == get_res2);
} else if (op == 2) {
state KeySelector getKey_selector = self->getRandomKeySelector();
state bool getKey_randomStart = deterministicRandom()->random01();
state Value getKey_newValue = self->randomValue();
snapshot.set(deterministicRandom()->coinflip());
if (getKey_randomStart)
tr.set(getKey_selector.getKey(), getKey_newValue);
state Key getKey_res1 = wait(tr.getKey(getKey_selector, snapshot));
tr = ReadYourWritesTransaction(cx);
wait(delay(0.01));
if (getKey_randomStart)
tr.set(getKey_selector.getKey(), getKey_newValue);
Key getKey_res2 = wait(tr.getKey(getKey_selector, snapshot));
ASSERT(getKey_res1 == getKey_res2);
} else if (op == 3) {
state Key getAddress_startKey = self->getRandomKey();
state Standalone<VectorRef<const char*>> getAddress_res1 =
wait(tr.getAddressesForKey(getAddress_startKey));
tr = ReadYourWritesTransaction(cx);
wait(delay(0.01));
// we cannot check the contents like other operations so just touch all the values to make sure we
// dont crash
for (int i = 0; i < getAddress_res1.size(); i++) {
ASSERT(NetworkAddress::parseOptional(getAddress_res1[i]).present());
}
}
if (now() - startTime > self->testDuration)
return Void();
} catch (Error& e) {
wait(tr.onError(e));
}
}
}
};
WorkloadFactory<MemoryLifetime> MemoryLifetimeWorkloadFactory("MemoryLifetime");