foundationdb/flow/Profiler.actor.cpp

295 lines
9.1 KiB
C++

/*
* Profiler.actor.cpp
*
* This source file is part of the FoundationDB open source project
*
* Copyright 2013-2018 Apple Inc. and the FoundationDB project authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "flow/flow.h"
#include "flow/network.h"
#ifdef __linux__
#include <execinfo.h>
#include <signal.h>
#include <sys/time.h>
#include <stdlib.h>
#include <sys/syscall.h>
#include <link.h>
#include "Platform.h"
extern volatile int profilingEnabled;
static uint64_t gettid() { return syscall(__NR_gettid); }
struct SignalClosure {
void (* func)(int, siginfo_t*, void*, void*);
void *userdata;
SignalClosure(void(*func)(int, siginfo_t*, void*, void*), void* userdata) : func(func), userdata(userdata) {}
static void signal_handler(int s, siginfo_t* si, void* ucontext) {
// async signal safe!
// This is intended to work as a SIGPROF handler for past and future versions of the flow profiler (when multiple are running in a process!)
// So don't change what it does without really good reason
SignalClosure* closure = (SignalClosure*)(si->si_value.sival_ptr);
closure->func(s, si, ucontext, closure->userdata);
}
};
struct SyncFileForSim : ReferenceCounted<SyncFileForSim> {
FILE* f;
SyncFileForSim( std::string const& filename ) {
f = fopen(filename.c_str(), "wb");
}
virtual void addref() { ReferenceCounted<SyncFileForSim>::addref(); }
virtual void delref() { ReferenceCounted<SyncFileForSim>::delref(); }
virtual int64_t debugFD() { return (int64_t)f; }
virtual Future<int> read( void* data, int length, int64_t offset ) {
ASSERT(false);
throw internal_error();
}
virtual Future<Void> write( void const* data, int length, int64_t offset ) {
fseek(f, offset, SEEK_SET);
if (fwrite(data, 1, length, f) != length)
throw io_error();
return Void();
}
virtual Future<Void> truncate( int64_t size ) {
ASSERT( size == 0 );
return Void();
}
virtual Future<Void> flush() {
fflush(f);
return Void();
}
virtual Future<Void> sync() {
ASSERT(false);
throw internal_error();
}
virtual Future<int64_t> size() {
ASSERT(false);
throw internal_error();
}
};
struct Profiler {
struct OutputBuffer {
std::vector< void* > output;
OutputBuffer() {
output.reserve( 100000 );
}
void clear() { output.clear(); }
void push( void* ptr ) { // async signal safe!
if (output.size() < output.capacity())
output.push_back(ptr);
}
Future<Void> writeTo( Reference<SyncFileForSim> file, int64_t& offset ) {
int64_t offs = offset;
offset += sizeof(void*)*output.size();
return file->write( &output[0], sizeof(void*)*output.size(), offs );
}
};
enum { MAX_STACK_DEPTH = 256 };
void* addresses[MAX_STACK_DEPTH];
SignalClosure signalClosure;
OutputBuffer* output_buffer;
Future<Void> actor;
sigset_t profilingSignals;
static Profiler* active_profiler;
BinaryWriter environmentInfoWriter;
INetwork* network;
timer_t periodic_timer;
Profiler(int period, std::string const& outfn, INetwork* network) : environmentInfoWriter(Unversioned()), signalClosure(signal_handler_for_closure, this), network(network) {
actor = profile(this, period, outfn);
}
~Profiler() {
enableSignal(false);
timer_delete(periodic_timer);
}
void signal_handler() { // async signal safe!
if(profilingEnabled) {
double t = timer();
output_buffer->push(*(void**)&t);
size_t n = platform::raw_backtrace(addresses, 256);
for(int i=0; i<n; i++)
output_buffer->push(addresses[i]);
output_buffer->push((void*)-1LL);
}
}
static void signal_handler_for_closure(int, siginfo_t* si, void*, void* self) { // async signal safe!
((Profiler*)self)->signal_handler();
}
void enableSignal(bool enabled) {
sigprocmask( enabled?SIG_UNBLOCK:SIG_BLOCK, &profilingSignals, NULL );
}
void phdr( struct dl_phdr_info* info ) {
environmentInfoWriter << int64_t(1) << info->dlpi_addr << StringRef((const uint8_t*)info->dlpi_name, strlen(info->dlpi_name));
for(int s=0; s<info->dlpi_phnum; s++) {
auto const& h = info->dlpi_phdr[s];
environmentInfoWriter << int64_t(2)
<< h.p_type << h.p_flags // Word (uint32_t)
<< h.p_offset // Off (uint64_t)
<< h.p_vaddr << h.p_paddr // Addr (uint64_t)
<< h.p_filesz << h.p_memsz << h.p_align; // XWord (uint64_t)
}
}
static int phdr_callback(struct dl_phdr_info *info, size_t size, void *data) {
((Profiler*)data)->phdr(info);
return 0;
}
ACTOR static Future<Void> profile(Profiler* self, int period, std::string outfn) {
// According to folk wisdom, calling this once before setting up the signal handler makes
// it async signal safe in practice :-/
platform::raw_backtrace(self->addresses, MAX_STACK_DEPTH);
// Write environment information header
// At the moment this consists of the output of dl_iterate_phdr, the locations of
// all shared objects loaded into this process (to help locate symbols) and the period in ns
self->environmentInfoWriter << int64_t(0x101) << int64_t(period*1000);
dl_iterate_phdr( phdr_callback, self );
self->environmentInfoWriter << int64_t(0);
while (self->environmentInfoWriter.getLength() % sizeof(void*))
self->environmentInfoWriter << uint8_t(0);
self->output_buffer = new OutputBuffer;
state OutputBuffer* otherBuffer = new OutputBuffer;
// The profilingSignals signal set will be used by enableSignal
sigemptyset( &self->profilingSignals );
sigaddset( &self->profilingSignals, SIGPROF );
// Set up profiling signal handler
struct sigaction act;
act.sa_sigaction = SignalClosure::signal_handler;
sigemptyset(&act.sa_mask);
act.sa_flags = SA_SIGINFO;
sigaction( SIGPROF, &act, NULL );
// Set up periodic profiling timer
if (0) {
itimerval tv;
sigevent sev;
setitimer( ITIMER_PROF, &tv, NULL );
tv.it_interval.tv_sec = 0;
tv.it_interval.tv_usec = period;
tv.it_value.tv_sec = 0;
tv.it_value.tv_usec = g_nondeterministic_random->randomInt(period/2,period+1);
setitimer( ITIMER_PROF, &tv, NULL );
} else {
int period_ns = period * 1000;
itimerspec tv;
tv.it_interval.tv_sec = 0;
tv.it_interval.tv_nsec = period_ns;
tv.it_value.tv_sec = 0;
tv.it_value.tv_nsec = g_nondeterministic_random->randomInt(period_ns/2,period_ns+1);
sigevent sev;
sev.sigev_notify = SIGEV_THREAD_ID;
sev.sigev_signo = SIGPROF;
sev.sigev_value.sival_ptr = &(self->signalClosure);
sev._sigev_un._tid = gettid();
timer_create( CLOCK_THREAD_CPUTIME_ID, &sev, &self->periodic_timer );
timer_settime( self->periodic_timer, 0, &tv, NULL );
}
// Open and truncate output file
state Reference<SyncFileForSim> outFile = Reference<SyncFileForSim>(new SyncFileForSim(outfn));
state int64_t outOffset = 0;
Void _ = wait( outFile->truncate(outOffset) );
Void _ = wait( outFile->write( self->environmentInfoWriter.getData(), self->environmentInfoWriter.getLength(), outOffset ) );
outOffset += self->environmentInfoWriter.getLength();
loop {
Void _ = wait( self->network->delay(1.0, TaskMinPriority) || self->network->delay(2.0, TaskMaxPriority) );
self->enableSignal(false);
std::swap( self->output_buffer, otherBuffer );
self->enableSignal(true);
Void _ = wait( otherBuffer->writeTo(outFile, outOffset) );
Void _ = wait( outFile->flush() );
otherBuffer->clear();
}
}
};
Profiler* Profiler::active_profiler = 0;
std::string findAndReplace( std::string const& fn, std::string const& symbol, std::string const& value ) {
auto i = fn.find(symbol);
if (i == std::string::npos) return fn;
return fn.substr(0,i) + value + fn.substr(i+symbol.size());
}
void startProfiling(INetwork* network, Optional<int> maybePeriod /*= {}*/, Optional<StringRef> maybeOutputFile /*= {}*/) {
int period;
if (maybePeriod.present()) {
period = maybePeriod.get();
} else {
const char* periodEnv = getenv("FLOW_PROFILER_PERIOD");
period = (periodEnv ? atoi(periodEnv) : 2000);
}
std::string outputFile;
if (maybeOutputFile.present()) {
outputFile = std::string((const char*)maybeOutputFile.get().begin(), maybeOutputFile.get().size());
} else {
const char* outfn = getenv("FLOW_PROFILER_OUTPUT");
outputFile = (outfn ? outfn : "profile.bin");
}
outputFile = findAndReplace(findAndReplace(findAndReplace(outputFile, "%ADDRESS%", findAndReplace(network->getLocalAddress().toString(), ":", ".")), "%PID%", format("%d", getpid())), "%TID%", format("%llx", (long long)gettid()));
if (!Profiler::active_profiler)
Profiler::active_profiler = new Profiler( period, outputFile, network );
}
void stopProfiling() {
if (Profiler::active_profiler) {
Profiler *p = Profiler::active_profiler;
Profiler::active_profiler = nullptr;
delete p;
}
}
#else
void startProfiling(INetwork* network, Optional<int> period, Optional<StringRef> outputFile) {}
void stopProfiling() {}
#endif