foundationdb/fdbserver/workloads/TPCC.actor.cpp

826 lines
28 KiB
C++

/*
* TPCC.actor.cpp
*
* This source file is part of the FoundationDB open source project
*
* Copyright 2013-2020 Apple Inc. and the FoundationDB project authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "fdbserver/workloads/workloads.actor.h"
#include "fdbserver/workloads/TPCCWorkload.h"
#include <fdbclient/ReadYourWrites.h>
#include "flow/actorcompiler.h" // has to be last include
using namespace TPCCWorkload;
namespace {
struct TPCCMetrics {
static constexpr int latenciesStored = 1000;
uint64_t successfulStockLevelTransactions{ 0 };
uint64_t failedStockLevelTransactions{ 0 };
uint64_t successfulDeliveryTransactions{ 0 };
uint64_t failedDeliveryTransactions{ 0 };
uint64_t successfulOrderStatusTransactions{ 0 };
uint64_t failedOrderStatusTransactions{ 0 };
uint64_t successfulPaymentTransactions{ 0 };
uint64_t failedPaymentTransactions{ 0 };
uint64_t successfulNewOrderTransactions{ 0 };
uint64_t failedNewOrderTransactions{ 0 };
double stockLevelResponseTime{ 0.0 };
double deliveryResponseTime{ 0.0 };
double orderStatusResponseTime{ 0.0 };
double paymentResponseTime{ 0.0 };
double newOrderResponseTime{ 0.0 };
std::vector<double> stockLevelLatencies, deliveryLatencies, orderStatusLatencies, paymentLatencies,
newOrderLatencies;
void sort() {
std::sort(stockLevelLatencies.begin(), stockLevelLatencies.end());
std::sort(deliveryLatencies.begin(), deliveryLatencies.end());
std::sort(orderStatusLatencies.begin(), orderStatusLatencies.end());
std::sort(paymentLatencies.begin(), paymentLatencies.end());
std::sort(newOrderLatencies.begin(), newOrderLatencies.end());
}
static double median(const std::vector<double>& latencies) {
// assumes latencies is sorted
return latencies[latencies.size() / 2];
}
static double percentile_90(const std::vector<double>& latencies) {
// assumes latencies is sorted
return latencies[(9 * latencies.size()) / 10];
}
static double percentile_99(const std::vector<double>& latencies) {
// assumes latencies is sorted
return latencies[(99 * latencies.size()) / 100];
}
static void updateMetrics(bool committed,
uint64_t& successCounter,
uint64_t& failedCounter,
double txnStartTime,
std::vector<double>& latencies,
double& totalLatency,
std::string txnType) {
auto responseTime = g_network->now() - txnStartTime;
if (committed) {
totalLatency += responseTime;
++successCounter;
if (successCounter <= latenciesStored)
latencies[successCounter - 1] = responseTime;
else {
auto index = deterministicRandom()->randomInt(0, successCounter);
if (index < latenciesStored) {
latencies[index] = responseTime;
}
}
} else {
++failedCounter;
}
TraceEvent("TransactionComplete")
.detail("TransactionType", txnType)
.detail("Latency", responseTime)
.detail("Begin", txnStartTime)
.detail("End", txnStartTime + responseTime)
.detail("Success", committed);
}
};
struct TPCC : TestWorkload {
static constexpr const char* DESCRIPTION = "TPCC";
int warehousesPerClient;
int expectedTransactionsPerMinute;
int testDuration;
int warmupTime;
int clientsUsed;
double startTime;
GlobalState gState;
TPCCMetrics metrics;
TPCC(WorkloadContext const& ctx) : TestWorkload(ctx) {
std::string workloadName = DESCRIPTION;
warehousesPerClient = getOption(options, LiteralStringRef("warehousesPerClient"), 100);
expectedTransactionsPerMinute = getOption(options, LiteralStringRef("expectedTransactionsPerMinute"), 1000);
testDuration = getOption(options, LiteralStringRef("testDuration"), 600);
warmupTime = getOption(options, LiteralStringRef("warmupTime"), 30);
getOption(options, LiteralStringRef("clientsUsed"), 40);
}
int NURand(int C, int A, int x, int y) {
return (((deterministicRandom()->randomInt(0, A + 1) | deterministicRandom()->randomInt(x, y + 1)) + C) %
(y - x + 1)) +
x;
}
StringRef genCLast(Arena& arena, int x) {
int l = x % 10;
x /= 10;
int m = x % 10;
x /= 10;
int f = x % 10;
std::stringstream ss;
ss << syllables[f] << syllables[m] << syllables[l];
return StringRef(arena, ss.str());
}
// Should call in setup
ACTOR static Future<Void> readGlobalState(TPCC* self, Database cx) {
state ReadYourWritesTransaction tr(cx);
loop {
tr.reset();
try {
Optional<Value> val = wait(tr.get(self->gState.key()));
if (val.present()) {
BinaryReader reader(val.get(), IncludeVersion());
serializer(reader, self->gState);
} else {
wait(delay(1.0));
}
return Void();
} catch (Error& e) {
wait(tr.onError(e));
}
}
}
std::string description() const override { return DESCRIPTION; }
// Transactions
ACTOR static Future<bool> newOrder(TPCC* self, Database cx, int w_id) {
state int d_id = deterministicRandom()->randomInt(0, 10);
state int c_id = self->NURand(self->gState.CRun, 1023, 1, 3000) - 1;
state int ol_cnt = deterministicRandom()->randomInt(5, 16);
state bool willRollback = deterministicRandom()->randomInt(1, 100) == 1;
state ReadYourWritesTransaction tr(cx);
try {
state Warehouse warehouse;
warehouse.w_id = w_id;
Optional<Value> wValue = wait(tr.get(warehouse.key()));
ASSERT(wValue.present());
{
BinaryReader r(wValue.get(), IncludeVersion());
serializer(r, warehouse);
}
state District district;
district.d_w_id = w_id;
district.d_id = d_id;
Optional<Value> dValue = wait(tr.get(district.key()));
ASSERT(dValue.present());
{
BinaryReader r(dValue.get(), IncludeVersion());
serializer(r, district);
}
state Customer customer;
customer.c_id = c_id;
customer.c_w_id = w_id;
customer.c_d_id = d_id;
Optional<Value> cValue = wait(tr.get(customer.key()));
ASSERT(cValue.present());
{
BinaryReader r(cValue.get(), IncludeVersion());
serializer(r, customer);
}
state Order order;
order.o_entry_d = g_network->now();
order.o_c_id = c_id;
order.o_d_id = d_id;
order.o_w_id = w_id;
order.o_ol_cnt = ol_cnt;
order.o_id = district.d_next_o_id;
++district.d_next_o_id;
{
BinaryWriter w(IncludeVersion());
serializer(w, district);
tr.set(district.key(), w.toValue());
}
state NewOrder newOrder;
newOrder.no_w_id = w_id;
newOrder.no_d_id = d_id;
newOrder.no_o_id = order.o_id;
state int ol_id = 0;
state bool allLocal = true;
for (; ol_id < order.o_ol_cnt; ++ol_id) {
if (ol_id + 1 == order.o_ol_cnt && willRollback) {
// Simulated abort - order item not found
return false;
}
state OrderLine orderLine;
orderLine.ol_number = ol_id;
orderLine.ol_w_id = w_id;
orderLine.ol_d_id = d_id;
orderLine.ol_supply_w_id = w_id;
orderLine.ol_o_id = order.o_id;
orderLine.ol_i_id = self->NURand(self->gState.CRun, 8191, 1, 100000) - 1;
orderLine.ol_quantity = deterministicRandom()->randomInt(1, 11);
if (deterministicRandom()->randomInt(0, 100) == 0) {
orderLine.ol_supply_w_id =
deterministicRandom()->randomInt(0, self->clientsUsed * self->warehousesPerClient);
}
state Item item;
item.i_id = orderLine.ol_i_id;
orderLine.ol_i_id = item.i_id;
Optional<Value> iValue = wait(tr.get(item.key()));
ASSERT(iValue.present());
{
BinaryReader r(iValue.get(), IncludeVersion());
serializer(r, item);
}
state Stock stock;
stock.s_i_id = item.i_id;
stock.s_w_id = orderLine.ol_supply_w_id;
Optional<Value> sValue = wait(tr.get(stock.key()));
ASSERT(sValue.present());
{
BinaryReader r(sValue.get(), IncludeVersion());
serializer(r, stock);
}
if (stock.s_quantity - orderLine.ol_quantity >= 10) {
stock.s_quantity -= orderLine.ol_quantity;
} else {
stock.s_quantity = (stock.s_quantity - orderLine.ol_quantity) + 91;
}
stock.s_ytd += orderLine.ol_quantity;
stock.s_order_cnt += 1;
if (orderLine.ol_supply_w_id != w_id) {
stock.s_remote_cnt += 1;
allLocal = false;
}
{
BinaryWriter w(IncludeVersion());
serializer(w, stock);
tr.set(stock.key(), w.toValue());
}
orderLine.ol_amount = orderLine.ol_quantity * item.i_price;
switch (orderLine.ol_d_id) {
case 0:
orderLine.ol_dist_info = stock.s_dist_01;
break;
case 1:
orderLine.ol_dist_info = stock.s_dist_02;
break;
case 2:
orderLine.ol_dist_info = stock.s_dist_03;
break;
case 3:
orderLine.ol_dist_info = stock.s_dist_04;
break;
case 4:
orderLine.ol_dist_info = stock.s_dist_05;
break;
case 5:
orderLine.ol_dist_info = stock.s_dist_06;
break;
case 6:
orderLine.ol_dist_info = stock.s_dist_07;
break;
case 7:
orderLine.ol_dist_info = stock.s_dist_08;
break;
case 8:
orderLine.ol_dist_info = stock.s_dist_09;
break;
case 9:
orderLine.ol_dist_info = stock.s_dist_10;
break;
}
{
BinaryWriter w(IncludeVersion());
serializer(w, orderLine);
tr.set(orderLine.key(), w.toValue());
}
}
order.o_all_local = allLocal;
{
BinaryWriter w(IncludeVersion());
serializer(w, order);
tr.set(order.key(), w.toValue());
}
{
BinaryWriter w(IncludeVersion());
serializer(w, newOrder);
tr.set(newOrder.key(), w.toValue());
}
wait(tr.commit());
} catch (Error& e) {
return false;
}
return true;
}
ACTOR static Future<Customer> getRandomCustomer(TPCC* self, ReadYourWritesTransaction* tr, int w_id, int d_id) {
state Customer result;
result.c_w_id = w_id;
result.c_d_id = d_id;
if (deterministicRandom()->randomInt(0, 100) >= 85) {
result.c_d_id = deterministicRandom()->randomInt(0, 10);
result.c_w_id = deterministicRandom()->randomInt(0, self->clientsUsed * self->warehousesPerClient);
}
if (deterministicRandom()->randomInt(0, 100) < 60) {
// select through last name
result.c_last = self->genCLast(result.arena, self->NURand(self->gState.CRun, 1023, 1, 3000) - 1);
auto s = result.indexLastKey(1);
auto begin = new (result.arena) uint8_t[s.size() + 1];
auto end = new (result.arena) uint8_t[s.size() + 1];
memcpy(begin, s.begin(), s.size());
memcpy(end, s.begin(), s.size());
begin[s.size()] = '/';
end[s.size()] = '0';
state RangeResult range =
wait(tr->getRange(KeyRangeRef(StringRef(begin, s.size() + 1), StringRef(end, s.size() + 1)), 1000));
ASSERT(range.size() > 0);
state std::vector<Customer> customers;
state int i = 0;
for (; i < range.size(); ++i) {
Optional<Value> cValue = wait(tr->get(range[i].value));
ASSERT(cValue.present());
BinaryReader r(cValue.get(), IncludeVersion());
state Customer customer;
serializer(r, customer);
customers.push_back(customer);
}
// Sort customers by first name and choose median
std::sort(customers.begin(), customers.end(), [](const Customer& cus1, const Customer& cus2) {
const std::string cus1Name = cus1.c_first.toString();
const std::string cus2Name = cus2.c_first.toString();
return (cus1Name.compare(cus2Name) < 0);
});
result = customers[customers.size() / 2];
} else {
// select through random id
result.c_id = self->NURand(self->gState.CRun, 1023, 1, 3000) - 1;
Optional<Value> val = wait(tr->get(result.key()));
ASSERT(val.present());
BinaryReader r(val.get(), IncludeVersion());
serializer(r, result);
}
return result;
}
ACTOR static Future<bool> payment(TPCC* self, Database cx, int w_id) {
state ReadYourWritesTransaction tr(cx);
state int d_id = deterministicRandom()->randomInt(0, 10);
state History history;
state Warehouse warehouse;
state District district;
history.h_amount = deterministicRandom()->random01() * 4999.0 + 1.0;
history.h_date = g_network->now();
try {
// get the customer
state Customer customer = wait(getRandomCustomer(self, &tr, w_id, d_id));
warehouse.w_id = w_id;
Optional<Value> wValue = wait(tr.get(warehouse.key()));
ASSERT(wValue.present());
{
BinaryReader r(wValue.get(), IncludeVersion());
serializer(r, warehouse);
}
warehouse.w_ytd += history.h_amount;
{
BinaryWriter w(IncludeVersion());
serializer(w, warehouse);
tr.set(warehouse.key(), w.toValue());
}
district.d_w_id = w_id;
district.d_id = d_id;
Optional<Value> dValue = wait(tr.get(district.key()));
ASSERT(dValue.present());
{
BinaryReader r(dValue.get(), IncludeVersion());
serializer(r, district);
}
district.d_ytd += history.h_amount;
customer.c_balance -= history.h_amount;
customer.c_ytd_payment += history.h_amount;
customer.c_payment_cnt += 1;
if (customer.c_credit == LiteralStringRef("BC")) {
// we must update c_data
std::stringstream ss;
ss << customer.c_id << "," << customer.c_d_id << "," << customer.c_w_id << "," << district.d_id << ","
<< w_id << history.h_amount << ";";
auto s = ss.str();
auto len = std::min(int(s.size()) + customer.c_data.size(), 500);
auto data = new (customer.arena) uint8_t[len];
std::copy(s.begin(), s.end(), reinterpret_cast<char*>(data));
std::copy(customer.c_data.begin(), customer.c_data.begin() + len - s.size(), data);
customer.c_data = StringRef(data, len);
}
{
BinaryWriter w(IncludeVersion());
serializer(w, customer);
tr.set(customer.key(), w.toValue());
}
std::stringstream ss;
ss << warehouse.w_name.toString() << " " << district.d_name.toString();
history.h_data = StringRef(history.arena, ss.str());
history.h_c_id = customer.c_id;
history.h_c_d_id = customer.c_d_id;
history.h_c_w_id = customer.c_w_id;
history.h_d_id = d_id;
history.h_w_id = w_id;
{
BinaryWriter w(IncludeVersion());
serializer(w, history);
UID k = deterministicRandom()->randomUniqueID();
BinaryWriter kW(Unversioned());
serializer(kW, k);
auto key = kW.toValue().withPrefix(LiteralStringRef("History/"));
tr.set(key, w.toValue());
}
wait(tr.commit());
} catch (Error& e) {
return false;
}
return true;
}
ACTOR static Future<bool> orderStatus(TPCC* self, Database cx, int w_id) {
state ReadYourWritesTransaction tr(cx);
state int d_id = deterministicRandom()->randomInt(0, 10);
state int i;
state Order order;
state std::vector<OrderLine> orderLines;
try {
state Customer customer = wait(getRandomCustomer(self, &tr, w_id, d_id));
order.o_w_id = customer.c_w_id;
order.o_d_id = customer.c_d_id;
order.o_c_id = customer.c_id;
RangeResult range = wait(tr.getRange(order.keyRange(1), 1, Snapshot::False, Reverse::True));
ASSERT(range.size() > 0);
{
BinaryReader r(range[0].value, IncludeVersion());
serializer(r, order);
}
for (i = 0; i < order.o_ol_cnt; ++i) {
OrderLine orderLine;
orderLine.ol_w_id = order.o_w_id;
orderLine.ol_d_id = order.o_d_id;
orderLine.ol_o_id = order.o_id;
orderLine.ol_number = i;
Optional<Value> olValue = wait(tr.get(orderLine.key()));
ASSERT(olValue.present());
BinaryReader r(olValue.get(), IncludeVersion());
OrderLine ol;
serializer(r, ol);
orderLines.push_back(ol);
}
} catch (Error& e) {
return false;
}
return true;
}
ACTOR static Future<bool> delivery(TPCC* self, Database cx, int w_id) {
state ReadYourWritesTransaction tr(cx);
state int carrier_id = deterministicRandom()->randomInt(0, 10);
state int d_id;
state NewOrder newOrder;
state Order order;
state double sumAmount = 0.0;
state Customer customer;
state int i;
try {
for (d_id = 0; d_id < 10; ++d_id) {
newOrder.no_w_id = w_id;
newOrder.no_d_id = d_id;
RangeResult range = wait(tr.getRange(newOrder.keyRange(1), 1));
if (range.size() > 0) {
{
BinaryReader r(range[0].value, IncludeVersion());
serializer(r, newOrder);
}
tr.clear(newOrder.key());
order.o_w_id = w_id;
order.o_d_id = d_id;
order.o_id = newOrder.no_o_id;
Optional<Value> oValue = wait(tr.get(order.key()));
ASSERT(oValue.present());
{
BinaryReader r(oValue.get(), IncludeVersion());
serializer(r, order);
}
order.o_carrier_id = carrier_id;
{
BinaryWriter w(IncludeVersion());
serializer(w, order);
tr.set(order.key(), w.toValue());
}
for (i = 0; i < order.o_ol_cnt; ++i) {
state OrderLine orderLine;
orderLine.ol_w_id = order.o_w_id;
orderLine.ol_d_id = order.o_d_id;
orderLine.ol_o_id = order.o_id;
orderLine.ol_number = i;
Optional<Value> olV = wait(tr.get(orderLine.key()));
ASSERT(olV.present());
BinaryReader r(olV.get(), IncludeVersion());
serializer(r, orderLine);
orderLine.ol_delivery_d = g_network->now();
sumAmount += orderLine.ol_amount;
}
customer.c_w_id = w_id;
customer.c_d_id = d_id;
customer.c_id = order.o_c_id;
Optional<Value> cV = wait(tr.get(customer.key()));
ASSERT(cV.present());
{
BinaryReader r(cV.get(), IncludeVersion());
serializer(r, customer);
}
customer.c_balance += sumAmount;
customer.c_delivery_count += 1;
{
BinaryWriter w(IncludeVersion());
serializer(w, customer);
tr.set(customer.key(), w.toValue());
}
wait(tr.commit());
}
}
} catch (Error& e) {
return false;
}
return true;
}
ACTOR static Future<bool> stockLevel(TPCC* self, Database cx, int w_id, int d_id) {
state int threshold = deterministicRandom()->randomInt(10, 21);
state Transaction tr(cx);
state District district;
state OrderLine orderLine;
state Stock stock;
state int ol_o_id;
state int low_stock = 0;
state int i;
try {
district.d_w_id = w_id;
district.d_id = d_id;
Optional<Value> dV = wait(tr.get(district.key()));
ASSERT(dV.present());
{
BinaryReader r(dV.get(), IncludeVersion());
serializer(r, district);
}
for (ol_o_id = district.d_next_o_id - 20; ol_o_id < district.d_next_o_id; ++ol_o_id) {
orderLine.ol_w_id = w_id;
orderLine.ol_d_id = d_id;
orderLine.ol_o_id = ol_o_id;
state RangeResult range = wait(tr.getRange(orderLine.keyRange(1), CLIENT_KNOBS->TOO_MANY));
ASSERT(!range.more);
ASSERT(range.size() > 0);
for (i = 0; i < range.size(); ++i) {
{
BinaryReader r(range[i].value, IncludeVersion());
serializer(r, orderLine);
}
stock.s_i_id = orderLine.ol_i_id;
stock.s_w_id = orderLine.ol_w_id;
Optional<Value> sV = wait(tr.get(stock.key()));
ASSERT(sV.present());
{
BinaryReader r(sV.get(), IncludeVersion());
serializer(r, stock);
}
if (stock.s_quantity < threshold) {
++low_stock;
}
}
}
} catch (Error& e) {
return false;
}
return true;
}
ACTOR static Future<Void> emulatedUser(TPCC* self, Database cx, int w_id, int d_id) {
// stagger users
wait(delay(20.0 * deterministicRandom()->random01()));
TraceEvent("StartingEmulatedUser").detail("Warehouse", w_id).detail("District", d_id);
loop {
auto type = deterministicRandom()->randomInt(0, 100);
Future<bool> tx;
state double txnStartTime = g_network->now();
if (type < 4) {
tx = stockLevel(self, cx, w_id, d_id);
bool committed = wait(tx);
if (self->recordMetrics()) {
TPCCMetrics::updateMetrics(committed,
self->metrics.successfulStockLevelTransactions,
self->metrics.failedStockLevelTransactions,
txnStartTime,
self->metrics.stockLevelLatencies,
self->metrics.stockLevelResponseTime,
"StockLevel");
}
wait(delay(2 + deterministicRandom()->random01() * 10));
} else if (type < 8) {
tx = delivery(self, cx, w_id);
bool committed = wait(tx);
if (self->recordMetrics()) {
TPCCMetrics::updateMetrics(committed,
self->metrics.successfulDeliveryTransactions,
self->metrics.failedDeliveryTransactions,
txnStartTime,
self->metrics.deliveryLatencies,
self->metrics.deliveryResponseTime,
"Delivery");
}
wait(delay(2 + deterministicRandom()->random01() * 10));
} else if (type < 12) {
tx = orderStatus(self, cx, w_id);
bool committed = wait(tx);
if (self->recordMetrics()) {
TPCCMetrics::updateMetrics(committed,
self->metrics.successfulOrderStatusTransactions,
self->metrics.failedOrderStatusTransactions,
txnStartTime,
self->metrics.orderStatusLatencies,
self->metrics.orderStatusResponseTime,
"OrderStatus");
}
wait(delay(2 + deterministicRandom()->random01() * 20));
} else if (type < 55) {
tx = payment(self, cx, w_id);
bool committed = wait(tx);
if (self->recordMetrics()) {
TPCCMetrics::updateMetrics(committed,
self->metrics.successfulPaymentTransactions,
self->metrics.failedPaymentTransactions,
txnStartTime,
self->metrics.paymentLatencies,
self->metrics.paymentResponseTime,
"Payment");
}
wait(delay(3 + deterministicRandom()->random01() * 24));
} else {
tx = newOrder(self, cx, w_id);
bool committed = wait(tx);
if (self->recordMetrics()) {
TPCCMetrics::updateMetrics(committed,
self->metrics.successfulNewOrderTransactions,
self->metrics.failedNewOrderTransactions,
txnStartTime,
self->metrics.newOrderLatencies,
self->metrics.newOrderResponseTime,
"NewOrder");
}
wait(delay(18 + deterministicRandom()->random01() * 24));
}
}
}
double transactionsPerMinute() const {
return metrics.successfulNewOrderTransactions * 60.0 / (testDuration - 2 * warmupTime);
}
bool recordMetrics() const {
auto now = g_network->now();
return (now > startTime + warmupTime && now < startTime + testDuration - warmupTime);
}
Future<Void> start(Database const& cx) override {
if (clientId >= clientsUsed)
return Void();
return _start(cx, this);
}
ACTOR Future<Void> _start(Database cx, TPCC* self) {
wait(readGlobalState(self, cx));
self->startTime = g_network->now();
int startWID = self->clientId * self->warehousesPerClient;
int endWID = startWID + self->warehousesPerClient;
state int w_id;
state int d_id;
state vector<Future<Void>> emulatedUsers;
for (w_id = startWID; w_id < endWID; ++w_id) {
for (d_id = 0; d_id < 10; ++d_id) {
emulatedUsers.push_back(timeout(emulatedUser(self, cx, w_id, d_id), self->testDuration, Void()));
}
}
wait(waitForAll(emulatedUsers));
return Void();
}
Future<bool> check(Database const& cx) override {
return (transactionsPerMinute() > expectedTransactionsPerMinute);
}
void getMetrics(vector<PerfMetric>& m) override {
double multiplier = static_cast<double>(clientCount) / static_cast<double>(clientsUsed);
m.emplace_back("Transactions Per Minute", transactionsPerMinute(), Averaged::False);
m.emplace_back("Successful StockLevel Transactions", metrics.successfulStockLevelTransactions, Averaged::False);
m.emplace_back("Successful Delivery Transactions", metrics.successfulDeliveryTransactions, Averaged::False);
m.emplace_back(
"Successful OrderStatus Transactions", metrics.successfulOrderStatusTransactions, Averaged::False);
m.emplace_back("Successful Payment Transactions", metrics.successfulPaymentTransactions, Averaged::False);
m.emplace_back("Successful NewOrder Transactions", metrics.successfulNewOrderTransactions, Averaged::False);
m.emplace_back("Failed StockLevel Transactions", metrics.failedStockLevelTransactions, Averaged::False);
m.emplace_back("Failed Delivery Transactions", metrics.failedDeliveryTransactions, Averaged::False);
m.emplace_back("Failed OrderStatus Transactions", metrics.failedOrderStatusTransactions, Averaged::False);
m.emplace_back("Failed Payment Transactions", metrics.failedPaymentTransactions, Averaged::False);
m.emplace_back("Failed NewOrder Transactions", metrics.failedNewOrderTransactions, Averaged::False);
m.emplace_back("Mean StockLevel Latency",
(clientId < clientsUsed)
? (multiplier * metrics.stockLevelResponseTime / metrics.successfulStockLevelTransactions)
: 0.0,
Averaged::True);
m.emplace_back("Mean Delivery Latency",
(clientId < clientsUsed)
? (multiplier * metrics.deliveryResponseTime / metrics.successfulDeliveryTransactions)
: 0.0,
Averaged::True);
m.emplace_back("Mean OrderStatus Repsonse Time",
(clientId < clientsUsed)
? (multiplier * metrics.orderStatusResponseTime / metrics.successfulOrderStatusTransactions)
: 0.0,
Averaged::True);
m.emplace_back("Mean Payment Latency",
(clientId < clientsUsed)
? (multiplier * metrics.paymentResponseTime / metrics.successfulPaymentTransactions)
: 0.0,
Averaged::True);
m.emplace_back("Mean NewOrder Latency",
(clientId < clientsUsed)
? (multiplier * metrics.newOrderResponseTime / metrics.successfulNewOrderTransactions)
: 0.0,
Averaged::True);
metrics.sort();
m.emplace_back(
"Median StockLevel Latency", multiplier * TPCCMetrics::median(metrics.stockLevelLatencies), Averaged::True);
m.emplace_back(
"Median Delivery Latency", multiplier * TPCCMetrics::median(metrics.deliveryLatencies), Averaged::True);
m.emplace_back("Median OrderStatus Latency",
multiplier * TPCCMetrics::median(metrics.orderStatusLatencies),
Averaged::True);
m.emplace_back(
"Median Payment Latency", multiplier * TPCCMetrics::median(metrics.paymentLatencies), Averaged::True);
m.emplace_back(
"Median NewOrder Latency", multiplier * TPCCMetrics::median(metrics.newOrderLatencies), Averaged::True);
m.emplace_back("90th Percentile StockLevel Latency",
multiplier * TPCCMetrics::percentile_90(metrics.stockLevelLatencies),
Averaged::True);
m.emplace_back("90th Percentile Delivery Latency",
multiplier * TPCCMetrics::percentile_90(metrics.deliveryLatencies),
Averaged::True);
m.emplace_back("90th Percentile OrderStatus Latency",
multiplier * TPCCMetrics::percentile_90(metrics.orderStatusLatencies),
Averaged::True);
m.emplace_back("90th Percentile Payment Latency",
multiplier * TPCCMetrics::percentile_90(metrics.paymentLatencies),
Averaged::True);
m.emplace_back("90th Percentile NewOrder Latency",
multiplier * TPCCMetrics::percentile_90(metrics.newOrderLatencies),
Averaged::True);
m.emplace_back("99th Percentile StockLevel Latency",
multiplier * TPCCMetrics::percentile_99(metrics.stockLevelLatencies),
Averaged::True);
m.emplace_back("99th Percentile Delivery Latency",
multiplier * TPCCMetrics::percentile_99(metrics.deliveryLatencies),
Averaged::True);
m.emplace_back("99th Percentile OrderStatus Latency",
multiplier * TPCCMetrics::percentile_99(metrics.orderStatusLatencies),
Averaged::True);
m.emplace_back("99th Percentile Payment Latency",
multiplier * TPCCMetrics::percentile_99(metrics.paymentLatencies),
Averaged::True);
m.emplace_back("99th Percentile NewOrder Latency",
multiplier * TPCCMetrics::percentile_99(metrics.newOrderLatencies),
Averaged::True);
}
};
} // namespace
WorkloadFactory<TPCC> TPCCWorkloadFactory(TPCC::DESCRIPTION);