foundationdb/fdbserver/workloads/DDBalance.actor.cpp

241 lines
8.4 KiB
C++

/*
* DDBalance.actor.cpp
*
* This source file is part of the FoundationDB open source project
*
* Copyright 2013-2018 Apple Inc. and the FoundationDB project authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "flow/actorcompiler.h"
#include "fdbrpc/ContinuousSample.h"
#include "fdbclient/NativeAPI.h"
#include "fdbserver/TesterInterface.h"
#include "workloads.h"
struct DDBalanceWorkload : TestWorkload {
int actorsPerClient, nodesPerActor, moversPerClient, currentbin, binCount, writesPerTransaction, keySpaceDriftFactor;
double testDuration, warmingDelay, transactionsPerSecond;
bool discardEdgeMeasurements;
vector<Future<Void>> clients;
PerfIntCounter bin_shifts,operations, retries;
ContinuousSample<double> latencies;
DDBalanceWorkload(WorkloadContext const& wcx)
: TestWorkload(wcx), latencies( 2000 ),
bin_shifts("Bin_Shifts"),operations("Operations"), retries("Retries")
{
testDuration = getOption( options, LiteralStringRef("testDuration"), 10.0 );
binCount = getOption( options, LiteralStringRef("binCount"), 1000 );
writesPerTransaction = getOption( options, LiteralStringRef("writesPerTransaction"), 1 );
keySpaceDriftFactor = getOption( options, LiteralStringRef("keySpaceDriftFactor"), 1 );
moversPerClient = std::max(getOption( options, LiteralStringRef("moversPerClient"), 10 ), 1);
actorsPerClient = std::max(getOption( options, LiteralStringRef("actorsPerClient"), 100 ), 1);
int nodes = getOption( options, LiteralStringRef("nodes"), 10000 );
discardEdgeMeasurements = getOption( options, LiteralStringRef("discardEdgeMeasurements"), true );
warmingDelay = getOption( options, LiteralStringRef("warmingDelay"), 0.0 );
transactionsPerSecond = getOption( options, LiteralStringRef("transactionsPerSecond"), 5000.0 ) / (clientCount * moversPerClient);
nodesPerActor = nodes/(actorsPerClient*clientCount);
currentbin = g_random->randomInt(0,binCount);
}
virtual std::string description() { return "DDBalance"; }
virtual Future<Void> setup( Database const& cx ) {
return ddbalanceSetup( cx, this );
}
virtual Future<Void> start( Database const& cx ) {
return _start( cx, this );
}
ACTOR Future<Void> _start( Database cx, DDBalanceWorkload *self ) {
for(int c=0; c<self->moversPerClient; c++)
self->clients.push_back(
timeout(
self->ddBalanceMover( cx, self, c ), self->testDuration, Void()) );
Void _ = wait( waitForAll( self->clients ) );
return Void();
}
virtual Future<bool> check( Database const& cx ) {
bool ok = true;
for( int i = 0; i < clients.size(); i++ )
if( clients[i].isError() )
ok = false;
clients.clear();
return ok;
}
virtual void getMetrics( vector<PerfMetric>& m ) {
double duration = testDuration * (discardEdgeMeasurements ? 0.75 : 1.0);
m.push_back( PerfMetric( "Operations/sec", operations.getValue() / duration, false ) );
m.push_back( operations.getMetric() );
m.push_back( retries.getMetric() );
m.push_back( bin_shifts.getMetric() );
m.push_back( PerfMetric( "Mean Latency (ms)", 1000 * latencies.mean(), true ) );
m.push_back( PerfMetric( "Median Latency (ms, averaged)", 1000 * latencies.median(), true ) );
m.push_back( PerfMetric( "90% Latency (ms, averaged)", 1000 * latencies.percentile( 0.90 ), true ) );
m.push_back( PerfMetric( "98% Latency (ms, averaged)", 1000 * latencies.percentile( 0.98 ), true ) );
}
Key key( int bin, int n, int actorid, int clientid ) { return StringRef(format("%08x%08x%08x%08x",bin,n,actorid,clientid));}
Value value( int n ) { return doubleToTestKey( n ); }
ACTOR Future<Void> setKeyIfNotPresent( Transaction *tr, Key key, Value val) {
Optional<Value> f = wait( tr->get(key));
if (!f.present())
tr->set( key, val);
return Void();
}
ACTOR Future<Void> ddbalanceSetupRange( Database cx, DDBalanceWorkload* self, int begin, int end ) {
state Transaction tr(cx);
loop {
try {
std::vector<Future<Void>> setActors;
for(int n=begin; n<end; n++) {
int objectnum = n / self->moversPerClient;
int moverid = n % self->moversPerClient;
setActors.push_back(self->setKeyIfNotPresent(&tr, self->key(self->currentbin,objectnum,moverid,self->clientId), self->value(objectnum)));
}
Void _ = wait( waitForAll(setActors) );
Void _ = wait( tr.commit() );
break;
} catch (Error& e) {
Void _ = wait( tr.onError(e) );
}
}
return Void();
}
ACTOR Future<Void> ddbalanceSetup( Database cx, DDBalanceWorkload* self ) {
state int i;
state vector<int> order;
state Future<Void> disabler = disableConnectionFailuresAfter(300, "DDBalance");
for(int o = 0; o <= self->nodesPerActor * self->actorsPerClient / 10; o++) order.push_back(o*10);
g_random->randomShuffle(order);
for(i=0; i<order.size(); ) {
vector<Future<Void>> fs;
for(int j=0; j<100 && i<order.size(); j++) {
fs.push_back( self->ddbalanceSetupRange(cx, self, order[i], order[i]+10));
i++;
}
Void _ = wait( waitForAll(fs) );
}
if( self->warmingDelay > 0 ) {
Void _ = wait( timeout( databaseWarmer( cx ), self->warmingDelay, Void() ) );
}
return Void();
}
bool shouldRecord( double clientBegin ) {
double n = now();
return !discardEdgeMeasurements ||
(n > (clientBegin + testDuration * 0.125) && n < (clientBegin + testDuration * 0.875));
}
ACTOR Future<Void> ddBalanceWorker( Database cx, DDBalanceWorkload *self, int moverId, int sourceBin, int destinationBin, int begin, int end, double clientBegin, double *lastTime, double delay ) {
state int i;
state int j;
state int moves;
state int maxMovedAmount = 0;
for(i = begin; i < end;) {
Void _ = wait( poisson( lastTime, delay ) );
state double tstart = now();
state Transaction tr(cx);
loop {
state int startvalue = i;
moves = 0;
try {
for(j = 0; i < end && j < self->writesPerTransaction; j++) {
state Key myKey = self->key(sourceBin,i,moverId,self->clientId);
state Key nextKey = self->key(destinationBin,i,moverId,self->clientId);
moves++;
i++;
Optional<Value> f = wait(tr.get(myKey));
if (f.present()) {
maxMovedAmount++;
tr.set(nextKey, f.get());
tr.clear(myKey);
}
else {
TraceEvent("KeyNotPresent").detail("ClientId", self->clientId).detail("MoverId", moverId)
.detail("CurrentBin", sourceBin).detail("NextBin", destinationBin);
}
}
Void _ = wait( tr.commit() );
break;
} catch (Error& e) {
Void _ = wait( tr.onError(e) );
if( self->shouldRecord( clientBegin ) )
++self->retries;
i = startvalue;
}
}
tr = Transaction();
if( self->shouldRecord( clientBegin ) ) {
self->operations += 3*moves;
double latency = now() - tstart;
self->latencies.addSample( latency );
}
}
if(maxMovedAmount < end-begin) {
TraceEvent(SevError, "LostKeys").detail("maxMoved",maxMovedAmount).detail("ShouldHaveMoved",end-begin).detail("ClientId", self->clientId).detail("MoverId", moverId)
.detail("CurrentBin", sourceBin).detail("NextBin", destinationBin);
ASSERT( false );
}
return Void();
}
ACTOR Future<Void> ddBalanceMover( Database cx, DDBalanceWorkload *self, int moverId ) {
state int currentBin = self->currentbin;
state int nextBin = 0;
state int i;
state int j;
state int key_space_drift = 0;
state double clientBegin = now();
state double lastTime = now();
loop {
nextBin = g_random->randomInt(key_space_drift,self->binCount+key_space_drift);
while(nextBin == currentBin) nextBin = g_random->randomInt(key_space_drift,self->binCount+key_space_drift);
vector<Future<Void>> fs;
for(i=0; i < self->actorsPerClient / self->moversPerClient; i++)
fs.push_back( self->ddBalanceWorker(cx, self, moverId, currentBin, nextBin, i*self->nodesPerActor, (i+1)*self->nodesPerActor, clientBegin, &lastTime, 1.0 / self->transactionsPerSecond));
Void _ = wait( waitForAll(fs) );
currentBin = nextBin;
key_space_drift += self->keySpaceDriftFactor;
++self->bin_shifts;
}
}
};
WorkloadFactory<DDBalanceWorkload> DDBalanceWorkloadFactory("DDBalance");