foundationdb/fdbserver/workloads/DataDistributionMetrics.act...

200 lines
9.1 KiB
C++

/*
* DataDistributionMetrics.actor.cpp
*
* This source file is part of the FoundationDB open source project
*
* Copyright 2013-2018 Apple Inc. and the FoundationDB project authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <boost/lexical_cast.hpp>
#include "fdbclient/ManagementAPI.actor.h"
#include "fdbclient/ReadYourWrites.h"
#include "fdbclient/Schemas.h"
#include "fdbserver/workloads/workloads.actor.h"
#include "flow/actorcompiler.h" // This must be the last include
struct DataDistributionMetricsWorkload : KVWorkload {
int numShards, readPerTx, writePerTx;
int64_t avgBytes;
double testDuration;
std::string keyPrefix;
PerfIntCounter commits, errors;
double delayPerLoop;
DataDistributionMetricsWorkload(WorkloadContext const& wcx)
: KVWorkload(wcx), numShards(0), avgBytes(0), commits("Commits"), errors("Errors") {
testDuration = getOption(options, LiteralStringRef("testDuration"), 10.0);
keyPrefix = getOption(options, LiteralStringRef("keyPrefix"), LiteralStringRef("DDMetrics")).toString();
readPerTx = getOption(options, LiteralStringRef("readPerTransaction"), 1);
writePerTx = getOption(options, LiteralStringRef("writePerTransaction"), 5 * readPerTx);
delayPerLoop = getOption(options, LiteralStringRef("delayPerLoop"), 0.1); // throttling dd rpc calls
ASSERT(nodeCount > 1);
}
static Value getRandomValue() {
return Standalone<StringRef>(format("Value/%08d", deterministicRandom()->randomInt(0, 10e6)));
}
Key keyForIndex(int n) { return doubleToTestKey((double)n / nodeCount, keyPrefix); }
ACTOR static Future<Void> ddRWClient(Database cx, DataDistributionMetricsWorkload* self) {
loop {
state ReadYourWritesTransaction tr(cx);
state int i;
try {
for (i = 0; i < self->readPerTx; ++i)
wait(success(
tr.get(self->keyForIndex(deterministicRandom()->randomInt(0, self->nodeCount))))); // read
for (i = 0; i < self->writePerTx; ++i)
tr.set(self->keyForIndex(deterministicRandom()->randomInt(0, self->nodeCount)),
getRandomValue()); // write
wait(tr.commit());
++self->commits;
} catch (Error& e) {
wait(tr.onError(e));
}
}
}
ACTOR Future<Void> resultConsistencyCheckClient(Database cx, DataDistributionMetricsWorkload* self) {
state Reference<ReadYourWritesTransaction> tr =
Reference<ReadYourWritesTransaction>(new ReadYourWritesTransaction(cx));
loop {
try {
wait(delay(self->delayPerLoop));
int startIndex = deterministicRandom()->randomInt(0, self->nodeCount - 1);
int endIndex = deterministicRandom()->randomInt(startIndex + 1, self->nodeCount);
state Key startKey = self->keyForIndex(startIndex);
state Key endKey = self->keyForIndex(endIndex);
// Find the last key <= startKey and use as the begin of the range. Since "Key()" is always the starting point, this key selector will never do cross_module_range_read.
// In addition, the first key in the result will be the last one <= startKey (Condition #1)
state KeySelector begin =
KeySelectorRef(startKey.withPrefix(ddStatsRange.begin, startKey.arena()), true, 0);
// Find the last key less than endKey, move forward 2 keys, and use this key as the (exclusive) end of
// the range. If we didn't read through the end of the range, then the second last key
// in the result will be the last key less than endKey. (Condition #2)
state KeySelector end = KeySelectorRef(endKey.withPrefix(ddStatsRange.begin, endKey.arena()), false, 2);
Standalone<RangeResultRef> result =
wait(tr->getRange(begin, end, GetRangeLimits(CLIENT_KNOBS->SHARD_COUNT_LIMIT)));
// Condition #1 and #2 can be broken if multiple rpc calls happened in one getRange
if (result.size() > 1) {
if (result[0].key > begin.getKey() || result[1].key <= begin.getKey()) {
++self->errors;
TraceEvent(SevError, "TestFailure")
.detail("Reason", "Result mismatches the given begin selector")
.detail("Size", result.size())
.detail("FirstKey", result[0].key.toString())
.detail("SecondKey", result[1].key.toString())
.detail("BeginKeySelector", begin.toString());
}
if (result[result.size() - 1].key < end.getKey() || result[result.size() - 2].key >= end.getKey()) {
++self->errors;
TraceEvent(SevError, "TestFailure")
.detail("Reason", "Result mismatches the given end selector")
.detail("Size", result.size())
.detail("FirstKey", result[result.size() - 1].key.toString())
.detail("SecondKey", result[result.size() - 2].key.toString())
.detail("EndKeySelector", end.toString());
}
// Debugging traces
// TraceEvent(SevDebug, "DDMetricsConsistencyTest")
// .detail("Size", result.size())
// .detail("FirstKey", result[0].key.toString())
// .detail("SecondKey", result[1].key.toString())
// .detail("BeginKeySelector", begin.toString());
// TraceEvent(SevDebug, "DDMetricsConsistencyTest")
// .detail("Size", result.size())
// .detail("LastKey", result[result.size() - 1].key.toString())
// .detail("SecondLastKey", result[result.size() - 2].key.toString())
// .detail("EndKeySelector", end.toString());
}
} catch (Error& e) {
// Ignore timed_out error and cross_module_read, the end key selector may read through the end
if (e.code() == error_code_timed_out || e.code() == error_code_special_keys_cross_module_read) continue;
TraceEvent(SevDebug, "FailedToRetrieveDDMetrics").error(e);
wait(tr->onError(e));
}
}
}
ACTOR static Future<bool> _check(Database cx, DataDistributionMetricsWorkload* self) {
if (self->errors.getValue() > 0) {
TraceEvent(SevError, "TestFailure").detail("Reason", "GetRange Results Inconsistent");
return false;
}
// TODO : find why this not work
// wait(quietDatabase(cx, self->dbInfo, "PopulateTPCC"));
state Reference<ReadYourWritesTransaction> tr =
Reference<ReadYourWritesTransaction>(new ReadYourWritesTransaction(cx));
try {
state Standalone<RangeResultRef> result = wait(tr->getRange(ddStatsRange, CLIENT_KNOBS->SHARD_COUNT_LIMIT));
ASSERT(!result.more);
self->numShards = result.size();
if (self->numShards < 1) return false;
state int64_t totalBytes = 0;
auto schema = readJSONStrictly(JSONSchemas::dataDistributionStatsSchema.toString()).get_obj();
for (int i = 0; i < result.size(); ++i) {
ASSERT(result[i].key.startsWith(ddStatsRange.begin));
std::string errorStr;
auto valueObj = readJSONStrictly(result[i].value.toString()).get_obj();
TEST(true); // data_distribution_stats schema validation
if (!schemaMatch(schema, valueObj, errorStr, SevError, true)) {
TraceEvent(SevError, "DataDistributionStatsSchemaValidationFailed")
.detail("ErrorStr", errorStr.c_str())
.detail("JSON", json_spirit::write_string(json_spirit::mValue(result[i].value.toString())));
return false;
}
totalBytes += valueObj["shard_bytes"].get_int64();
}
self->avgBytes = totalBytes / self->numShards;
// fetch data-distribution stats for a smaller range
ASSERT(result.size());
state int idx = deterministicRandom()->randomInt(0, result.size());
Standalone<RangeResultRef> res = wait(tr->getRange(
KeyRangeRef(result[idx].key, idx + 1 < result.size() ? result[idx + 1].key : ddStatsRange.end), 100));
ASSERT_WE_THINK(res.size() == 1 && res[0] == result[idx]); // It works good now. However, not sure in any
// case of data-distribution, the number changes
} catch (Error& e) {
TraceEvent(SevError, "FailedToRetrieveDDMetrics").detail("Error", e.what());
throw;
}
return true;
}
ACTOR Future<Void> _start(Database cx, DataDistributionMetricsWorkload* self) {
std::vector<Future<Void>> clients;
clients.push_back(self->resultConsistencyCheckClient(cx, self));
for (int i = 0; i < self->actorCount; ++i) clients.push_back(self->ddRWClient(cx, self));
wait(timeout(waitForAll(clients), self->testDuration, Void()));
wait(delay(5.0));
return Void();
}
virtual std::string description() { return "DataDistributionMetrics"; }
virtual Future<Void> setup(Database const& cx) { return Void(); }
virtual Future<Void> start(Database const& cx) { return _start(cx, this); }
virtual Future<bool> check(Database const& cx) { return _check(cx, this); }
virtual void getMetrics(vector<PerfMetric>& m) {
m.push_back(PerfMetric("NumShards", numShards, true));
m.push_back(PerfMetric("AvgBytes", avgBytes, true));
m.push_back(commits.getMetric());
}
};
WorkloadFactory<DataDistributionMetricsWorkload> DataDistributionMetricsWorkloadFactory("DataDistributionMetrics");