foundationdb/fdbclient/ServerKnobs.cpp

1075 lines
94 KiB
C++

/*
* ServerKnobs.cpp
*
* This source file is part of the FoundationDB open source project
*
* Copyright 2013-2022 Apple Inc. and the FoundationDB project authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "fdbclient/ServerKnobs.h"
#include "flow/CompressionUtils.h"
#include "flow/IRandom.h"
#include "flow/flow.h"
#define init(...) KNOB_FN(__VA_ARGS__, INIT_ATOMIC_KNOB, INIT_KNOB)(__VA_ARGS__)
ServerKnobs::ServerKnobs(Randomize randomize, ClientKnobs* clientKnobs, IsSimulated isSimulated) {
initialize(randomize, clientKnobs, isSimulated);
}
void ServerKnobs::initialize(Randomize randomize, ClientKnobs* clientKnobs, IsSimulated isSimulated) {
// clang-format off
init( ALLOW_DANGEROUS_KNOBS, isSimulated );
// Versions
init( VERSIONS_PER_SECOND, 1e6 );
init( MAX_VERSIONS_IN_FLIGHT, 100 * VERSIONS_PER_SECOND );
init( MAX_VERSIONS_IN_FLIGHT_FORCED, 6e5 * VERSIONS_PER_SECOND ); //one week of versions
init( ENABLE_VERSION_VECTOR, false );
init( ENABLE_VERSION_VECTOR_TLOG_UNICAST, false );
bool buggifyShortReadWindow = randomize && BUGGIFY && !ENABLE_VERSION_VECTOR;
init( MAX_READ_TRANSACTION_LIFE_VERSIONS, 5 * VERSIONS_PER_SECOND ); if (randomize && BUGGIFY) MAX_READ_TRANSACTION_LIFE_VERSIONS = VERSIONS_PER_SECOND; else if (buggifyShortReadWindow) MAX_READ_TRANSACTION_LIFE_VERSIONS = std::max<int>(1, 0.1 * VERSIONS_PER_SECOND); else if( randomize && BUGGIFY ) MAX_READ_TRANSACTION_LIFE_VERSIONS = 10 * VERSIONS_PER_SECOND;
init( MAX_WRITE_TRANSACTION_LIFE_VERSIONS, 5 * VERSIONS_PER_SECOND ); if (randomize && BUGGIFY) MAX_WRITE_TRANSACTION_LIFE_VERSIONS=std::max<int>(1, 1 * VERSIONS_PER_SECOND);
init( MAX_COMMIT_BATCH_INTERVAL, 2.0 ); if( randomize && BUGGIFY ) MAX_COMMIT_BATCH_INTERVAL = 0.5; // Each commit proxy generates a CommitTransactionBatchRequest at least this often, so that versions always advance smoothly
MAX_COMMIT_BATCH_INTERVAL = std::min(MAX_COMMIT_BATCH_INTERVAL, MAX_READ_TRANSACTION_LIFE_VERSIONS/double(2*VERSIONS_PER_SECOND)); // Ensure that the proxy commits 2 times every MAX_READ_TRANSACTION_LIFE_VERSIONS, otherwise the master will not give out versions fast enough
MAX_COMMIT_BATCH_INTERVAL = std::min(MAX_COMMIT_BATCH_INTERVAL, MAX_WRITE_TRANSACTION_LIFE_VERSIONS/double(2*VERSIONS_PER_SECOND)); // Ensure that the proxy commits 2 times every MAX_WRITE_TRANSACTION_LIFE_VERSIONS, otherwise the master will not give out versions fast enough
init( MAX_VERSION_RATE_MODIFIER, 0.1 );
init( MAX_VERSION_RATE_OFFSET, VERSIONS_PER_SECOND ); // If the calculated version is more than this amount away from the expected version, it will be clamped to this value. This prevents huge version jumps.
init( ENABLE_VERSION_VECTOR_HA_OPTIMIZATION, false );
// TLogs
init( TLOG_TIMEOUT, 0.4 ); //cannot buggify because of availability
init( TLOG_SLOW_REJOIN_WARN_TIMEOUT_SECS, 60 ); if( randomize && BUGGIFY ) TLOG_SLOW_REJOIN_WARN_TIMEOUT_SECS = deterministicRandom()->randomInt(5,10);
init( TLOG_STORAGE_MIN_UPDATE_INTERVAL, 0.5 );
init( BUGGIFY_TLOG_STORAGE_MIN_UPDATE_INTERVAL, 30 );
init( DESIRED_TOTAL_BYTES, 150000 ); if( randomize && BUGGIFY ) DESIRED_TOTAL_BYTES = 10000;
init( DESIRED_UPDATE_BYTES, 2*DESIRED_TOTAL_BYTES );
init( UPDATE_DELAY, 0.001 );
init( MAXIMUM_PEEK_BYTES, 10e6 );
init( APPLY_MUTATION_BYTES, 1e6 );
init( BUGGIFY_RECOVER_MEMORY_LIMIT, 1e6 );
init( BUGGIFY_WORKER_REMOVED_MAX_LAG, 30 );
init( UPDATE_STORAGE_BYTE_LIMIT, 1e6 );
init( TLOG_PEEK_DELAY, 0.0005 );
init( LEGACY_TLOG_UPGRADE_ENTRIES_PER_VERSION, 100 );
init( VERSION_MESSAGES_OVERHEAD_FACTOR_1024THS, 1072 ); // Based on a naive interpretation of the gcc version of std::deque, we would expect this to be 16 bytes overhead per 512 bytes data. In practice, it seems to be 24 bytes overhead per 512.
init( VERSION_MESSAGES_ENTRY_BYTES_WITH_OVERHEAD, std::ceil(16.0 * VERSION_MESSAGES_OVERHEAD_FACTOR_1024THS / 1024) );
init( LOG_SYSTEM_PUSHED_DATA_BLOCK_SIZE, 1e5 );
init( MAX_MESSAGE_SIZE, std::max<int>(LOG_SYSTEM_PUSHED_DATA_BLOCK_SIZE, 1e5 + 2e4 + 1) + 8 ); // VALUE_SIZE_LIMIT + SYSTEM_KEY_SIZE_LIMIT + 9 bytes (4 bytes for length, 4 bytes for sequence number, and 1 byte for mutation type)
init( TLOG_MESSAGE_BLOCK_BYTES, 10e6 );
init( TLOG_MESSAGE_BLOCK_OVERHEAD_FACTOR, double(TLOG_MESSAGE_BLOCK_BYTES) / (TLOG_MESSAGE_BLOCK_BYTES - MAX_MESSAGE_SIZE) ); //1.0121466709838096006362758832473
init( PEEK_TRACKER_EXPIRATION_TIME, 600 ); if( randomize && BUGGIFY ) PEEK_TRACKER_EXPIRATION_TIME = deterministicRandom()->coinflip() ? 0.1 : 120;
init( PEEK_USING_STREAMING, false ); if( randomize && isSimulated && BUGGIFY ) PEEK_USING_STREAMING = true;
init( PARALLEL_GET_MORE_REQUESTS, 32 ); if( randomize && BUGGIFY ) PARALLEL_GET_MORE_REQUESTS = 2;
init( MULTI_CURSOR_PRE_FETCH_LIMIT, 10 );
init( MAX_QUEUE_COMMIT_BYTES, 15e6 ); if( randomize && BUGGIFY ) MAX_QUEUE_COMMIT_BYTES = 5000;
init( DESIRED_OUTSTANDING_MESSAGES, 5000 ); if( randomize && BUGGIFY ) DESIRED_OUTSTANDING_MESSAGES = deterministicRandom()->randomInt(0,100);
init( DESIRED_GET_MORE_DELAY, 0.005 );
init( CONCURRENT_LOG_ROUTER_READS, 5 ); if( randomize && BUGGIFY ) CONCURRENT_LOG_ROUTER_READS = 1;
init( LOG_ROUTER_PEEK_FROM_SATELLITES_PREFERRED, 1 ); if( randomize && BUGGIFY ) LOG_ROUTER_PEEK_FROM_SATELLITES_PREFERRED = 0;
init( DISK_QUEUE_ADAPTER_MIN_SWITCH_TIME, 1.0 );
init( DISK_QUEUE_ADAPTER_MAX_SWITCH_TIME, 5.0 );
init( TLOG_SPILL_REFERENCE_MAX_PEEK_MEMORY_BYTES, 2e9 ); if ( randomize && BUGGIFY ) TLOG_SPILL_REFERENCE_MAX_PEEK_MEMORY_BYTES = 2e6;
init( TLOG_SPILL_REFERENCE_MAX_BATCHES_PER_PEEK, 100 ); if ( randomize && BUGGIFY ) TLOG_SPILL_REFERENCE_MAX_BATCHES_PER_PEEK = 1;
init( TLOG_SPILL_REFERENCE_MAX_BYTES_PER_BATCH, 16<<10 ); if ( randomize && BUGGIFY ) TLOG_SPILL_REFERENCE_MAX_BYTES_PER_BATCH = 500;
init( DISK_QUEUE_FILE_EXTENSION_BYTES, 10<<20 ); // BUGGIFYd per file within the DiskQueue
init( DISK_QUEUE_FILE_SHRINK_BYTES, 100<<20 ); // BUGGIFYd per file within the DiskQueue
init( DISK_QUEUE_MAX_TRUNCATE_BYTES, 2LL<<30 ); if ( randomize && BUGGIFY ) DISK_QUEUE_MAX_TRUNCATE_BYTES = 0;
init( TLOG_DEGRADED_DURATION, 5.0 );
init( MAX_CACHE_VERSIONS, 10e6 );
init( TLOG_IGNORE_POP_AUTO_ENABLE_DELAY, 300.0 );
init( TXS_POPPED_MAX_DELAY, 1.0 ); if ( randomize && BUGGIFY ) TXS_POPPED_MAX_DELAY = deterministicRandom()->random01();
// In some rare simulation tests, particularly with log_spill:=1 configured, the 10 second limit is exceeded, causing SevError trace events
// and simulation test failure. Increasing the knob value to 15.0 in simulation is a workaround to avoid these failures.
init( TLOG_MAX_CREATE_DURATION, 10.0 ); if (isSimulated) TLOG_MAX_CREATE_DURATION = 15.0;
init( PEEK_LOGGING_AMOUNT, 5 );
init( PEEK_LOGGING_DELAY, 5.0 );
init( PEEK_RESET_INTERVAL, 300.0 ); if ( randomize && BUGGIFY ) PEEK_RESET_INTERVAL = 20.0;
init( PEEK_MAX_LATENCY, 0.5 ); if ( randomize && BUGGIFY ) PEEK_MAX_LATENCY = 0.0;
init( PEEK_COUNT_SMALL_MESSAGES, false ); if ( randomize && BUGGIFY ) PEEK_COUNT_SMALL_MESSAGES = true;
init( PEEK_STATS_INTERVAL, 10.0 );
init( PEEK_STATS_SLOW_AMOUNT, 2 );
init( PEEK_STATS_SLOW_RATIO, 0.5 );
// Buggified value must be larger than the amount of simulated time taken by snapshots, to prevent repeatedly failing
// snapshots due to closed commit proxy connections
init( PUSH_RESET_INTERVAL, 300.0 ); if ( randomize && BUGGIFY ) PUSH_RESET_INTERVAL = 40.0;
init( PUSH_MAX_LATENCY, 0.5 ); if ( randomize && BUGGIFY ) PUSH_MAX_LATENCY = 0.0;
init( PUSH_STATS_INTERVAL, 10.0 );
init( PUSH_STATS_SLOW_AMOUNT, 2 );
init( PUSH_STATS_SLOW_RATIO, 0.5 );
init( TLOG_POP_BATCH_SIZE, 1000 ); if ( randomize && BUGGIFY ) TLOG_POP_BATCH_SIZE = 10;
init( TLOG_POPPED_VER_LAG_THRESHOLD_FOR_TLOGPOP_TRACE, 250e6 );
init( BLOCKING_PEEK_TIMEOUT, 0.4 );
init( ENABLE_DETAILED_TLOG_POP_TRACE, false ); if ( randomize && BUGGIFY ) ENABLE_DETAILED_TLOG_POP_TRACE = true;
init( PEEK_BATCHING_EMPTY_MSG, false ); if ( randomize && BUGGIFY ) PEEK_BATCHING_EMPTY_MSG = true;
init( PEEK_BATCHING_EMPTY_MSG_INTERVAL, 0.001 ); if ( randomize && BUGGIFY ) PEEK_BATCHING_EMPTY_MSG_INTERVAL = 0.01;
init( POP_FROM_LOG_DELAY, 1 ); if ( randomize && BUGGIFY ) POP_FROM_LOG_DELAY = 0;
// disk snapshot max timeout, to be put in TLog, storage and coordinator nodes
init( MAX_FORKED_PROCESS_OUTPUT, 1024 );
init( SNAP_CREATE_MAX_TIMEOUT, isSimulated ? 70.0 : 300.0 );
init( SNAP_MINIMUM_TIME_GAP, 5.0 );
init( SNAP_NETWORK_FAILURE_RETRY_LIMIT, 10 );
init( MAX_STORAGE_SNAPSHOT_FAULT_TOLERANCE, 1 );
init( MAX_COORDINATOR_SNAPSHOT_FAULT_TOLERANCE, 1 );
init( SNAPSHOT_ALL_STATEFUL_PROCESSES, false ); if ( randomize && BUGGIFY ) SNAPSHOT_ALL_STATEFUL_PROCESSES = true;
// Data distribution queue
init( HEALTH_POLL_TIME, 1.0 );
init( BEST_TEAM_STUCK_DELAY, 1.0 );
init( DEST_OVERLOADED_DELAY, 0.2 );
init( BG_REBALANCE_POLLING_INTERVAL, 10.0 );
init( BG_REBALANCE_SWITCH_CHECK_INTERVAL, 5.0 ); if (randomize && BUGGIFY) BG_REBALANCE_SWITCH_CHECK_INTERVAL = 1.0;
init( DD_QUEUE_LOGGING_INTERVAL, 5.0 );
init( DD_QUEUE_COUNTER_REFRESH_INTERVAL, 60.0 );
// 100 / 60 < 2 trace/sec ~ 2 * 200 = 400b/sec
init( DD_QUEUE_COUNTER_MAX_LOG, 100 ); if( randomize && BUGGIFY ) DD_QUEUE_COUNTER_MAX_LOG = 1;
init( DD_QUEUE_COUNTER_SUMMARIZE, true );
init( RELOCATION_PARALLELISM_PER_SOURCE_SERVER, 2 ); if( randomize && BUGGIFY ) RELOCATION_PARALLELISM_PER_SOURCE_SERVER = 1;
init( RELOCATION_PARALLELISM_PER_DEST_SERVER, 10 ); if( randomize && BUGGIFY ) RELOCATION_PARALLELISM_PER_DEST_SERVER = 1; // Note: if this is smaller than FETCH_KEYS_PARALLELISM, this will artificially reduce performance. The current default of 10 is probably too high but is set conservatively for now.
init( DD_QUEUE_MAX_KEY_SERVERS, 100 ); if( randomize && BUGGIFY ) DD_QUEUE_MAX_KEY_SERVERS = 1;
init( DD_REBALANCE_PARALLELISM, 50 );
init( DD_REBALANCE_RESET_AMOUNT, 30 );
init( INFLIGHT_PENALTY_HEALTHY, 1.0 );
init( INFLIGHT_PENALTY_UNHEALTHY, 500.0 );
init( INFLIGHT_PENALTY_ONE_LEFT, 1000.0 );
init( USE_OLD_NEEDED_SERVERS, false );
init( PRIORITY_RECOVER_MOVE, 110 );
init( PRIORITY_REBALANCE_UNDERUTILIZED_TEAM, 120 );
init( PRIORITY_REBALANCE_READ_UNDERUTIL_TEAM, 121 );
init( PRIORITY_REBALANCE_OVERUTILIZED_TEAM, 122 );
init( PRIORITY_REBALANCE_READ_OVERUTIL_TEAM, 123 );
init( PRIORITY_PERPETUAL_STORAGE_WIGGLE, 139 );
init( PRIORITY_TEAM_HEALTHY, 140 );
init( PRIORITY_TEAM_CONTAINS_UNDESIRED_SERVER, 150 );
init( PRIORITY_TEAM_REDUNDANT, 200 );
init( PRIORITY_MERGE_SHARD, 340 );
init( PRIORITY_POPULATE_REGION, 600 );
init( PRIORITY_TEAM_UNHEALTHY, 700 );
init( PRIORITY_TEAM_2_LEFT, 709 );
init( PRIORITY_TEAM_1_LEFT, 800 );
init( PRIORITY_TEAM_FAILED, 805 );
init( PRIORITY_TEAM_0_LEFT, 809 );
init( PRIORITY_SPLIT_SHARD, 950 ); if( randomize && BUGGIFY ) PRIORITY_SPLIT_SHARD = 350;
init( PRIORITY_ENFORCE_MOVE_OUT_OF_PHYSICAL_SHARD, 960 ); if( randomize && BUGGIFY ) PRIORITY_ENFORCE_MOVE_OUT_OF_PHYSICAL_SHARD = 360; // Set as the lowest priority
// Data distribution
init( SHARD_ENCODE_LOCATION_METADATA, false ); if( randomize && BUGGIFY ) SHARD_ENCODE_LOCATION_METADATA = true;
init( ENABLE_DD_PHYSICAL_SHARD, false ); // EXPERIMENTAL; If true, SHARD_ENCODE_LOCATION_METADATA must be true; When true, optimization of data move between DCs is disabled
init( MAX_PHYSICAL_SHARD_BYTES, 500000000 ); // 500 MB; for ENABLE_DD_PHYSICAL_SHARD; smaller leads to larger number of physicalShard per storage server
init( PHYSICAL_SHARD_METRICS_DELAY, 300.0 ); // 300 seconds; for ENABLE_DD_PHYSICAL_SHARD
init( ANONYMOUS_PHYSICAL_SHARD_TRANSITION_TIME, 600.0 ); if( randomize && BUGGIFY ) ANONYMOUS_PHYSICAL_SHARD_TRANSITION_TIME = 0.0; // 600 seconds; for ENABLE_DD_PHYSICAL_SHARD
init( READ_REBALANCE_CPU_THRESHOLD, 15.0 );
init( READ_REBALANCE_SRC_PARALLELISM, 20 );
init( READ_REBALANCE_SHARD_TOPK, READ_REBALANCE_SRC_PARALLELISM * 2 );
init( READ_REBALANCE_DIFF_FRAC, 0.3);
init( READ_REBALANCE_MAX_SHARD_FRAC, 0.2); // FIXME: add buggify here when we have DD test, seems DD is pretty sensitive to this parameter
init( RETRY_RELOCATESHARD_DELAY, 0.1 );
init( DATA_DISTRIBUTION_FAILURE_REACTION_TIME, 60.0 ); if( randomize && BUGGIFY ) DATA_DISTRIBUTION_FAILURE_REACTION_TIME = 1.0;
bool buggifySmallShards = randomize && BUGGIFY;
bool simulationMediumShards = !buggifySmallShards && isSimulated && randomize && !BUGGIFY; // prefer smaller shards in simulation
// FIXME: increase this even more eventually
init( MIN_SHARD_BYTES, 10000000 ); if( buggifySmallShards ) MIN_SHARD_BYTES = 40000; if (simulationMediumShards) MIN_SHARD_BYTES = 200000; //FIXME: data distribution tracker (specifically StorageMetrics) relies on this number being larger than the maximum size of a key value pair
init( SHARD_BYTES_RATIO, 4 );
init( SHARD_BYTES_PER_SQRT_BYTES, 45 ); if( buggifySmallShards ) SHARD_BYTES_PER_SQRT_BYTES = 0;//Approximately 10000 bytes per shard
init( MAX_SHARD_BYTES, 500000000 );
init( KEY_SERVER_SHARD_BYTES, 500000000 );
init( SHARD_MAX_READ_DENSITY_RATIO, 8.0); if (randomize && BUGGIFY) SHARD_MAX_READ_DENSITY_RATIO = 2.0;
/*
The bytesRead/byteSize radio. Will be declared as read hot when larger than this. 8.0 was chosen to avoid reporting table scan as read hot.
*/
init ( SHARD_READ_HOT_BANDWIDTH_MIN_PER_KSECONDS, 1666667 * 1000);
/*
The read bandwidth of a given shard needs to be larger than this value in order to be evaluated if it's read hot. The roughly 1.67MB per second is calculated as following:
- Heuristic data suggests that each storage process can do max 500K read operations per second
- Each read has a minimum cost of EMPTY_READ_PENALTY, which is 20 bytes
- Thus that gives a minimum 10MB per second
- But to be conservative, set that number to be 1/6 of 10MB, which is roughly 1,666,667 bytes per second
Shard with a read bandwidth smaller than this value will never be too busy to handle the reads.
*/
init( SHARD_MAX_BYTES_READ_PER_KSEC_JITTER, 0.1 );
bool buggifySmallBandwidthSplit = randomize && BUGGIFY;
init( SHARD_MAX_BYTES_PER_KSEC, 1LL*1000000*1000 ); if( buggifySmallBandwidthSplit ) SHARD_MAX_BYTES_PER_KSEC = 10LL*1000*1000;
/* 1*1MB/sec * 1000sec/ksec
Shards with more than this bandwidth will be split immediately.
For a large shard (100MB), it will be split into multiple shards with sizes < SHARD_SPLIT_BYTES_PER_KSEC;
all but one split shard will be moved; so splitting may cost ~100MB of work or about 10MB/sec over a 10 sec sampling window.
If the sampling window is too much longer, the MVCC window will fill up while we wait.
If SHARD_MAX_BYTES_PER_KSEC is too much lower, we could do a lot of data movement work in response to a small impulse of bandwidth.
If SHARD_MAX_BYTES_PER_KSEC is too high relative to the I/O bandwidth of a given server, a workload can remain concentrated on a single
team indefinitely, limiting performance.
*/
init( SHARD_MIN_BYTES_PER_KSEC, 100 * 1000 * 1000 ); if( buggifySmallBandwidthSplit ) SHARD_MIN_BYTES_PER_KSEC = 200*1*1000;
/* 100*1KB/sec * 1000sec/ksec
Shards with more than this bandwidth will not be merged.
Obviously this needs to be significantly less than SHARD_MAX_BYTES_PER_KSEC, else we will repeatedly merge and split.
It should probably be significantly less than SHARD_SPLIT_BYTES_PER_KSEC, else we will merge right after splitting.
The number of extra shards in the database because of bandwidth splitting can't be more than about W/SHARD_MIN_BYTES_PER_KSEC, where
W is the maximum bandwidth of the entire database in bytes/ksec. For 250MB/sec write bandwidth, (250MB/sec)/(200KB/sec) = 1250 extra
shards.
The bandwidth sample maintained by the storage server needs to be accurate enough to reliably measure this minimum bandwidth. See
BYTES_WRITTEN_UNITS_PER_SAMPLE. If this number is too low, the storage server needs to spend more memory and time on sampling.
*/
init( SHARD_SPLIT_BYTES_PER_KSEC, 250 * 1000 * 1000 ); if( buggifySmallBandwidthSplit ) SHARD_SPLIT_BYTES_PER_KSEC = 50 * 1000 * 1000;
/* 250*1KB/sec * 1000sec/ksec
When splitting a shard, it is split into pieces with less than this bandwidth.
Obviously this should be less than half of SHARD_MAX_BYTES_PER_KSEC.
Smaller values mean that high bandwidth shards are split into more pieces, more quickly utilizing large numbers of servers to handle the
bandwidth.
Too many pieces (too small a value) may stress data movement mechanisms (see e.g. RELOCATION_PARALLELISM_PER_SOURCE_SERVER).
If this value is too small relative to SHARD_MIN_BYTES_PER_KSEC immediate merging work will be generated.
*/
init( STORAGE_METRIC_TIMEOUT, isSimulated ? 60.0 : 600.0 ); if( randomize && BUGGIFY ) STORAGE_METRIC_TIMEOUT = deterministicRandom()->coinflip() ? 10.0 : 30.0;
init( METRIC_DELAY, 0.1 ); if( randomize && BUGGIFY ) METRIC_DELAY = 1.0;
init( ALL_DATA_REMOVED_DELAY, 1.0 );
init( INITIAL_FAILURE_REACTION_DELAY, 30.0 ); if( randomize && BUGGIFY ) INITIAL_FAILURE_REACTION_DELAY = 0.0;
init( CHECK_TEAM_DELAY, 30.0 );
init( PERPETUAL_WIGGLE_DELAY, 50.0 );
init( PERPETUAL_WIGGLE_DISABLE_REMOVER, true );
init( LOG_ON_COMPLETION_DELAY, DD_QUEUE_LOGGING_INTERVAL );
init( BEST_TEAM_MAX_TEAM_TRIES, 10 );
init( BEST_TEAM_OPTION_COUNT, 4 );
init( BEST_OF_AMT, 4 );
init( SERVER_LIST_DELAY, 1.0 );
init( RECRUITMENT_IDLE_DELAY, 1.0 );
init( STORAGE_RECRUITMENT_DELAY, 10.0 );
init( TSS_HACK_IDENTITY_MAPPING, false ); // THIS SHOULD NEVER BE SET IN PROD. Only for performance testing
init( TSS_RECRUITMENT_TIMEOUT, 3*STORAGE_RECRUITMENT_DELAY ); if (randomize && BUGGIFY ) TSS_RECRUITMENT_TIMEOUT = 1.0; // Super low timeout should cause tss recruitments to fail
init( TSS_DD_CHECK_INTERVAL, 60.0 ); if (randomize && BUGGIFY ) TSS_DD_CHECK_INTERVAL = 1.0; // May kill all TSS quickly
init( DATA_DISTRIBUTION_LOGGING_INTERVAL, 5.0 );
init( DD_ENABLED_CHECK_DELAY, 1.0 );
init( DD_STALL_CHECK_DELAY, 0.4 ); //Must be larger than 2*MAX_BUGGIFIED_DELAY
init( DD_LOW_BANDWIDTH_DELAY, isSimulated ? 15.0 : 240.0 ); if( randomize && BUGGIFY ) DD_LOW_BANDWIDTH_DELAY = 0; //Because of delayJitter, this should be less than 0.9 * DD_MERGE_COALESCE_DELAY
init( DD_MERGE_COALESCE_DELAY, isSimulated ? 30.0 : 300.0 ); if( randomize && BUGGIFY ) DD_MERGE_COALESCE_DELAY = 0.001;
init( STORAGE_METRICS_POLLING_DELAY, 2.0 ); if( randomize && BUGGIFY ) STORAGE_METRICS_POLLING_DELAY = 15.0;
init( STORAGE_METRICS_RANDOM_DELAY, 0.2 );
init( AVAILABLE_SPACE_RATIO_CUTOFF, 0.05 );
init( DESIRED_TEAMS_PER_SERVER, 5 ); if( randomize && BUGGIFY ) DESIRED_TEAMS_PER_SERVER = deterministicRandom()->randomInt(1, 10);
init( MAX_TEAMS_PER_SERVER, 5*DESIRED_TEAMS_PER_SERVER );
init( DD_SHARD_SIZE_GRANULARITY, 5000000 );
init( DD_SHARD_SIZE_GRANULARITY_SIM, 500000 ); if( randomize && BUGGIFY ) DD_SHARD_SIZE_GRANULARITY_SIM = 0;
init( DD_MOVE_KEYS_PARALLELISM, 15 ); if( randomize && BUGGIFY ) DD_MOVE_KEYS_PARALLELISM = 1;
init( DD_FETCH_SOURCE_PARALLELISM, 1000 ); if( randomize && BUGGIFY ) DD_FETCH_SOURCE_PARALLELISM = 1;
init( DD_MERGE_LIMIT, 2000 ); if( randomize && BUGGIFY ) DD_MERGE_LIMIT = 2;
init( DD_SHARD_METRICS_TIMEOUT, 60.0 ); if( randomize && BUGGIFY ) DD_SHARD_METRICS_TIMEOUT = 0.1;
init( DD_LOCATION_CACHE_SIZE, 2000000 ); if( randomize && BUGGIFY ) DD_LOCATION_CACHE_SIZE = 3;
init( MOVEKEYS_LOCK_POLLING_DELAY, 5.0 );
init( DEBOUNCE_RECRUITING_DELAY, 5.0 );
init( DD_FAILURE_TIME, 1.0 ); if( randomize && BUGGIFY ) DD_FAILURE_TIME = 10.0;
init( DD_ZERO_HEALTHY_TEAM_DELAY, 1.0 );
init( REMOTE_KV_STORE, false );
init( REBOOT_KV_STORE_DELAY, 0.1 );
init( REMOTE_KV_STORE_MAX_INIT_DURATION, 10.0 );
init( REBALANCE_MAX_RETRIES, 100 );
init( DD_OVERLAP_PENALTY, 10000 );
init( DD_EXCLUDE_MIN_REPLICAS, 1 );
init( DD_VALIDATE_LOCALITY, true ); if( randomize && BUGGIFY ) DD_VALIDATE_LOCALITY = false;
init( DD_CHECK_INVALID_LOCALITY_DELAY, 60 ); if( randomize && BUGGIFY ) DD_CHECK_INVALID_LOCALITY_DELAY = 1 + deterministicRandom()->random01() * 600;
init( DD_ENABLE_VERBOSE_TRACING, false ); if( randomize && BUGGIFY ) DD_ENABLE_VERBOSE_TRACING = true;
init( DD_SS_FAILURE_VERSIONLAG, 250000000 );
init( DD_SS_ALLOWED_VERSIONLAG, 200000000 ); if( randomize && BUGGIFY ) { DD_SS_FAILURE_VERSIONLAG = deterministicRandom()->randomInt(15000000, 500000000); DD_SS_ALLOWED_VERSIONLAG = 0.75 * DD_SS_FAILURE_VERSIONLAG; }
init( DD_SS_STUCK_TIME_LIMIT, 300.0 ); if( randomize && BUGGIFY ) { DD_SS_STUCK_TIME_LIMIT = 200.0 + deterministicRandom()->random01() * 100.0; }
init( DD_TEAMS_INFO_PRINT_INTERVAL, 60 ); if( randomize && BUGGIFY ) DD_TEAMS_INFO_PRINT_INTERVAL = 10;
init( DD_TEAMS_INFO_PRINT_YIELD_COUNT, 100 ); if( randomize && BUGGIFY ) DD_TEAMS_INFO_PRINT_YIELD_COUNT = deterministicRandom()->random01() * 1000 + 1;
init( DD_TEAM_ZERO_SERVER_LEFT_LOG_DELAY, 120 ); if( randomize && BUGGIFY ) DD_TEAM_ZERO_SERVER_LEFT_LOG_DELAY = 5;
init( DD_STORAGE_WIGGLE_PAUSE_THRESHOLD, 10 ); if( randomize && BUGGIFY ) DD_STORAGE_WIGGLE_PAUSE_THRESHOLD = 1000;
init( DD_STORAGE_WIGGLE_STUCK_THRESHOLD, 20 );
init( DD_STORAGE_WIGGLE_MIN_SS_AGE_SEC, isSimulated ? 2 : 21 * 60 * 60 * 24 ); if(randomize && BUGGIFY) DD_STORAGE_WIGGLE_MIN_SS_AGE_SEC = isSimulated ? 0: 120;
init( DD_TENANT_AWARENESS_ENABLED, false );
init( STORAGE_QUOTA_ENABLED, false ); if(isSimulated) STORAGE_QUOTA_ENABLED = deterministicRandom()->coinflip();
init( TENANT_CACHE_LIST_REFRESH_INTERVAL, 2 ); if( randomize && BUGGIFY ) TENANT_CACHE_LIST_REFRESH_INTERVAL = deterministicRandom()->randomInt(1, 10);
init( TENANT_CACHE_STORAGE_USAGE_REFRESH_INTERVAL, 2 ); if( randomize && BUGGIFY ) TENANT_CACHE_STORAGE_USAGE_REFRESH_INTERVAL = deterministicRandom()->randomInt(1, 10);
init( TENANT_CACHE_STORAGE_QUOTA_REFRESH_INTERVAL, 10 ); if( randomize && BUGGIFY ) TENANT_CACHE_STORAGE_QUOTA_REFRESH_INTERVAL = deterministicRandom()->randomInt(1, 10);
init( TENANT_CACHE_STORAGE_USAGE_TRACE_INTERVAL, 300 );
init( CP_FETCH_TENANTS_OVER_STORAGE_QUOTA_INTERVAL, 5 ); if( randomize && BUGGIFY ) CP_FETCH_TENANTS_OVER_STORAGE_QUOTA_INTERVAL = deterministicRandom()->randomInt(1, 10);
// TeamRemover
init( TR_FLAG_DISABLE_MACHINE_TEAM_REMOVER, false ); if( randomize && BUGGIFY ) TR_FLAG_DISABLE_MACHINE_TEAM_REMOVER = deterministicRandom()->random01() < 0.1 ? true : false; // false by default. disable the consistency check when it's true
init( TR_REMOVE_MACHINE_TEAM_DELAY, 60.0 ); if( randomize && BUGGIFY ) TR_REMOVE_MACHINE_TEAM_DELAY = deterministicRandom()->random01() * 60.0;
init( TR_FLAG_REMOVE_MT_WITH_MOST_TEAMS, true ); if( randomize && BUGGIFY ) TR_FLAG_REMOVE_MT_WITH_MOST_TEAMS = deterministicRandom()->random01() < 0.1 ? true : false;
init( TR_FLAG_DISABLE_SERVER_TEAM_REMOVER, false ); if( randomize && BUGGIFY ) TR_FLAG_DISABLE_SERVER_TEAM_REMOVER = deterministicRandom()->random01() < 0.1 ? true : false; // false by default. disable the consistency check when it's true
init( TR_REMOVE_SERVER_TEAM_DELAY, 60.0 ); if( randomize && BUGGIFY ) TR_REMOVE_SERVER_TEAM_DELAY = deterministicRandom()->random01() * 60.0;
init( TR_REMOVE_SERVER_TEAM_EXTRA_DELAY, 5.0 ); if( randomize && BUGGIFY ) TR_REMOVE_SERVER_TEAM_EXTRA_DELAY = deterministicRandom()->random01() * 10.0;
init( DD_REMOVE_STORE_ENGINE_DELAY, 60.0 ); if( randomize && BUGGIFY ) DD_REMOVE_STORE_ENGINE_DELAY = deterministicRandom()->random01() * 60.0;
// KeyValueStore SQLITE
init( CLEAR_BUFFER_SIZE, 20000 );
init( READ_VALUE_TIME_ESTIMATE, .00005 );
init( READ_RANGE_TIME_ESTIMATE, .00005 );
init( SET_TIME_ESTIMATE, .00005 );
init( CLEAR_TIME_ESTIMATE, .00005 );
init( COMMIT_TIME_ESTIMATE, .005 );
init( CHECK_FREE_PAGE_AMOUNT, 100 ); if( randomize && BUGGIFY ) CHECK_FREE_PAGE_AMOUNT = 5;
init( SOFT_HEAP_LIMIT, 300e6 );
init( SQLITE_PAGE_SCAN_ERROR_LIMIT, 10000 );
init( SQLITE_BTREE_PAGE_USABLE, 4096 - 8); // pageSize - reserveSize for page checksum
init( SQLITE_CHUNK_SIZE_PAGES, 25600 ); // 100MB
init( SQLITE_CHUNK_SIZE_PAGES_SIM, 1024 ); // 4MB
init( SQLITE_READER_THREADS, 64 ); // number of read threads
init( SQLITE_WRITE_WINDOW_SECONDS, -1 );
init( SQLITE_CURSOR_MAX_LIFETIME_BYTES, 1e6 ); if (buggifySmallShards || simulationMediumShards) SQLITE_CURSOR_MAX_LIFETIME_BYTES = MIN_SHARD_BYTES; if( randomize && BUGGIFY ) SQLITE_CURSOR_MAX_LIFETIME_BYTES = 0;
init( SQLITE_WRITE_WINDOW_LIMIT, -1 );
if( randomize && BUGGIFY ) {
// Choose an window between .01 and 1.01 seconds.
SQLITE_WRITE_WINDOW_SECONDS = 0.01 + deterministicRandom()->random01();
// Choose random operations per second
int opsPerSecond = deterministicRandom()->randomInt(1000, 5000);
// Set window limit to opsPerSecond scaled down to window size
SQLITE_WRITE_WINDOW_LIMIT = opsPerSecond * SQLITE_WRITE_WINDOW_SECONDS;
}
// Maximum and minimum cell payload bytes allowed on primary page as calculated in SQLite.
// These formulas are copied from SQLite, using its hardcoded constants, so if you are
// changing this you should also be changing SQLite.
init( SQLITE_BTREE_CELL_MAX_LOCAL, (SQLITE_BTREE_PAGE_USABLE - 12) * 64/255 - 23 );
init( SQLITE_BTREE_CELL_MIN_LOCAL, (SQLITE_BTREE_PAGE_USABLE - 12) * 32/255 - 23 );
// Maximum FDB fragment key and value bytes that can fit in a primary btree page
init( SQLITE_FRAGMENT_PRIMARY_PAGE_USABLE,
SQLITE_BTREE_CELL_MAX_LOCAL
- 1 // vdbeRecord header length size
- 2 // max key length size
- 4 // max index length size
- 2 // max value fragment length size
);
// Maximum FDB fragment value bytes in an overflow page
init( SQLITE_FRAGMENT_OVERFLOW_PAGE_USABLE,
SQLITE_BTREE_PAGE_USABLE
- 4 // next pageNumber size
);
init( SQLITE_FRAGMENT_MIN_SAVINGS, 0.20 );
// KeyValueStoreSqlite spring cleaning
init( SPRING_CLEANING_NO_ACTION_INTERVAL, 1.0 ); if( randomize && BUGGIFY ) SPRING_CLEANING_NO_ACTION_INTERVAL = deterministicRandom()->coinflip() ? 0.1 : deterministicRandom()->random01() * 5;
init( SPRING_CLEANING_LAZY_DELETE_INTERVAL, 0.1 ); if( randomize && BUGGIFY ) SPRING_CLEANING_LAZY_DELETE_INTERVAL = deterministicRandom()->coinflip() ? 1.0 : deterministicRandom()->random01() * 5;
init( SPRING_CLEANING_VACUUM_INTERVAL, 1.0 ); if( randomize && BUGGIFY ) SPRING_CLEANING_VACUUM_INTERVAL = deterministicRandom()->coinflip() ? 0.1 : deterministicRandom()->random01() * 5;
init( SPRING_CLEANING_LAZY_DELETE_TIME_ESTIMATE, .010 ); if( randomize && BUGGIFY ) SPRING_CLEANING_LAZY_DELETE_TIME_ESTIMATE = deterministicRandom()->random01() * 5;
init( SPRING_CLEANING_VACUUM_TIME_ESTIMATE, .010 ); if( randomize && BUGGIFY ) SPRING_CLEANING_VACUUM_TIME_ESTIMATE = deterministicRandom()->random01() * 5;
init( SPRING_CLEANING_VACUUMS_PER_LAZY_DELETE_PAGE, 0.0 ); if( randomize && BUGGIFY ) SPRING_CLEANING_VACUUMS_PER_LAZY_DELETE_PAGE = deterministicRandom()->coinflip() ? 1e9 : deterministicRandom()->random01() * 5;
init( SPRING_CLEANING_MIN_LAZY_DELETE_PAGES, 0 ); if( randomize && BUGGIFY ) SPRING_CLEANING_MIN_LAZY_DELETE_PAGES = deterministicRandom()->randomInt(1, 100);
init( SPRING_CLEANING_MAX_LAZY_DELETE_PAGES, 1e9 ); if( randomize && BUGGIFY ) SPRING_CLEANING_MAX_LAZY_DELETE_PAGES = deterministicRandom()->coinflip() ? 0 : deterministicRandom()->randomInt(1, 1e4);
init( SPRING_CLEANING_LAZY_DELETE_BATCH_SIZE, 100 ); if( randomize && BUGGIFY ) SPRING_CLEANING_LAZY_DELETE_BATCH_SIZE = deterministicRandom()->randomInt(1, 1000);
init( SPRING_CLEANING_MIN_VACUUM_PAGES, 1 ); if( randomize && BUGGIFY ) SPRING_CLEANING_MIN_VACUUM_PAGES = deterministicRandom()->randomInt(0, 100);
init( SPRING_CLEANING_MAX_VACUUM_PAGES, 1e9 ); if( randomize && BUGGIFY ) SPRING_CLEANING_MAX_VACUUM_PAGES = deterministicRandom()->coinflip() ? 0 : deterministicRandom()->randomInt(1, 1e4);
// KeyValueStoreMemory
init( REPLACE_CONTENTS_BYTES, 1e5 );
// KeyValueStoreRocksDB
init( ROCKSDB_SET_READ_TIMEOUT, !isSimulated );
init( ROCKSDB_LEVEL_COMPACTION_DYNAMIC_LEVEL_BYTES, true ); if( randomize && BUGGIFY ) ROCKSDB_LEVEL_COMPACTION_DYNAMIC_LEVEL_BYTES = false;
init( ROCKSDB_SUGGEST_COMPACT_CLEAR_RANGE, true ); if( randomize && BUGGIFY ) ROCKSDB_SUGGEST_COMPACT_CLEAR_RANGE = false;
init( ROCKSDB_READ_RANGE_ROW_LIMIT, 65535 ); if( randomize && BUGGIFY ) ROCKSDB_READ_RANGE_ROW_LIMIT = deterministicRandom()->randomInt(2, 10);
init( ROCKSDB_READER_THREAD_PRIORITY, 0 );
init( ROCKSDB_WRITER_THREAD_PRIORITY, 0 );
init( ROCKSDB_BACKGROUND_PARALLELISM, 4 );
init( ROCKSDB_READ_PARALLELISM, 4 );
// If true, do not process and store RocksDB logs
init( ROCKSDB_MUTE_LOGS, true );
// Use a smaller memtable in simulation to avoid OOMs.
int64_t memtableBytes = isSimulated ? 1024 * 1024 : 512 * 1024 * 1024;
init( ROCKSDB_MEMTABLE_BYTES, memtableBytes );
init( ROCKSDB_LEVEL_STYLE_COMPACTION, true );
init( ROCKSDB_UNSAFE_AUTO_FSYNC, false );
init( ROCKSDB_PERIODIC_COMPACTION_SECONDS, 0 );
init( ROCKSDB_PREFIX_LEN, 0 );
// If rocksdb block cache size is 0, the default 8MB is used.
int64_t blockCacheSize = isSimulated ? 16 * 1024 * 1024 : 1024 * 1024 * 1024 /* 1GB */;
init( ROCKSDB_BLOCK_CACHE_SIZE, blockCacheSize );
init( ROCKSDB_METRICS_DELAY, 60.0 );
// ROCKSDB_READ_VALUE_TIMEOUT, ROCKSDB_READ_VALUE_PREFIX_TIMEOUT, ROCKSDB_READ_RANGE_TIMEOUT knobs:
// In simulation, increasing the read operation timeouts to 5 minutes, as some of the tests have
// very high load and single read thread cannot process all the load within the timeouts.
init( ROCKSDB_READ_VALUE_TIMEOUT, 5.0 ); if (isSimulated) ROCKSDB_READ_VALUE_TIMEOUT = 5 * 60;
init( ROCKSDB_READ_VALUE_PREFIX_TIMEOUT, 5.0 ); if (isSimulated) ROCKSDB_READ_VALUE_PREFIX_TIMEOUT = 5 * 60;
init( ROCKSDB_READ_RANGE_TIMEOUT, 5.0 ); if (isSimulated) ROCKSDB_READ_RANGE_TIMEOUT = 5 * 60;
init( ROCKSDB_READ_QUEUE_WAIT, 1.0 );
init( ROCKSDB_READ_QUEUE_HARD_MAX, 1000 );
init( ROCKSDB_READ_QUEUE_SOFT_MAX, 500 );
init( ROCKSDB_FETCH_QUEUE_HARD_MAX, 100 );
init( ROCKSDB_FETCH_QUEUE_SOFT_MAX, 50 );
init( ROCKSDB_HISTOGRAMS_SAMPLE_RATE, 0.001 ); if( randomize && BUGGIFY ) ROCKSDB_HISTOGRAMS_SAMPLE_RATE = 0;
init( ROCKSDB_READ_RANGE_ITERATOR_REFRESH_TIME, 30.0 ); if( randomize && BUGGIFY ) ROCKSDB_READ_RANGE_ITERATOR_REFRESH_TIME = 0.1;
init( ROCKSDB_READ_RANGE_REUSE_ITERATORS, true ); if( randomize && BUGGIFY ) ROCKSDB_READ_RANGE_REUSE_ITERATORS = deterministicRandom()->coinflip();
init( ROCKSDB_READ_RANGE_REUSE_BOUNDED_ITERATORS, false ); if( randomize && BUGGIFY ) ROCKSDB_READ_RANGE_REUSE_BOUNDED_ITERATORS = deterministicRandom()->coinflip();
init( ROCKSDB_READ_RANGE_BOUNDED_ITERATORS_MAX_LIMIT, 200 );
// Set to 0 to disable rocksdb write rate limiting. Rate limiter unit: bytes per second.
init( ROCKSDB_WRITE_RATE_LIMITER_BYTES_PER_SEC, 0 );
// If true, enables dynamic adjustment of ROCKSDB_WRITE_RATE_LIMITER_BYTES according to the recent demand of background IO.
init( ROCKSDB_WRITE_RATE_LIMITER_AUTO_TUNE, true );
init( DEFAULT_FDB_ROCKSDB_COLUMN_FAMILY, "fdb");
init( ROCKSDB_DISABLE_AUTO_COMPACTIONS, false ); // RocksDB default
init( ROCKSDB_PERFCONTEXT_ENABLE, false ); if( randomize && BUGGIFY ) ROCKSDB_PERFCONTEXT_ENABLE = deterministicRandom()->coinflip();
init( ROCKSDB_PERFCONTEXT_SAMPLE_RATE, 0.0001 );
init( ROCKSDB_METRICS_SAMPLE_INTERVAL, 0.0);
init( ROCKSDB_MAX_SUBCOMPACTIONS, 2 );
init( ROCKSDB_SOFT_PENDING_COMPACT_BYTES_LIMIT, 64000000000 ); // 64GB, Rocksdb option, Writes will slow down.
init( ROCKSDB_HARD_PENDING_COMPACT_BYTES_LIMIT, 100000000000 ); // 100GB, Rocksdb option, Writes will stall.
init( ROCKSDB_CAN_COMMIT_COMPACT_BYTES_LIMIT, 50000000000 ); // 50GB, Commit waits.
// Enable this knob only for experminatal purpose, never enable this in production.
// If enabled, all the committed in-memory memtable writes are lost on a crash.
init( ROCKSDB_DISABLE_WAL_EXPERIMENTAL, false );
// If ROCKSDB_SINGLEKEY_DELETES_ON_CLEARRANGE is enabled, disable ROCKSDB_ENABLE_CLEAR_RANGE_EAGER_READS knob.
// These knobs have contrary functionality.
init( ROCKSDB_SINGLEKEY_DELETES_ON_CLEARRANGE, false ); if( randomize && BUGGIFY ) ROCKSDB_SINGLEKEY_DELETES_ON_CLEARRANGE = deterministicRandom()->coinflip();
init( ROCKSDB_SINGLEKEY_DELETES_BYTES_LIMIT, 200000 ); // 200KB
init( ROCKSDB_ENABLE_CLEAR_RANGE_EAGER_READS, true ); if( randomize && BUGGIFY ) ROCKSDB_ENABLE_CLEAR_RANGE_EAGER_READS = deterministicRandom()->coinflip();
// ROCKSDB_STATS_LEVEL=1 indicates rocksdb::StatsLevel::kExceptHistogramOrTimers
// Refer StatsLevel: https://github.com/facebook/rocksdb/blob/main/include/rocksdb/statistics.h#L594
init( ROCKSDB_STATS_LEVEL, 1 ); if( randomize && BUGGIFY ) ROCKSDB_STATS_LEVEL = deterministicRandom()->randomInt(0, 6);
// Can commit will delay ROCKSDB_CAN_COMMIT_DELAY_ON_OVERLOAD seconds for
// ROCKSDB_CAN_COMMIT_DELAY_TIMES_ON_OVERLOAD times, if rocksdb overloaded.
// Set ROCKSDB_CAN_COMMIT_DELAY_TIMES_ON_OVERLOAD to 0, to disable
init( ROCKSDB_CAN_COMMIT_DELAY_ON_OVERLOAD, 1 );
init( ROCKSDB_CAN_COMMIT_DELAY_TIMES_ON_OVERLOAD, 5 );
init( ROCKSDB_COMPACTION_READAHEAD_SIZE, 32768 ); // 32 KB, performs bigger reads when doing compaction.
init( ROCKSDB_BLOCK_SIZE, 32768 ); // 32 KB, size of the block in rocksdb cache.
init( ENABLE_SHARDED_ROCKSDB, false );
init( ROCKSDB_WRITE_BUFFER_SIZE, 1 << 30 ); // 1G
init( ROCKSDB_CF_WRITE_BUFFER_SIZE, 64 << 20 ); // 64M, RocksDB default.
init( ROCKSDB_MAX_TOTAL_WAL_SIZE, 0 ); // RocksDB default.
init( ROCKSDB_MAX_BACKGROUND_JOBS, 2 ); // RocksDB default.
init( ROCKSDB_DELETE_OBSOLETE_FILE_PERIOD, 21600 ); // 6h, RocksDB default.
init( ROCKSDB_PHYSICAL_SHARD_CLEAN_UP_DELAY, isSimulated ? 10.0 : 300.0 ); // Delays shard clean up, must be larger than ROCKSDB_READ_VALUE_TIMEOUT to prevent reading deleted shard.
// Leader election
bool longLeaderElection = randomize && BUGGIFY;
init( MAX_NOTIFICATIONS, 100000 );
init( MIN_NOTIFICATIONS, 100 );
init( NOTIFICATION_FULL_CLEAR_TIME, 10000.0 );
init( CANDIDATE_MIN_DELAY, 0.05 );
init( CANDIDATE_MAX_DELAY, 1.0 );
init( CANDIDATE_GROWTH_RATE, 1.2 );
init( POLLING_FREQUENCY, 2.0 ); if( longLeaderElection ) POLLING_FREQUENCY = 8.0;
init( HEARTBEAT_FREQUENCY, 0.5 ); if( longLeaderElection ) HEARTBEAT_FREQUENCY = 1.0;
// Commit CommitProxy and GRV CommitProxy
init( START_TRANSACTION_BATCH_INTERVAL_MIN, 1e-6 );
init( START_TRANSACTION_BATCH_INTERVAL_MAX, 0.010 );
init( START_TRANSACTION_BATCH_INTERVAL_LATENCY_FRACTION, 0.5 );
init( START_TRANSACTION_BATCH_INTERVAL_SMOOTHER_ALPHA, 0.1 );
init( START_TRANSACTION_BATCH_QUEUE_CHECK_INTERVAL, 0.001 );
init( START_TRANSACTION_MAX_TRANSACTIONS_TO_START, 100000 );
init( START_TRANSACTION_MAX_REQUESTS_TO_START, 10000 );
init( START_TRANSACTION_RATE_WINDOW, 2.0 );
init( START_TRANSACTION_MAX_EMPTY_QUEUE_BUDGET, 10.0 );
init( START_TRANSACTION_MAX_QUEUE_SIZE, 1e6 );
init( KEY_LOCATION_MAX_QUEUE_SIZE, 1e6 );
init( COMMIT_PROXY_LIVENESS_TIMEOUT, 20.0 );
init( COMMIT_TRANSACTION_BATCH_INTERVAL_FROM_IDLE, 0.0005 ); if( randomize && BUGGIFY ) COMMIT_TRANSACTION_BATCH_INTERVAL_FROM_IDLE = 0.005;
init( COMMIT_TRANSACTION_BATCH_INTERVAL_MIN, 0.001 ); if( randomize && BUGGIFY ) COMMIT_TRANSACTION_BATCH_INTERVAL_MIN = 0.1;
init( COMMIT_TRANSACTION_BATCH_INTERVAL_MAX, 0.020 );
init( COMMIT_TRANSACTION_BATCH_INTERVAL_LATENCY_FRACTION, 0.1 );
init( COMMIT_TRANSACTION_BATCH_INTERVAL_SMOOTHER_ALPHA, 0.1 );
init( COMMIT_TRANSACTION_BATCH_COUNT_MAX, 32768 ); if( randomize && BUGGIFY ) COMMIT_TRANSACTION_BATCH_COUNT_MAX = 1000; // Do NOT increase this number beyond 32768, as CommitIds only budget 2 bytes for storing transaction id within each batch
init( COMMIT_BATCHES_MEM_BYTES_HARD_LIMIT, 8LL << 30 ); if (randomize && BUGGIFY) COMMIT_BATCHES_MEM_BYTES_HARD_LIMIT = deterministicRandom()->randomInt64(100LL << 20, 8LL << 30);
init( COMMIT_BATCHES_MEM_FRACTION_OF_TOTAL, 0.5 );
init( COMMIT_BATCHES_MEM_TO_TOTAL_MEM_SCALE_FACTOR, 5.0 );
// these settings disable batch bytes scaling. Try COMMIT_TRANSACTION_BATCH_BYTES_MAX=1e6, COMMIT_TRANSACTION_BATCH_BYTES_SCALE_BASE=50000, COMMIT_TRANSACTION_BATCH_BYTES_SCALE_POWER=0.5?
init( COMMIT_TRANSACTION_BATCH_BYTES_MIN, 100000 );
init( COMMIT_TRANSACTION_BATCH_BYTES_MAX, 100000 ); if( randomize && BUGGIFY ) { COMMIT_TRANSACTION_BATCH_BYTES_MIN = COMMIT_TRANSACTION_BATCH_BYTES_MAX = 1000000; }
init( COMMIT_TRANSACTION_BATCH_BYTES_SCALE_BASE, 100000 );
init( COMMIT_TRANSACTION_BATCH_BYTES_SCALE_POWER, 0.0 );
init( RESOLVER_COALESCE_TIME, 1.0 );
init( BUGGIFIED_ROW_LIMIT, APPLY_MUTATION_BYTES ); if( randomize && BUGGIFY ) BUGGIFIED_ROW_LIMIT = deterministicRandom()->randomInt(3, 30);
init( PROXY_SPIN_DELAY, 0.01 );
init( UPDATE_REMOTE_LOG_VERSION_INTERVAL, 2.0 );
init( MAX_TXS_POP_VERSION_HISTORY, 1e5 );
init( MIN_CONFIRM_INTERVAL, 0.05 );
bool shortRecoveryDuration = randomize && BUGGIFY;
init( ENFORCED_MIN_RECOVERY_DURATION, 0.085 ); if( shortRecoveryDuration ) ENFORCED_MIN_RECOVERY_DURATION = 0.01;
init( REQUIRED_MIN_RECOVERY_DURATION, 0.080 ); if( shortRecoveryDuration ) REQUIRED_MIN_RECOVERY_DURATION = 0.01;
init( ALWAYS_CAUSAL_READ_RISKY, false );
init( MAX_COMMIT_UPDATES, 2000 ); if( randomize && BUGGIFY ) MAX_COMMIT_UPDATES = 1;
init( MAX_PROXY_COMPUTE, 2.0 );
init( MAX_COMPUTE_PER_OPERATION, 0.1 );
init( MAX_COMPUTE_DURATION_LOG_CUTOFF, 0.05 );
init( PROXY_COMPUTE_BUCKETS, 20000 );
init( PROXY_COMPUTE_GROWTH_RATE, 0.01 );
init( TXN_STATE_SEND_AMOUNT, 4 );
init( REPORT_TRANSACTION_COST_ESTIMATION_DELAY, 0.1 );
init( PROXY_REJECT_BATCH_QUEUED_TOO_LONG, true );
bool buggfyUseResolverPrivateMutations = randomize && BUGGIFY && !ENABLE_VERSION_VECTOR_TLOG_UNICAST;
init( PROXY_USE_RESOLVER_PRIVATE_MUTATIONS, false ); if( buggfyUseResolverPrivateMutations ) PROXY_USE_RESOLVER_PRIVATE_MUTATIONS = deterministicRandom()->coinflip();
init( RESET_MASTER_BATCHES, 200 );
init( RESET_RESOLVER_BATCHES, 200 );
init( RESET_MASTER_DELAY, 300.0 );
init( RESET_RESOLVER_DELAY, 300.0 );
init( GLOBAL_CONFIG_MIGRATE_TIMEOUT, 5.0 );
init( GLOBAL_CONFIG_REFRESH_INTERVAL, 1.0 ); if ( randomize && BUGGIFY ) GLOBAL_CONFIG_REFRESH_INTERVAL = 0.1;
init( GLOBAL_CONFIG_REFRESH_TIMEOUT, 10.0 ); if ( randomize && BUGGIFY ) GLOBAL_CONFIG_REFRESH_TIMEOUT = 1.0;
// Master Server
// masterCommitter() in the master server will allow lower priority tasks (e.g. DataDistibution)
// by delay()ing for this amount of time between accepted batches of TransactionRequests.
bool fastBalancing = randomize && BUGGIFY;
init( COMMIT_SLEEP_TIME, 0.0001 ); if( randomize && BUGGIFY ) COMMIT_SLEEP_TIME = 0;
init( KEY_BYTES_PER_SAMPLE, 2e4 ); if( fastBalancing ) KEY_BYTES_PER_SAMPLE = 1e3;
init( MIN_BALANCE_TIME, 0.2 );
init( MIN_BALANCE_DIFFERENCE, 1e6 ); if( fastBalancing ) MIN_BALANCE_DIFFERENCE = 1e4;
init( SECONDS_BEFORE_NO_FAILURE_DELAY, 8 * 3600 );
init( MAX_TXS_SEND_MEMORY, 1e7 ); if( randomize && BUGGIFY ) MAX_TXS_SEND_MEMORY = 1e5;
init( MAX_RECOVERY_VERSIONS, 200 * VERSIONS_PER_SECOND );
init( MAX_RECOVERY_TIME, 20.0 ); if( randomize && BUGGIFY ) MAX_RECOVERY_TIME = 1.0;
init( PROVISIONAL_START_DELAY, 1.0 );
init( PROVISIONAL_MAX_DELAY, 60.0 );
init( PROVISIONAL_DELAY_GROWTH, 1.5 );
init( SECONDS_BEFORE_RECRUIT_BACKUP_WORKER, 4.0 ); if( randomize && BUGGIFY ) SECONDS_BEFORE_RECRUIT_BACKUP_WORKER = deterministicRandom()->random01() * 8;
init( CC_INTERFACE_TIMEOUT, 10.0 ); if( randomize && BUGGIFY ) CC_INTERFACE_TIMEOUT = 0.0;
// Resolver
init( SAMPLE_OFFSET_PER_KEY, 100 );
init( SAMPLE_EXPIRATION_TIME, 1.0 );
init( SAMPLE_POLL_TIME, 0.1 );
init( RESOLVER_STATE_MEMORY_LIMIT, 1e6 );
init( LAST_LIMITED_RATIO, 2.0 );
// Backup Worker
init( BACKUP_TIMEOUT, 0.4 );
init( BACKUP_NOOP_POP_DELAY, 5.0 );
init( BACKUP_FILE_BLOCK_BYTES, 1024 * 1024 );
init( BACKUP_LOCK_BYTES, 3e9 ); if(randomize && BUGGIFY) BACKUP_LOCK_BYTES = deterministicRandom()->randomInt(1024, 4096) * 30 * 1024;
init( BACKUP_UPLOAD_DELAY, 10.0 ); if(randomize && BUGGIFY) BACKUP_UPLOAD_DELAY = deterministicRandom()->random01() * 60;
//Cluster Controller
init( CLUSTER_CONTROLLER_LOGGING_DELAY, 5.0 );
init( MASTER_FAILURE_REACTION_TIME, 0.4 ); if( randomize && BUGGIFY ) MASTER_FAILURE_REACTION_TIME = 10.0;
init( MASTER_FAILURE_SLOPE_DURING_RECOVERY, 0.1 );
init( WORKER_COORDINATION_PING_DELAY, 60 );
init( SIM_SHUTDOWN_TIMEOUT, 10 );
init( SHUTDOWN_TIMEOUT, 600 ); if( randomize && BUGGIFY ) SHUTDOWN_TIMEOUT = 60.0;
init( MASTER_SPIN_DELAY, 1.0 ); if( randomize && BUGGIFY ) MASTER_SPIN_DELAY = 10.0;
init( CC_PRUNE_CLIENTS_INTERVAL, 60.0 );
init( CC_CHANGE_DELAY, 0.1 );
init( CC_CLASS_DELAY, 0.01 );
init( WAIT_FOR_GOOD_RECRUITMENT_DELAY, 1.0 );
init( WAIT_FOR_GOOD_REMOTE_RECRUITMENT_DELAY, 5.0 );
init( ATTEMPT_RECRUITMENT_DELAY, 0.035 );
init( WAIT_FOR_DISTRIBUTOR_JOIN_DELAY, 1.0 );
init( WAIT_FOR_RATEKEEPER_JOIN_DELAY, 1.0 );
init( WAIT_FOR_CONSISTENCYSCAN_JOIN_DELAY, 1.0 );
init( WAIT_FOR_BLOB_MANAGER_JOIN_DELAY, 1.0 );
init( WAIT_FOR_ENCRYPT_KEY_PROXY_JOIN_DELAY, 1.0 );
init( WORKER_FAILURE_TIME, 1.0 ); if( randomize && BUGGIFY ) WORKER_FAILURE_TIME = 10.0;
init( CHECK_OUTSTANDING_INTERVAL, 0.5 ); if( randomize && BUGGIFY ) CHECK_OUTSTANDING_INTERVAL = 0.001;
init( VERSION_LAG_METRIC_INTERVAL, 0.5 ); if( randomize && BUGGIFY ) VERSION_LAG_METRIC_INTERVAL = 10.0;
init( MAX_VERSION_DIFFERENCE, 20 * VERSIONS_PER_SECOND );
init( INITIAL_UPDATE_CROSS_DC_INFO_DELAY, 300 );
init( CHECK_REMOTE_HEALTH_INTERVAL, 60 );
init( FORCE_RECOVERY_CHECK_DELAY, 5.0 );
init( RATEKEEPER_FAILURE_TIME, 1.0 );
init( CONSISTENCYSCAN_FAILURE_TIME, 1.0 );
init( BLOB_MANAGER_FAILURE_TIME, 1.0 );
init( BLOB_MIGRATOR_FAILURE_TIME, 1.0 );
init( REPLACE_INTERFACE_DELAY, 60.0 );
init( REPLACE_INTERFACE_CHECK_DELAY, 5.0 );
init( COORDINATOR_REGISTER_INTERVAL, 5.0 );
init( CLIENT_REGISTER_INTERVAL, 600.0 );
init( CC_ENABLE_WORKER_HEALTH_MONITOR, false );
init( CC_WORKER_HEALTH_CHECKING_INTERVAL, 60.0 );
init( CC_DEGRADED_LINK_EXPIRATION_INTERVAL, 300.0 );
init( CC_MIN_DEGRADATION_INTERVAL, 120.0 );
init( ENCRYPT_KEY_PROXY_FAILURE_TIME, 0.1 );
init( CC_DEGRADED_PEER_DEGREE_TO_EXCLUDE, 3 );
init( CC_MAX_EXCLUSION_DUE_TO_HEALTH, 2 );
init( CC_HEALTH_TRIGGER_RECOVERY, false );
init( CC_TRACKING_HEALTH_RECOVERY_INTERVAL, 3600.0 );
init( CC_MAX_HEALTH_RECOVERY_COUNT, 5 );
init( CC_HEALTH_TRIGGER_FAILOVER, false );
init( CC_FAILOVER_DUE_TO_HEALTH_MIN_DEGRADATION, 5 );
init( CC_FAILOVER_DUE_TO_HEALTH_MAX_DEGRADATION, 10 );
init( CC_ENABLE_ENTIRE_SATELLITE_MONITORING, false );
init( CC_SATELLITE_DEGRADATION_MIN_COMPLAINER, 3 );
init( CC_SATELLITE_DEGRADATION_MIN_BAD_SERVER, 3 );
init( CC_THROTTLE_SINGLETON_RERECRUIT_INTERVAL, 0.5 );
init( INCOMPATIBLE_PEERS_LOGGING_INTERVAL, 600 ); if( randomize && BUGGIFY ) INCOMPATIBLE_PEERS_LOGGING_INTERVAL = 60.0;
init( EXPECTED_MASTER_FITNESS, ProcessClass::UnsetFit );
init( EXPECTED_TLOG_FITNESS, ProcessClass::UnsetFit );
init( EXPECTED_LOG_ROUTER_FITNESS, ProcessClass::UnsetFit );
init( EXPECTED_COMMIT_PROXY_FITNESS, ProcessClass::UnsetFit );
init( EXPECTED_GRV_PROXY_FITNESS, ProcessClass::UnsetFit );
init( EXPECTED_RESOLVER_FITNESS, ProcessClass::UnsetFit );
init( RECRUITMENT_TIMEOUT, 600 ); if( randomize && BUGGIFY ) RECRUITMENT_TIMEOUT = deterministicRandom()->coinflip() ? 60.0 : 1.0;
init( POLICY_RATING_TESTS, 200 ); if( randomize && BUGGIFY ) POLICY_RATING_TESTS = 20;
init( POLICY_GENERATIONS, 100 ); if( randomize && BUGGIFY ) POLICY_GENERATIONS = 10;
init( DBINFO_SEND_AMOUNT, 5 );
init( DBINFO_BATCH_DELAY, 0.1 );
init( SINGLETON_RECRUIT_BME_DELAY, 10.0 );
//Move Keys
init( SHARD_READY_DELAY, 0.25 );
init( SERVER_READY_QUORUM_INTERVAL, std::min(1.0, std::min(MAX_READ_TRANSACTION_LIFE_VERSIONS, MAX_WRITE_TRANSACTION_LIFE_VERSIONS)/(5.0*VERSIONS_PER_SECOND)) );
init( SERVER_READY_QUORUM_TIMEOUT, 15.0 ); if( randomize && BUGGIFY ) SERVER_READY_QUORUM_TIMEOUT = 1.0;
init( REMOVE_RETRY_DELAY, 1.0 );
init( MOVE_KEYS_KRM_LIMIT, 2000 ); if( randomize && BUGGIFY ) MOVE_KEYS_KRM_LIMIT = 2;
init( MOVE_KEYS_KRM_LIMIT_BYTES, 1e5 ); if( randomize && BUGGIFY ) MOVE_KEYS_KRM_LIMIT_BYTES = 5e4; //This must be sufficiently larger than CLIENT_KNOBS->KEY_SIZE_LIMIT (fdbclient/Knobs.h) to ensure that at least two entries will be returned from an attempt to read a key range map
init( MOVE_SHARD_KRM_ROW_LIMIT, 20000 );
init( MOVE_SHARD_KRM_BYTE_LIMIT, 1e6 );
init( MAX_SKIP_TAGS, 1 ); //The TLogs require tags to be densely packed to be memory efficient, so be careful increasing this knob
init( MAX_ADDED_SOURCES_MULTIPLIER, 2.0 );
//FdbServer
bool longReboots = randomize && BUGGIFY;
init( MIN_REBOOT_TIME, 4.0 ); if( longReboots ) MIN_REBOOT_TIME = 10.0;
init( MAX_REBOOT_TIME, 5.0 ); if( longReboots ) MAX_REBOOT_TIME = 20.0;
init( LOG_DIRECTORY, "."); // Will be set to the command line flag.
init( CONN_FILE, ""); // Will be set to the command line flag.
init( SERVER_MEM_LIMIT, 8LL << 30 );
init( SYSTEM_MONITOR_FREQUENCY, 5.0 );
//Ratekeeper
bool slowRatekeeper = randomize && BUGGIFY;
init( SMOOTHING_AMOUNT, 1.0 ); if( slowRatekeeper ) SMOOTHING_AMOUNT = 5.0;
init( SLOW_SMOOTHING_AMOUNT, 10.0 ); if( slowRatekeeper ) SLOW_SMOOTHING_AMOUNT = 50.0;
init( METRIC_UPDATE_RATE, .1 ); if( slowRatekeeper ) METRIC_UPDATE_RATE = 0.5;
init( DETAILED_METRIC_UPDATE_RATE, 5.0 );
init( RATEKEEPER_DEFAULT_LIMIT, 1e6 ); if( randomize && BUGGIFY ) RATEKEEPER_DEFAULT_LIMIT = 0;
init( RATEKEEPER_LIMIT_REASON_SAMPLE_RATE, 0.1 );
init( RATEKEEPER_PRINT_LIMIT_REASON, false ); if( randomize && BUGGIFY ) RATEKEEPER_PRINT_LIMIT_REASON = true;
init( RATEKEEPER_MIN_RATE, 0.0 );
init( RATEKEEPER_MAX_RATE, 1e9 );
init( RATEKEEPER_BATCH_MIN_RATE, 0.0 );
init( RATEKEEPER_BATCH_MAX_RATE, 1e9 );
bool smallStorageTarget = randomize && BUGGIFY;
init( TARGET_BYTES_PER_STORAGE_SERVER, 1000e6 ); if( smallStorageTarget ) TARGET_BYTES_PER_STORAGE_SERVER = 3000e3;
init( SPRING_BYTES_STORAGE_SERVER, 100e6 ); if( smallStorageTarget ) SPRING_BYTES_STORAGE_SERVER = 300e3;
init( AUTO_TAG_THROTTLE_STORAGE_QUEUE_BYTES, 800e6 ); if( smallStorageTarget ) AUTO_TAG_THROTTLE_STORAGE_QUEUE_BYTES = 2500e3;
init( TARGET_BYTES_PER_STORAGE_SERVER_BATCH, 750e6 ); if( smallStorageTarget ) TARGET_BYTES_PER_STORAGE_SERVER_BATCH = 1500e3;
init( SPRING_BYTES_STORAGE_SERVER_BATCH, 100e6 ); if( smallStorageTarget ) SPRING_BYTES_STORAGE_SERVER_BATCH = 150e3;
init( STORAGE_HARD_LIMIT_BYTES, 1500e6 ); if( smallStorageTarget ) STORAGE_HARD_LIMIT_BYTES = 4500e3;
init( STORAGE_HARD_LIMIT_BYTES_OVERAGE, 5000e3 ); if( smallStorageTarget ) STORAGE_HARD_LIMIT_BYTES_OVERAGE = 100e3; // byte+version overage ensures storage server makes enough progress on freeing up storage queue memory at hard limit by ensuring it advances desiredOldestVersion enough per commit cycle.
init( STORAGE_HARD_LIMIT_BYTES_SPEED_UP_SIM, STORAGE_HARD_LIMIT_BYTES ); if( smallStorageTarget ) STORAGE_HARD_LIMIT_BYTES_SPEED_UP_SIM *= 10;
init( STORAGE_HARD_LIMIT_BYTES_OVERAGE_SPEED_UP_SIM, STORAGE_HARD_LIMIT_BYTES_OVERAGE ); if( smallStorageTarget ) STORAGE_HARD_LIMIT_BYTES_OVERAGE_SPEED_UP_SIM *= 10;
init( STORAGE_HARD_LIMIT_VERSION_OVERAGE, VERSIONS_PER_SECOND / 4.0 );
init( STORAGE_DURABILITY_LAG_HARD_MAX, 2000e6 ); if( smallStorageTarget ) STORAGE_DURABILITY_LAG_HARD_MAX = 100e6;
init( STORAGE_DURABILITY_LAG_SOFT_MAX, 250e6 ); if( smallStorageTarget ) STORAGE_DURABILITY_LAG_SOFT_MAX = 10e6;
init( STORAGE_INCLUDE_FEED_STORAGE_QUEUE, true ); if ( randomize && BUGGIFY ) STORAGE_INCLUDE_FEED_STORAGE_QUEUE = false;
//FIXME: Low priority reads are disabled by assigning very high knob values, reduce knobs for 7.0
init( LOW_PRIORITY_STORAGE_QUEUE_BYTES, 775e8 ); if( smallStorageTarget ) LOW_PRIORITY_STORAGE_QUEUE_BYTES = 1750e3;
init( LOW_PRIORITY_DURABILITY_LAG, 200e6 ); if( smallStorageTarget ) LOW_PRIORITY_DURABILITY_LAG = 15e6;
bool smallTlogTarget = randomize && BUGGIFY;
init( TARGET_BYTES_PER_TLOG, 2400e6 ); if( smallTlogTarget ) TARGET_BYTES_PER_TLOG = 2000e3;
init( SPRING_BYTES_TLOG, 400e6 ); if( smallTlogTarget ) SPRING_BYTES_TLOG = 200e3;
init( TARGET_BYTES_PER_TLOG_BATCH, 1400e6 ); if( smallTlogTarget ) TARGET_BYTES_PER_TLOG_BATCH = 1400e3;
init( SPRING_BYTES_TLOG_BATCH, 300e6 ); if( smallTlogTarget ) SPRING_BYTES_TLOG_BATCH = 150e3;
init( TLOG_SPILL_THRESHOLD, 1500e6 ); if( smallTlogTarget ) TLOG_SPILL_THRESHOLD = 1500e3; if( randomize && BUGGIFY ) TLOG_SPILL_THRESHOLD = 0;
init( REFERENCE_SPILL_UPDATE_STORAGE_BYTE_LIMIT, 20e6 ); if( (randomize && BUGGIFY) || smallTlogTarget ) REFERENCE_SPILL_UPDATE_STORAGE_BYTE_LIMIT = 1e6;
init( TLOG_HARD_LIMIT_BYTES, 3000e6 ); if( smallTlogTarget ) TLOG_HARD_LIMIT_BYTES = 30e6;
init( TLOG_RECOVER_MEMORY_LIMIT, TARGET_BYTES_PER_TLOG + SPRING_BYTES_TLOG );
init( MAX_TRANSACTIONS_PER_BYTE, 1000 );
init( MIN_AVAILABLE_SPACE, 1e8 );
init( MIN_AVAILABLE_SPACE_RATIO, 0.05 );
init( MIN_AVAILABLE_SPACE_RATIO_SAFETY_BUFFER, 0.01 );
init( TARGET_AVAILABLE_SPACE_RATIO, 0.30 );
init( AVAILABLE_SPACE_UPDATE_DELAY, 5.0 );
init( MAX_TL_SS_VERSION_DIFFERENCE, 1e99 ); // if( randomize && BUGGIFY ) MAX_TL_SS_VERSION_DIFFERENCE = std::max(1.0, 0.25 * VERSIONS_PER_SECOND); // spring starts at half this value //FIXME: this knob causes ratekeeper to clamp on idle cluster in simulation that have a large number of logs
init( MAX_TL_SS_VERSION_DIFFERENCE_BATCH, 1e99 );
init( MAX_MACHINES_FALLING_BEHIND, 1 );
init( MAX_TPS_HISTORY_SAMPLES, 600 );
init( NEEDED_TPS_HISTORY_SAMPLES, 200 );
init( TARGET_DURABILITY_LAG_VERSIONS, 350e6 ); // Should be larger than STORAGE_DURABILITY_LAG_SOFT_MAX
init( AUTO_TAG_THROTTLE_DURABILITY_LAG_VERSIONS, 250e6 );
init( TARGET_DURABILITY_LAG_VERSIONS_BATCH, 150e6 ); // Should be larger than STORAGE_DURABILITY_LAG_SOFT_MAX
init( DURABILITY_LAG_UNLIMITED_THRESHOLD, 50e6 );
init( INITIAL_DURABILITY_LAG_MULTIPLIER, 1.02 );
init( DURABILITY_LAG_REDUCTION_RATE, 0.9999 );
init( DURABILITY_LAG_INCREASE_RATE, 1.001 );
init( STORAGE_SERVER_LIST_FETCH_TIMEOUT, 20.0 );
init( BW_THROTTLING_ENABLED, true );
bool buggifySmallBWLag = randomize && BUGGIFY;
init( TARGET_BW_LAG, 240.0 ); if(buggifySmallBWLag) TARGET_BW_LAG = 10.0;
init( TARGET_BW_LAG_BATCH, 200.0 ); if(buggifySmallBWLag) TARGET_BW_LAG_BATCH = 4.0;
init( TARGET_BW_LAG_UPDATE, 9.0 ); if(buggifySmallBWLag) TARGET_BW_LAG_UPDATE = 1.0;
init( MIN_BW_HISTORY, 10 );
init( BW_ESTIMATION_INTERVAL, 10.0 ); if(buggifySmallBWLag) BW_ESTIMATION_INTERVAL = 2.0;
init( BW_LAG_INCREASE_AMOUNT, 1.1 );
init( BW_LAG_DECREASE_AMOUNT, 0.9 );
init( BW_FETCH_WORKERS_INTERVAL, 5.0 );
init( BW_RW_LOGGING_INTERVAL, 5.0 );
init( BW_MAX_BLOCKED_INTERVAL, 10.0 ); if(buggifySmallBWLag) BW_MAX_BLOCKED_INTERVAL = 2.0;
init( BW_RK_SIM_QUIESCE_DELAY, 150.0 );
init( MAX_AUTO_THROTTLED_TRANSACTION_TAGS, 5 ); if(randomize && BUGGIFY) MAX_AUTO_THROTTLED_TRANSACTION_TAGS = 1;
init( MAX_MANUAL_THROTTLED_TRANSACTION_TAGS, 40 ); if(randomize && BUGGIFY) MAX_MANUAL_THROTTLED_TRANSACTION_TAGS = 1;
init( MIN_TAG_COST, 200 ); if(randomize && BUGGIFY) MIN_TAG_COST = 0.0;
init( AUTO_THROTTLE_TARGET_TAG_BUSYNESS, 0.1 ); if(randomize && BUGGIFY) AUTO_THROTTLE_TARGET_TAG_BUSYNESS = 0.0;
init( AUTO_TAG_THROTTLE_RAMP_UP_TIME, 120.0 ); if(randomize && BUGGIFY) AUTO_TAG_THROTTLE_RAMP_UP_TIME = 5.0;
init( AUTO_TAG_THROTTLE_DURATION, 240.0 ); if(randomize && BUGGIFY) AUTO_TAG_THROTTLE_DURATION = 20.0;
init( TAG_THROTTLE_PUSH_INTERVAL, 1.0 ); if(randomize && BUGGIFY) TAG_THROTTLE_PUSH_INTERVAL = 0.0;
init( AUTO_TAG_THROTTLE_START_AGGREGATION_TIME, 5.0 ); if(randomize && BUGGIFY) AUTO_TAG_THROTTLE_START_AGGREGATION_TIME = 0.5;
init( AUTO_TAG_THROTTLE_UPDATE_FREQUENCY, 10.0 ); if(randomize && BUGGIFY) AUTO_TAG_THROTTLE_UPDATE_FREQUENCY = 0.5;
init( TAG_THROTTLE_EXPIRED_CLEANUP_INTERVAL, 30.0 ); if(randomize && BUGGIFY) TAG_THROTTLE_EXPIRED_CLEANUP_INTERVAL = 1.0;
init( AUTO_TAG_THROTTLING_ENABLED, true ); if(randomize && BUGGIFY) AUTO_TAG_THROTTLING_ENABLED = false;
init( SS_THROTTLE_TAGS_TRACKED, 1 ); if(randomize && BUGGIFY) SS_THROTTLE_TAGS_TRACKED = deterministicRandom()->randomInt(1, 10);
init( GLOBAL_TAG_THROTTLING, false ); if(isSimulated) GLOBAL_TAG_THROTTLING = deterministicRandom()->coinflip();
init( ENFORCE_TAG_THROTTLING_ON_PROXIES, GLOBAL_TAG_THROTTLING );
init( GLOBAL_TAG_THROTTLING_MIN_RATE, 1.0 );
// 60 seconds was chosen as a default value to ensure that
// the global tag throttler does not react too drastically to
// changes in workload. To make the global tag throttler more reactive,
// lower this knob. To make global tag throttler more smooth, raise this knob.
// Setting this knob lower than TAG_MEASUREMENT_INTERVAL can cause erratic
// behaviour and is not recommended.
init( GLOBAL_TAG_THROTTLING_FOLDING_TIME, 60.0 );
init( GLOBAL_TAG_THROTTLING_MAX_TAGS_TRACKED, 10 );
init( GLOBAL_TAG_THROTTLING_TAG_EXPIRE_AFTER, 240.0 );
init( PROXY_MAX_TAG_THROTTLE_DURATION, 5.0 ); if( randomize && BUGGIFY ) PROXY_MAX_TAG_THROTTLE_DURATION = 0.5;
init( GLOBAL_TAG_THROTTLING_PROXY_LOGGING_INTERVAL, 60.0 );
//Storage Metrics
init( STORAGE_METRICS_AVERAGE_INTERVAL, 120.0 );
init( STORAGE_METRICS_AVERAGE_INTERVAL_PER_KSECONDS, 1000.0 / STORAGE_METRICS_AVERAGE_INTERVAL ); // milliHz!
init( SPLIT_JITTER_AMOUNT, 0.05 ); if( randomize && BUGGIFY ) SPLIT_JITTER_AMOUNT = 0.2;
init( IOPS_UNITS_PER_SAMPLE, 10000 * 1000 / STORAGE_METRICS_AVERAGE_INTERVAL_PER_KSECONDS / 100 );
init( BYTES_WRITTEN_UNITS_PER_SAMPLE, SHARD_MIN_BYTES_PER_KSEC / STORAGE_METRICS_AVERAGE_INTERVAL_PER_KSECONDS / 25 );
init( BYTES_READ_UNITS_PER_SAMPLE, 100000 ); // 100K bytes
init( READ_HOT_SUB_RANGE_CHUNK_SIZE, 10000000); // 10MB
init( EMPTY_READ_PENALTY, 20 ); // 20 bytes
init( DD_SHARD_COMPARE_LIMIT, 1000 );
init( READ_SAMPLING_ENABLED, false ); if ( randomize && BUGGIFY ) READ_SAMPLING_ENABLED = true;// enable/disable read sampling
//Storage Server
init( STORAGE_LOGGING_DELAY, 5.0 );
init( STORAGE_SERVER_POLL_METRICS_DELAY, 1.0 );
init( FUTURE_VERSION_DELAY, 1.0 );
init( STORAGE_LIMIT_BYTES, 500000 );
init( BUGGIFY_LIMIT_BYTES, 1000 );
init( FETCH_USING_STREAMING, false ); if( randomize && isSimulated && BUGGIFY ) FETCH_USING_STREAMING = true; //Determines if fetch keys uses streaming reads
init( FETCH_USING_BLOB, false );
init( FETCH_BLOCK_BYTES, 2e6 );
init( FETCH_KEYS_PARALLELISM_BYTES, 4e6 ); if( randomize && BUGGIFY ) FETCH_KEYS_PARALLELISM_BYTES = 3e6;
init( FETCH_KEYS_PARALLELISM, 2 );
init( FETCH_KEYS_PARALLELISM_FULL, 6 );
init( FETCH_KEYS_LOWER_PRIORITY, 0 );
init( SERVE_FETCH_CHECKPOINT_PARALLELISM, 4 );
init( SERVE_AUDIT_STORAGE_PARALLELISM, 1 );
init( BUGGIFY_BLOCK_BYTES, 10000 );
init( STORAGE_RECOVERY_VERSION_LAG_LIMIT, 2 * MAX_READ_TRANSACTION_LIFE_VERSIONS );
init( STORAGE_COMMIT_BYTES, 10000000 ); if( randomize && BUGGIFY ) STORAGE_COMMIT_BYTES = 2000000;
init( STORAGE_FETCH_BYTES, 2500000 ); if( randomize && BUGGIFY ) STORAGE_FETCH_BYTES = 500000;
init( STORAGE_DURABILITY_LAG_REJECT_THRESHOLD, 0.25 );
init( STORAGE_DURABILITY_LAG_MIN_RATE, 0.1 );
init( STORAGE_COMMIT_INTERVAL, 0.5 ); if( randomize && BUGGIFY ) STORAGE_COMMIT_INTERVAL = 2.0;
init( BYTE_SAMPLING_FACTOR, 250 ); //cannot buggify because of differences in restarting tests
init( BYTE_SAMPLING_OVERHEAD, 100 );
init( MAX_STORAGE_SERVER_WATCH_BYTES, 100e6 ); if( randomize && BUGGIFY ) MAX_STORAGE_SERVER_WATCH_BYTES = 10e3;
init( MAX_BYTE_SAMPLE_CLEAR_MAP_SIZE, 1e9 ); if( randomize && BUGGIFY ) MAX_BYTE_SAMPLE_CLEAR_MAP_SIZE = 1e3;
init( LONG_BYTE_SAMPLE_RECOVERY_DELAY, 60.0 );
init( BYTE_SAMPLE_LOAD_PARALLELISM, 8 ); if( randomize && BUGGIFY ) BYTE_SAMPLE_LOAD_PARALLELISM = 1;
init( BYTE_SAMPLE_LOAD_DELAY, 0.0 ); if( randomize && BUGGIFY ) BYTE_SAMPLE_LOAD_DELAY = 0.1;
init( BYTE_SAMPLE_START_DELAY, 1.0 ); if( randomize && BUGGIFY ) BYTE_SAMPLE_START_DELAY = 0.0;
init( BEHIND_CHECK_DELAY, 2.0 );
init( BEHIND_CHECK_COUNT, 2 );
init( BEHIND_CHECK_VERSIONS, 5 * VERSIONS_PER_SECOND );
init( WAIT_METRICS_WRONG_SHARD_CHANCE, isSimulated ? 1.0 : 0.1 );
init( MIN_TAG_READ_PAGES_RATE, 1.0e4 ); if( randomize && BUGGIFY ) MIN_TAG_READ_PAGES_RATE = 0;
init( MIN_TAG_WRITE_PAGES_RATE, 3200 ); if( randomize && BUGGIFY ) MIN_TAG_WRITE_PAGES_RATE = 0;
init( TAG_MEASUREMENT_INTERVAL, 30.0 ); if( randomize && BUGGIFY ) TAG_MEASUREMENT_INTERVAL = 1.0;
init( PREFIX_COMPRESS_KVS_MEM_SNAPSHOTS, true ); if( randomize && BUGGIFY ) PREFIX_COMPRESS_KVS_MEM_SNAPSHOTS = false;
init( REPORT_DD_METRICS, true );
init( DD_METRICS_REPORT_INTERVAL, 30.0 );
init( FETCH_KEYS_TOO_LONG_TIME_CRITERIA, 300.0 );
init( MAX_STORAGE_COMMIT_TIME, 120.0 ); //The max fsync stall time on the storage server and tlog before marking a disk as failed
init( RANGESTREAM_LIMIT_BYTES, 2e6 ); if( randomize && BUGGIFY ) RANGESTREAM_LIMIT_BYTES = 1;
init( CHANGEFEEDSTREAM_LIMIT_BYTES, 1e6 ); if( randomize && BUGGIFY ) CHANGEFEEDSTREAM_LIMIT_BYTES = 1;
init( BLOBWORKERSTATUSSTREAM_LIMIT_BYTES, 1e4 ); if( randomize && BUGGIFY ) BLOBWORKERSTATUSSTREAM_LIMIT_BYTES = 1;
init( ENABLE_CLEAR_RANGE_EAGER_READS, true ); if( randomize && BUGGIFY ) ENABLE_CLEAR_RANGE_EAGER_READS = deterministicRandom()->coinflip();
init( CHECKPOINT_TRANSFER_BLOCK_BYTES, 40e6 );
init( QUICK_GET_VALUE_FALLBACK, true );
init( QUICK_GET_KEY_VALUES_FALLBACK, true );
init( STRICTLY_ENFORCE_BYTE_LIMIT, false); if( randomize && BUGGIFY ) STRICTLY_ENFORCE_BYTE_LIMIT = deterministicRandom()->coinflip();
init( FRACTION_INDEX_BYTELIMIT_PREFETCH, 0.2); if( randomize && BUGGIFY ) FRACTION_INDEX_BYTELIMIT_PREFETCH = 0.01 + deterministicRandom()->random01();
init( MAX_PARALLEL_QUICK_GET_VALUE, 10 ); if ( randomize && BUGGIFY ) MAX_PARALLEL_QUICK_GET_VALUE = deterministicRandom()->randomInt(1, 100);
init( QUICK_GET_KEY_VALUES_LIMIT, 2000 );
init( QUICK_GET_KEY_VALUES_LIMIT_BYTES, 1e7 );
init( STORAGE_FEED_QUERY_HARD_LIMIT, 100000 );
// Read priority definitions in the form of a list of their relative concurrency share weights
init( STORAGESERVER_READ_PRIORITIES, "120,10,20,40,60" );
// The total concurrency which will be shared by active priorities according to their relative weights
init( STORAGE_SERVER_READ_CONCURRENCY, 70 );
// The priority number which each ReadType maps to in enumeration order
// This exists for flexibility but assigning each ReadType to its own unique priority number makes the most sense
// The enumeration is currently: eager, fetch, low, normal, high
init( STORAGESERVER_READTYPE_PRIORITY_MAP, "0,1,2,3,4" );
//Wait Failure
init( MAX_OUTSTANDING_WAIT_FAILURE_REQUESTS, 250 ); if( randomize && BUGGIFY ) MAX_OUTSTANDING_WAIT_FAILURE_REQUESTS = 2;
init( WAIT_FAILURE_DELAY_LIMIT, 1.0 ); if( randomize && BUGGIFY ) WAIT_FAILURE_DELAY_LIMIT = 5.0;
//Worker
init( WORKER_LOGGING_INTERVAL, 5.0 );
init( HEAP_PROFILER_INTERVAL, 30.0 );
init( UNKNOWN_CC_TIMEOUT, 600.0 );
init( DEGRADED_RESET_INTERVAL, 24*60*60 ); // FIXME: short interval causes false positive degraded state to flap, e.g. when everyone tries and fails to connect to dead coordinator: if ( randomize && BUGGIFY ) DEGRADED_RESET_INTERVAL = 10;
init( DEGRADED_WARNING_LIMIT, 1 );
init( DEGRADED_WARNING_RESET_DELAY, 7*24*60*60 );
init( TRACE_LOG_FLUSH_FAILURE_CHECK_INTERVAL_SECONDS, 10 );
init( TRACE_LOG_PING_TIMEOUT_SECONDS, 5.0 );
init( MIN_DELAY_CC_WORST_FIT_CANDIDACY_SECONDS, 10.0 );
init( MAX_DELAY_CC_WORST_FIT_CANDIDACY_SECONDS, 30.0 );
init( DBINFO_FAILED_DELAY, 1.0 );
init( ENABLE_WORKER_HEALTH_MONITOR, false );
init( WORKER_HEALTH_MONITOR_INTERVAL, 60.0 );
init( PEER_LATENCY_CHECK_MIN_POPULATION, 30 );
init( PEER_LATENCY_DEGRADATION_PERCENTILE, 0.50 );
init( PEER_LATENCY_DEGRADATION_THRESHOLD, 0.05 );
init( PEER_LATENCY_DEGRADATION_PERCENTILE_SATELLITE, 0.50 );
init( PEER_LATENCY_DEGRADATION_THRESHOLD_SATELLITE, 0.1 );
init( PEER_TIMEOUT_PERCENTAGE_DEGRADATION_THRESHOLD, 0.1 );
init( PEER_DEGRADATION_CONNECTION_FAILURE_COUNT, 5 );
init( WORKER_HEALTH_REPORT_RECENT_DESTROYED_PEER, true );
init( STORAGE_SERVER_REBOOT_ON_IO_TIMEOUT, false ); if ( randomize && BUGGIFY ) STORAGE_SERVER_REBOOT_ON_IO_TIMEOUT = true;
// Test harness
init( WORKER_POLL_DELAY, 1.0 );
// Coordination
init( COORDINATED_STATE_ONCONFLICT_POLL_INTERVAL, 1.0 ); if( randomize && BUGGIFY ) COORDINATED_STATE_ONCONFLICT_POLL_INTERVAL = 10.0;
init( FORWARD_REQUEST_TOO_OLD, 4*24*60*60 ); if( randomize && BUGGIFY ) FORWARD_REQUEST_TOO_OLD = 60.0;
init( ENABLE_CROSS_CLUSTER_SUPPORT, true ); if( randomize && BUGGIFY ) ENABLE_CROSS_CLUSTER_SUPPORT = false;
init( COORDINATOR_LEADER_CONNECTION_TIMEOUT, 20.0 );
// Dynamic Knobs (implementation)
init( COMPACTION_INTERVAL, isSimulated ? 5.0 : 300.0 );
init( BROADCASTER_SELF_UPDATE_DELAY, 1.0 );
init( GET_COMMITTED_VERSION_TIMEOUT, 3.0 );
init( GET_SNAPSHOT_AND_CHANGES_TIMEOUT, 3.0 );
init( FETCH_CHANGES_TIMEOUT, 3.0 );
// Buggification
init( BUGGIFIED_EVENTUAL_CONSISTENCY, 1.0 );
init( BUGGIFY_ALL_COORDINATION, false ); if( randomize && BUGGIFY ) BUGGIFY_ALL_COORDINATION = true;
// Status
init( STATUS_MIN_TIME_BETWEEN_REQUESTS, 0.0 );
init( MAX_STATUS_REQUESTS_PER_SECOND, 256.0 );
init( CONFIGURATION_ROWS_TO_FETCH, 20000 );
init( DISABLE_DUPLICATE_LOG_WARNING, false );
init( HISTOGRAM_REPORT_INTERVAL, 300.0 );
// Timekeeper
init( TIME_KEEPER_DELAY, 10 );
init( TIME_KEEPER_MAX_ENTRIES, 3600 * 24 * 30 * 6 ); if( randomize && BUGGIFY ) { TIME_KEEPER_MAX_ENTRIES = 2; }
// Fast Restore
init( FASTRESTORE_FAILURE_TIMEOUT, 3600 );
init( FASTRESTORE_HEARTBEAT_INTERVAL, 60 );
init( FASTRESTORE_SAMPLING_PERCENT, 100 ); if( randomize && BUGGIFY ) { FASTRESTORE_SAMPLING_PERCENT = deterministicRandom()->random01() * 100; }
init( FASTRESTORE_NUM_LOADERS, 3 ); if( randomize && BUGGIFY ) { FASTRESTORE_NUM_LOADERS = deterministicRandom()->random01() * 10 + 1; }
init( FASTRESTORE_NUM_APPLIERS, 3 ); if( randomize && BUGGIFY ) { FASTRESTORE_NUM_APPLIERS = deterministicRandom()->random01() * 10 + 1; }
init( FASTRESTORE_TXN_BATCH_MAX_BYTES, 1024.0 * 1024.0 ); if( randomize && BUGGIFY ) { FASTRESTORE_TXN_BATCH_MAX_BYTES = deterministicRandom()->random01() * 1024.0 * 1024.0 + 1.0; }
init( FASTRESTORE_VERSIONBATCH_MAX_BYTES, 10.0 * 1024.0 * 1024.0 ); if( randomize && BUGGIFY ) { FASTRESTORE_VERSIONBATCH_MAX_BYTES = deterministicRandom()->random01() < 0.2 ? 50 * 1024 : deterministicRandom()->random01() < 0.4 ? 100 * 1024 * 1024 : deterministicRandom()->random01() * 1000.0 * 1024.0 * 1024.0; } // too small value may increase chance of TooManyFile error
init( FASTRESTORE_VB_PARALLELISM, 5 ); if( randomize && BUGGIFY ) { FASTRESTORE_VB_PARALLELISM = deterministicRandom()->random01() < 0.2 ? 2 : deterministicRandom()->random01() * 10 + 1; }
init( FASTRESTORE_VB_MONITOR_DELAY, 30 ); if( randomize && BUGGIFY ) { FASTRESTORE_VB_MONITOR_DELAY = deterministicRandom()->random01() * 20 + 1; }
init( FASTRESTORE_VB_LAUNCH_DELAY, 1.0 ); if( randomize && BUGGIFY ) { FASTRESTORE_VB_LAUNCH_DELAY = deterministicRandom()->random01() < 0.2 ? 0.1 : deterministicRandom()->random01() * 10.0 + 1; }
init( FASTRESTORE_ROLE_LOGGING_DELAY, 5 ); if( randomize && BUGGIFY ) { FASTRESTORE_ROLE_LOGGING_DELAY = deterministicRandom()->random01() * 60 + 1; }
init( FASTRESTORE_UPDATE_PROCESS_STATS_INTERVAL, 5 ); if( randomize && BUGGIFY ) { FASTRESTORE_UPDATE_PROCESS_STATS_INTERVAL = deterministicRandom()->random01() * 60 + 1; }
init( FASTRESTORE_ATOMICOP_WEIGHT, 1 ); if( randomize && BUGGIFY ) { FASTRESTORE_ATOMICOP_WEIGHT = deterministicRandom()->random01() * 200 + 1; }
init( FASTRESTORE_MONITOR_LEADER_DELAY, 5 ); if( randomize && BUGGIFY ) { FASTRESTORE_MONITOR_LEADER_DELAY = deterministicRandom()->random01() * 100; }
init( FASTRESTORE_STRAGGLER_THRESHOLD_SECONDS, 60 ); if( randomize && BUGGIFY ) { FASTRESTORE_STRAGGLER_THRESHOLD_SECONDS = deterministicRandom()->random01() * 240 + 10; }
init( FASTRESTORE_TRACK_REQUEST_LATENCY, false ); if( randomize && BUGGIFY ) { FASTRESTORE_TRACK_REQUEST_LATENCY = false; }
init( FASTRESTORE_MEMORY_THRESHOLD_MB_SOFT, 6144 ); if( randomize && BUGGIFY ) { FASTRESTORE_MEMORY_THRESHOLD_MB_SOFT = 1; }
init( FASTRESTORE_WAIT_FOR_MEMORY_LATENCY, 10 ); if( randomize && BUGGIFY ) { FASTRESTORE_WAIT_FOR_MEMORY_LATENCY = 60; }
init( FASTRESTORE_HEARTBEAT_DELAY, 10 ); if( randomize && BUGGIFY ) { FASTRESTORE_HEARTBEAT_DELAY = deterministicRandom()->random01() * 120 + 2; }
init( FASTRESTORE_HEARTBEAT_MAX_DELAY, 10 ); if( randomize && BUGGIFY ) { FASTRESTORE_HEARTBEAT_MAX_DELAY = FASTRESTORE_HEARTBEAT_DELAY * 10; }
init( FASTRESTORE_APPLIER_FETCH_KEYS_SIZE, 100 ); if( randomize && BUGGIFY ) { FASTRESTORE_APPLIER_FETCH_KEYS_SIZE = deterministicRandom()->random01() * 10240 + 1; }
init( FASTRESTORE_LOADER_SEND_MUTATION_MSG_BYTES, 1.0 * 1024.0 * 1024.0 ); if( randomize && BUGGIFY ) { FASTRESTORE_LOADER_SEND_MUTATION_MSG_BYTES = deterministicRandom()->random01() < 0.2 ? 1024 : deterministicRandom()->random01() * 5.0 * 1024.0 * 1024.0 + 1; }
init( FASTRESTORE_GET_RANGE_VERSIONS_EXPENSIVE, false ); if( randomize && BUGGIFY ) { FASTRESTORE_GET_RANGE_VERSIONS_EXPENSIVE = deterministicRandom()->random01() < 0.5 ? true : false; }
init( FASTRESTORE_REQBATCH_PARALLEL, 50 ); if( randomize && BUGGIFY ) { FASTRESTORE_REQBATCH_PARALLEL = deterministicRandom()->random01() * 100 + 1; }
init( FASTRESTORE_REQBATCH_LOG, false ); if( randomize && BUGGIFY ) { FASTRESTORE_REQBATCH_LOG = deterministicRandom()->random01() < 0.2 ? true : false; }
init( FASTRESTORE_TXN_CLEAR_MAX, 100 ); if( randomize && BUGGIFY ) { FASTRESTORE_TXN_CLEAR_MAX = deterministicRandom()->random01() * 100 + 1; }
init( FASTRESTORE_TXN_RETRY_MAX, 10 ); if( randomize && BUGGIFY ) { FASTRESTORE_TXN_RETRY_MAX = deterministicRandom()->random01() * 100 + 1; }
init( FASTRESTORE_TXN_EXTRA_DELAY, 0.0 ); if( randomize && BUGGIFY ) { FASTRESTORE_TXN_EXTRA_DELAY = deterministicRandom()->random01() * 1 + 0.001;}
init( FASTRESTORE_NOT_WRITE_DB, false ); // Perf test only: set it to true will cause simulation failure
init( FASTRESTORE_USE_RANGE_FILE, true ); // Perf test only: set it to false will cause simulation failure
init( FASTRESTORE_USE_LOG_FILE, true ); // Perf test only: set it to false will cause simulation failure
init( FASTRESTORE_SAMPLE_MSG_BYTES, 1048576 ); if( randomize && BUGGIFY ) { FASTRESTORE_SAMPLE_MSG_BYTES = deterministicRandom()->random01() * 2048;}
init( FASTRESTORE_SCHED_UPDATE_DELAY, 0.1 ); if( randomize && BUGGIFY ) { FASTRESTORE_SCHED_UPDATE_DELAY = deterministicRandom()->random01() * 2;}
init( FASTRESTORE_SCHED_TARGET_CPU_PERCENT, 70 ); if( randomize && BUGGIFY ) { FASTRESTORE_SCHED_TARGET_CPU_PERCENT = deterministicRandom()->random01() * 100 + 50;} // simulate cpu usage can be larger than 100
init( FASTRESTORE_SCHED_MAX_CPU_PERCENT, 90 ); if( randomize && BUGGIFY ) { FASTRESTORE_SCHED_MAX_CPU_PERCENT = FASTRESTORE_SCHED_TARGET_CPU_PERCENT + deterministicRandom()->random01() * 100;}
init( FASTRESTORE_SCHED_INFLIGHT_LOAD_REQS, 50 ); if( randomize && BUGGIFY ) { FASTRESTORE_SCHED_INFLIGHT_LOAD_REQS = deterministicRandom()->random01() < 0.2 ? 1 : deterministicRandom()->random01() * 30 + 1;}
init( FASTRESTORE_SCHED_INFLIGHT_SEND_REQS, 3 ); if( randomize && BUGGIFY ) { FASTRESTORE_SCHED_INFLIGHT_SEND_REQS = deterministicRandom()->random01() < 0.2 ? 1 : deterministicRandom()->random01() * 10 + 1;}
init( FASTRESTORE_SCHED_LOAD_REQ_BATCHSIZE, 5 ); if( randomize && BUGGIFY ) { FASTRESTORE_SCHED_LOAD_REQ_BATCHSIZE = deterministicRandom()->random01() < 0.2 ? 1 : deterministicRandom()->random01() * 10 + 1;}
init( FASTRESTORE_SCHED_INFLIGHT_SENDPARAM_THRESHOLD, 10 ); if( randomize && BUGGIFY ) { FASTRESTORE_SCHED_INFLIGHT_SENDPARAM_THRESHOLD = deterministicRandom()->random01() < 0.2 ? 1 : deterministicRandom()->random01() * 15 + 1;}
init( FASTRESTORE_SCHED_SEND_FUTURE_VB_REQS_BATCH, 2 ); if( randomize && BUGGIFY ) { FASTRESTORE_SCHED_SEND_FUTURE_VB_REQS_BATCH = deterministicRandom()->random01() < 0.2 ? 1 : deterministicRandom()->random01() * 15 + 1;}
init( FASTRESTORE_NUM_TRACE_EVENTS, 100 ); if( randomize && BUGGIFY ) { FASTRESTORE_NUM_TRACE_EVENTS = deterministicRandom()->random01() < 0.2 ? 1 : deterministicRandom()->random01() * 500 + 1;}
init( FASTRESTORE_EXPENSIVE_VALIDATION, false ); if( randomize && BUGGIFY ) { FASTRESTORE_EXPENSIVE_VALIDATION = deterministicRandom()->random01() < 0.5 ? true : false;}
init( FASTRESTORE_WRITE_BW_MB, 70 ); if( randomize && BUGGIFY ) { FASTRESTORE_WRITE_BW_MB = deterministicRandom()->random01() < 0.5 ? 2 : 100;}
init( FASTRESTORE_RATE_UPDATE_SECONDS, 1.0 ); if( randomize && BUGGIFY ) { FASTRESTORE_RATE_UPDATE_SECONDS = deterministicRandom()->random01() < 0.5 ? 0.1 : 2;}
init( FASTRESTORE_DUMP_INSERT_RANGE_VERSION, false );
init( REDWOOD_DEFAULT_PAGE_SIZE, 8192 );
init( REDWOOD_DEFAULT_EXTENT_SIZE, 32 * 1024 * 1024 );
init( REDWOOD_DEFAULT_EXTENT_READ_SIZE, 1024 * 1024 );
init( REDWOOD_EXTENT_CONCURRENT_READS, 4 );
init( REDWOOD_KVSTORE_RANGE_PREFETCH, true );
init( REDWOOD_PAGE_REBUILD_MAX_SLACK, 0.33 );
init( REDWOOD_LAZY_CLEAR_BATCH_SIZE_PAGES, 10 );
init( REDWOOD_LAZY_CLEAR_MIN_PAGES, 0 );
init( REDWOOD_LAZY_CLEAR_MAX_PAGES, 1e6 );
init( REDWOOD_REMAP_CLEANUP_WINDOW_BYTES, 4LL * 1024 * 1024 * 1024 );
init( REDWOOD_REMAP_CLEANUP_TOLERANCE_RATIO, 0.05 );
init( REDWOOD_PAGEFILE_GROWTH_SIZE_PAGES, 20000 ); if( randomize && BUGGIFY ) { REDWOOD_PAGEFILE_GROWTH_SIZE_PAGES = deterministicRandom()->randomInt(200, 1000); }
init( REDWOOD_METRICS_INTERVAL, 5.0 );
init( REDWOOD_HISTOGRAM_INTERVAL, 30.0 );
init( REDWOOD_EVICT_UPDATED_PAGES, true ); if( randomize && BUGGIFY ) { REDWOOD_EVICT_UPDATED_PAGES = false; }
init( REDWOOD_DECODECACHE_REUSE_MIN_HEIGHT, 2 ); if( randomize && BUGGIFY ) { REDWOOD_DECODECACHE_REUSE_MIN_HEIGHT = deterministicRandom()->randomInt(1, 7); }
init( REDWOOD_IO_PRIORITIES, "32,32,32,32" );
init( REDWOOD_SPLIT_ENCRYPTED_PAGES_BY_TENANT, false );
// Server request latency measurement
init( LATENCY_SKETCH_ACCURACY, 0.01 );
init( FILE_LATENCY_SKETCH_ACCURACY, 0.01 );
init( LATENCY_METRICS_LOGGING_INTERVAL, 60.0 );
// Cluster recovery
init ( CLUSTER_RECOVERY_EVENT_NAME_PREFIX, "Master" );
// Encryption
init( ENABLE_ENCRYPTION, false ); if ( randomize && BUGGIFY ) ENABLE_ENCRYPTION = !ENABLE_ENCRYPTION;
init( ENCRYPTION_MODE, "AES-256-CTR" );
init( SIM_KMS_MAX_KEYS, 4096 );
init( ENCRYPT_PROXY_MAX_DBG_TRACE_LENGTH, 100000 );
init( ENABLE_TLOG_ENCRYPTION, ENABLE_ENCRYPTION ); if ( randomize && BUGGIFY && ENABLE_ENCRYPTION ) ENABLE_TLOG_ENCRYPTION = false;
init( ENABLE_STORAGE_SERVER_ENCRYPTION, ENABLE_ENCRYPTION ); if ( randomize && BUGGIFY && ENABLE_ENCRYPTION) ENABLE_STORAGE_SERVER_ENCRYPTION = false;
init( ENABLE_BLOB_GRANULE_ENCRYPTION, ENABLE_ENCRYPTION ); if ( randomize && BUGGIFY && ENABLE_ENCRYPTION) ENABLE_BLOB_GRANULE_ENCRYPTION = false;
// encrypt key proxy
init( ENABLE_BLOB_GRANULE_COMPRESSION, false ); if ( randomize && BUGGIFY ) { ENABLE_BLOB_GRANULE_COMPRESSION = deterministicRandom()->coinflip(); }
init( BLOB_GRANULE_COMPRESSION_FILTER, "NONE" ); if ( randomize && BUGGIFY ) { BLOB_GRANULE_COMPRESSION_FILTER = CompressionUtils::toString(CompressionUtils::getRandomFilter()); }
// KMS connector type
init( KMS_CONNECTOR_TYPE, "RESTKmsConnector" );
// Blob granlues
init( BG_URL, isSimulated ? "file://simfdb/fdbblob/" : "" ); // TODO: store in system key space or something, eventually
bool buggifyMediumGranules = simulationMediumShards || (randomize && BUGGIFY);
// BlobGranuleVerify* simulation tests use "knobs", BlobGranuleCorrectness* use "tenant", default in real clusters is "knobs"
init( BG_METADATA_SOURCE, "knobs" );
init( BG_SNAPSHOT_FILE_TARGET_BYTES, 10000000 ); if( buggifySmallShards ) BG_SNAPSHOT_FILE_TARGET_BYTES = 100000; else if (buggifyMediumGranules) BG_SNAPSHOT_FILE_TARGET_BYTES = 1000000;
init( BG_SNAPSHOT_FILE_TARGET_CHUNK_BYTES, 64*1024 ); if ( randomize && BUGGIFY ) BG_SNAPSHOT_FILE_TARGET_CHUNK_BYTES = BG_SNAPSHOT_FILE_TARGET_BYTES / (1 << deterministicRandom()->randomInt(0, 8));
init( BG_DELTA_BYTES_BEFORE_COMPACT, BG_SNAPSHOT_FILE_TARGET_BYTES/2 );
init( BG_DELTA_FILE_TARGET_BYTES, BG_DELTA_BYTES_BEFORE_COMPACT/10 );
init( BG_DELTA_FILE_TARGET_CHUNK_BYTES, 32*1024 ); if ( randomize && BUGGIFY ) BG_DELTA_FILE_TARGET_CHUNK_BYTES = BG_DELTA_FILE_TARGET_BYTES / (1 << deterministicRandom()->randomInt(0, 7));
init( BG_MAX_SPLIT_FANOUT, 10 ); if( randomize && BUGGIFY ) BG_MAX_SPLIT_FANOUT = deterministicRandom()->randomInt(5, 15);
init( BG_MAX_MERGE_FANIN, 10 ); if( randomize && BUGGIFY ) BG_MAX_MERGE_FANIN = deterministicRandom()->randomInt(2, 15);
init( BG_HOT_SNAPSHOT_VERSIONS, 5000000 );
init( BG_CONSISTENCY_CHECK_ENABLED, true ); if (randomize && BUGGIFY) BG_CONSISTENCY_CHECK_ENABLED = false;
init( BG_CONSISTENCY_CHECK_TARGET_SPEED_KB, 1000 ); if (randomize && BUGGIFY) BG_CONSISTENCY_CHECK_TARGET_SPEED_KB *= (deterministicRandom()->randomInt(2, 50) / 10);
init( BG_KEY_TUPLE_TRUNCATE_OFFSET, 0 );
init( BG_ENABLE_READ_DRIVEN_COMPACTION, true ); if (randomize && BUGGIFY) BG_ENABLE_READ_DRIVEN_COMPACTION = false;
init( BG_RDC_BYTES_FACTOR, 2 ); if (randomize && BUGGIFY) BG_RDC_BYTES_FACTOR = deterministicRandom()->randomInt(1, 10);
init( BG_RDC_READ_FACTOR, 3 ); if (randomize && BUGGIFY) BG_RDC_READ_FACTOR = deterministicRandom()->randomInt(1, 10);
init( BG_WRITE_MULTIPART, false ); if (randomize && BUGGIFY) BG_WRITE_MULTIPART = true;
init( BG_ENABLE_MERGING, true ); if (randomize && BUGGIFY) BG_ENABLE_MERGING = false;
init( BG_MERGE_CANDIDATE_THRESHOLD_SECONDS, isSimulated ? 20.0 : 30 * 60 ); if (randomize && BUGGIFY) BG_MERGE_CANDIDATE_THRESHOLD_SECONDS = 5.0;
init( BG_MERGE_CANDIDATE_DELAY_SECONDS, BG_MERGE_CANDIDATE_THRESHOLD_SECONDS / 10.0 );
init( BLOB_WORKER_INITIAL_SNAPSHOT_PARALLELISM, 8 ); if( randomize && BUGGIFY ) BLOB_WORKER_INITIAL_SNAPSHOT_PARALLELISM = 1;
init( BLOB_WORKER_RESNAPSHOT_PARALLELISM, 40 ); if( randomize && BUGGIFY ) BLOB_WORKER_RESNAPSHOT_PARALLELISM = deterministicRandom()->randomInt(1, 10);
init( BLOB_WORKER_DELTA_FILE_WRITE_PARALLELISM, 2000 ); if( randomize && BUGGIFY ) BLOB_WORKER_DELTA_FILE_WRITE_PARALLELISM = deterministicRandom()->randomInt(10, 100);
init( BLOB_WORKER_RDC_PARALLELISM, 2 ); if( randomize && BUGGIFY ) BLOB_WORKER_RDC_PARALLELISM = deterministicRandom()->randomInt(1, 6);
init( BLOB_WORKER_TIMEOUT, 10.0 ); if( randomize && BUGGIFY ) BLOB_WORKER_TIMEOUT = 1.0;
init( BLOB_WORKER_REQUEST_TIMEOUT, 5.0 ); if( randomize && BUGGIFY ) BLOB_WORKER_REQUEST_TIMEOUT = 1.0;
init( BLOB_WORKERLIST_FETCH_INTERVAL, 1.0 );
init( BLOB_WORKER_BATCH_GRV_INTERVAL, 0.1 );
init( BLOB_WORKER_DO_REJECT_WHEN_FULL, true ); if ( randomize && BUGGIFY ) BLOB_WORKER_DO_REJECT_WHEN_FULL = false;
init( BLOB_WORKER_REJECT_WHEN_FULL_THRESHOLD, 0.9 );
init( BLOB_WORKER_FORCE_FLUSH_CLEANUP_DELAY, 30.0 ); if ( randomize && BUGGIFY ) BLOB_WORKER_FORCE_FLUSH_CLEANUP_DELAY = deterministicRandom()->randomInt(0, 10) - 1;
init( BLOB_MANAGER_STATUS_EXP_BACKOFF_MIN, 0.1 );
init( BLOB_MANAGER_STATUS_EXP_BACKOFF_MAX, 5.0 );
init( BLOB_MANAGER_STATUS_EXP_BACKOFF_EXPONENT, 1.5 );
init( BLOB_MANAGER_CONCURRENT_MERGE_CHECKS, 64 ); if( randomize && BUGGIFY ) BLOB_MANAGER_CONCURRENT_MERGE_CHECKS = 1 << deterministicRandom()->randomInt(0, 7);
init( BLOB_MANIFEST_BACKUP, false );
init( BLOB_MANIFEST_BACKUP_INTERVAL, isSimulated ? 5.0 : 30.0 );
init( BLOB_FULL_RESTORE_MODE, false );
init( BLOB_MIGRATOR_CHECK_INTERVAL, isSimulated ? 1.0 : 5.0);
init( BLOB_MANIFEST_RW_ROWS, isSimulated ? 10 : 1000);
init( BGCC_TIMEOUT, isSimulated ? 10.0 : 120.0 );
init( BGCC_MIN_INTERVAL, isSimulated ? 1.0 : 10.0 );
// Blob Metadata
init( BLOB_METADATA_CACHE_TTL, isSimulated ? 120 : 24 * 60 * 60 );
if ( randomize && BUGGIFY) { BLOB_METADATA_CACHE_TTL = deterministicRandom()->randomInt(50, 100); }
// HTTP KMS Connector
init( REST_KMS_CONNECTOR_KMS_DISCOVERY_URL_MODE, "file");
init( REST_KMS_CONNECTOR_VALIDATION_TOKEN_MODE, "file");
init( REST_KMS_CONNECTOR_VALIDATION_TOKEN_MAX_SIZE, 1024);
init( REST_KMS_CONNECTOR_VALIDATION_TOKENS_MAX_PAYLOAD_SIZE, 10 * 1024);
init( REST_KMS_CONNECTOR_REFRESH_KMS_URLS, true);
init( REST_KMS_CONNECTOR_REFRESH_KMS_URLS_INTERVAL_SEC, 600);
// Below KMS configurations are responsible for:
// Discovering KMS URLs, fetch encryption keys endpoint and validation token details.
// Configurations are expected to be passed as command-line arguments.
// NOTE: Care must be taken when attempting to update below configurations for a up/running FDB cluster.
init( REST_KMS_CONNECTOR_DISCOVER_KMS_URL_FILE, "");
init( REST_KMS_CONNECTOR_GET_ENCRYPTION_KEYS_ENDPOINT, "");
init( REST_KMS_CONNECTOR_GET_BLOB_METADATA_ENDPOINT, "");
// Details to fetch validation token from a localhost file
// acceptable format: "<token_name1>#<absolute_file_path1>,<token_name2>#<absolute_file_path2>,.."
// NOTE: 'token-name" can NOT contain '#' character
init( REST_KMS_CONNECTOR_VALIDATION_TOKEN_DETAILS, "");
// Drop in-memory state associated with an idempotency id after this many seconds. Once dropped, this id cannot be
// expired proactively, but will eventually get cleaned up by the idempotency id cleaner.
init( IDEMPOTENCY_ID_IN_MEMORY_LIFETIME, 10);
// clang-format on
if (clientKnobs) {
clientKnobs->IS_ACCEPTABLE_DELAY =
clientKnobs->IS_ACCEPTABLE_DELAY *
std::min(MAX_READ_TRANSACTION_LIFE_VERSIONS, MAX_WRITE_TRANSACTION_LIFE_VERSIONS) /
(5.0 * VERSIONS_PER_SECOND);
clientKnobs->INIT_MID_SHARD_BYTES = MIN_SHARD_BYTES;
}
}